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Abstract
In the last century, several sciences enriched their syntax in order to model interac-
tions. Not only computer science and quantum physics, but also biology and eco-
nomics are examples of fields requiring syntax and semantics for concurrency as well
as for sequentiality.

String diagrams are suitable for that purpose. In that syntax, we have two compo-
sitions: the parallel one and the sequential one, which may interact by the interchange
rule. If we consider this rule as an equality, string diagrams are a syntax for strict
monoidal categories, with a more intuitive graphical representation than traditional
algebraic formulas.

In this thesis, we study this 2-dimensional syntax and its semantics. We consider
diagram rewriting and we give two applications of those methods:

• a detailed proof of Mac Lane’s coherence theorem for symmetric monoidal cate-
gories based on convergent diagram rewriting, which is given in arXiv:1606.01722;

• an interpretation of proof derivations by string diagrams for the MELL frag-
ment of linear logic, which captures proof equivalence. We get a linear se-
quentializability test to verify if a diagram corresponds to a proof . This in-
terpretation extends the one for the MLL fragment given in arXiv:1606.09016,
providing also a cut-elimination result.

Résumé
Dans le dernier siècle, nombreux sciences ont enrichi leur syntaxe pour pouvoir mod-
eler des interactions. Entre eux on peut compter l’informatique, la physique quan-
tique, et aussi la biologie et l’économie : toutes ces sciences sont des exemples de
domaines qui ont besoin d’une syntaxe et d’une sémantique soit pour la concurrence
que pour la séquentialité.

Les diagrammes des cordes sont bien adapté à cet effet. Dans leur syntaxe on
peut retrouver deux compositions : une composition parallèle et une composition
séquentielle, qui peuvent interagir à travers une loi d’interchange. Si on considère
cette loi comme une égalité, les diagrammes de cordes sont une syntaxe pour les
catégories monoidales strictes, avec une représentation graphique plus intuitive que
les formules algébriques traditionnelles.

Dans cette thèse, on ètude cette syntaxe de dimension 2 et sa sémantique. On
considéré la réécriture des diagrammes et on donne des applications de cet méthode :

• une preuve détaillée du théorème de cohérence de Mac Lane pour les catégories
monoidales symétriques basée sur un systéme de réécriture convergent donnée
en arXiv:1606.01722;

• une interprétation des dérivations de preuves avec les diagrammes de preuve
pour le fragment MELL de la logique linéaire, qui capture l’équivalence de
preuves. On peut vérifier la séquentialité en temps linéaire, c’est à dire vérifier si
un diagramme corresponds à une preuve. Cette interprétation est une extension
de celle pour le fragment MLL donnée en arXiv:1606.09016 en donnant aussi
un résultat de élimination du coupure.
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Introduction

String diagrams are a graphical representation for some morphisms. This
definition could appear vague and unclear, however, it can be considered as
the most comprehensive and intuitive definition of this syntax. . . But soft!
Back to origins: in 1948 Richard Feynman first introduced his diagrammatic
notation in order to represent the complex interaction between sub-atomic
particles in quantum physics [25]. The great advantage of his diagrams is
their expressiveness: they allow to represent with in a single expression what
could be represented by an infinite number of equivalent terms using standard
notation. Albeit the seeds of category theory was sown by Samuel Eilenberg
and Saunders Mac Lane [23] in 1945 and some intuition given by Penrose [73]
in 1971 in its work on finite dimension vector spaces, we have to wait 1985
to have a formalization of this syntax for monoidal categories, in the work of
André Joyal and Ross Street [44].

The intuitive idea behind string diagrams is quite simple: a diagram rep-
resents some kind of transformation, which take some incoming data and
produce other out-coming data. These transformations can be composed ar-
ranging them in parallel or as a sequence:

in(φ)︷︸︸︷
φ︸︷︷︸

out(φ)

(a) A diagram

in(φ)“and”in(φ′)︷ ︸︸ ︷
φ φ′︸ ︷︷ ︸

out(φ)“and”out(φ′)

(b) Parallel composition

in(φ)︷ ︸︸ ︷
φ

φ′︸︷︷︸
out(φ′)

.

(c) Sequential composi-
tion (if in(φ′) = out(φ))

This “2-dimensional” syntax presents some new features about terms con-
struction which leads to new paradigms in rewriting. In particular, there could
be some terms which break the dualism of the two compositions and terms
having no interaction at all with someof their subterms. Moreover, the rela-
tive rewriting theory loses some finiteness properties related to confluence [35]
even in presence of finite rewriting systems due to the more complex shapes
in rewriting overlaps.

The key of the expressiveness of this syntax lies in the so called interchange
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rule which, following the graphical intuition, allows to move the mutual posi-
tion of parallel composed diagrams:

φ

φ′
∼ φ φ′ ∼ φ′

φ
.

Whenever we consider this relation as an equality, string diagrams become the
fitful syntax for strict monoidal categories and it allows to simplify notations
theorems’ proofs.

In particular, we give a complete proof of coherence of symmetric monoidal
categories via diagram rewriting only [3]. We complete the proof of Lafont’s
rewriting system confluence given in [52], detailing all its critical pairs solu-
tions. Then, using the same method presented in [36], we explicitly construct
the homotopy base of this rewriting system. Finally, we recover the coherence
for symmetric monoidal categories by showing the correspondence between
this base and the axiomatic coherence conditions.

The original purpose of this thesis was the study of rewriting in this 2-
dimensional syntax; the latest researches of the author [4] focused instead on
the use of this syntax for a reformulation of Jean-Yves Girard’s linear logic
proof nets syntax [28]. This graphical syntax for linear logic derivations was
introduced for the multiplicative fragment and it generates a larger family
of terms called proof structures generalized by Yves Lafont’s interaction nets
[50]. On one hand, proof nets represent a perfect semantic for equivalent
multiplicative proofs; on the other hand, however, they require a correctness
criterion in order to recognize whenever a proof structure is a proof net, that
is, whether it corresponds to some derivations.

In fact, even if Girard’s original correctness criterion for multiplicatives
and others methods, notably by Danos-Regnier [17] and by Guerrini [31],
have linear complexity, their adaptations result ineffective in presence of the
multiplicative unit ⊥ or exponentials. Of course, this syntax can be extended
adding some machineries (such as jumps for ⊥ rule [29] and boxes for expo-
nential promotion rule) in order to guarantee the correctness. However, even
extending the multiplicative fragment in order to include only units, we lose
the expressiveness of this semantics along with the correspondence between
proof nets and equivalence classes of proofs.

In this thesis we define the new syntax (and its relative semantics) of linear
logic proof diagrams by means of diagram rewriting systems. Proof diagrams
display a graphical representation of proofs, which reminds of proof nets, that
keeps more information with respect to the old syntax. Indeed, we are able to
control the string crossings preventing some incorrect configurations in term
construction and keeping linear the complexity of the correction criterion for
the multiplicative and exponential linear logic fragment. In fact, once the
twisting operators (i.e. the cells representing crossings) are integrated with in-
terchange rule by means of a proper definition of diagram rewriting rules, we
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give a semantics requiring only a control over diagrams inputs and outputs to
prove sequentializability, i.e. when a diagram represent a proof. In particular,
this less coarse semantics differs from proof net syntax in requiring no addi-
tional tools such as jumps assignations, making possible to recover the part of
proof equivalence we lose in MLL proof net with units. Moreover, similar ar-
gumentations allow to give a fitful notation for promotion rule (corresponding
to proof net boxes) together with a semantics reflecting their interaction with
the others exponential rules of MELL sequent calculus. Finally, we are able
to include in this semantics also the monoidal structure concerning weakening
and contraction rules.

The resulting semantics of proof diagrams have some interesting charac-
teristics such as a more sequentialized structure of terms which, in irreducible
terms have a layer form. In general, this structure of term allows us to be able
to easily spot cells representing splitting rules, simplifying the sequentializa-
tion procedure for terms. Furthermore, this feature prevents the recovering of
the proof equivalence. In fact, equivalent proofs which differ for the splitting
order, as the ones displayed above, are represented by non-equivalent proof
diagrams.

...
` Γ, A,B

...
` Γ′, C

⊗1
` Γ,Γ′, (B ⊗1 C), A

...
` Γ′′, D

⊗2
` Γ,Γ′,Γ′′, (A⊗1 D), (B ⊗2 C)

∼

...
` Γ, A,B

...
` Γ′′, D

⊗2
` Γ,Γ′, (A⊗1 D), B

...
` Γ′, C

⊗1
` Γ,Γ′,Γ′′, (A⊗1 D), (B ⊗2 C)

This forces to introduce in the semantics some rules radically changing
the structure of a proof diagram in order to have a sort of standardization for
proof derivation based on the order of the axioms with respect to splittings.

In this semantics, free of the so called commutative cuts, we introduce some
rewriting rules corresponding to cut-elimination, proving an analogous result
of the cut-elimination theorem. The obtained 2-dimensional syntax of proof
diagrams, together with their semantics, perfectly represents the behaviors
of proof equivalence and proof semantics of MELL. Indeed, we keep the
motivations behind the choice of using proof nets syntax giving an intuitive
representation of (equivalence classes of) terms in a setting where a proper
correctness criterion is not needed and sequentializability of terms can be
checked in linear time.

Outline of the thesis

The first chapter contains background material on (word) rewriting and its
correlation with algebra. We then recall some notions in category theory
in order to give an interpretation of diagram rewriting systems as higher-
dimensional rewriting.
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The second chapter aims to give formal foundations to graphical represen-
tation of string diagrams. For that purpose, we give an alternative construc-
tion of string diagram syntax as a semantic of 2-dimensional words. In this
context, we show the presence of some peculiar computation behaviors absent
in word rewriting leading to new problems in confluence theory. As an applica-
tion of these methods, we conclude the chapter with an extended formulation
of the proof of Mac Lane’s coherence theorem for symmetric monoidal cat-
egories using string diagram rewriting. In particular, we give the complete
proof of the convergence of this system detailing the confluence of its critical
pairs, which was never shown in the literature.

In the third chapter we give a formulation of a (diagram) rewriting system,
whom terms we call proof diagrams, which mimics MELL proof net syntax of
linear logic. Due to string diagrams syntax, we need the introduction of certain
generators and relations in order to manage sequents as lists of formulas. This
allows us to introduce of two non-crossing string in this syntax achieving a
linear sequentializability test to check if a diagram represent a proof derivation
even in presence of units and exponential. While on one hand the more rigid
structure of this syntax reflects the focalized structure of proofs, on the other
hand this forces to introduce specific relations (ad generators) in order to be
able to perform the commutations of inference rules which change the splitting
order in proofs. With a proper extension of this model, we finally achieve a
semantics for proof diagrams corresponding to the one of equivalent linear
logic proofs with a relative cut-elimination theorem.

Finally, the last chapter is devoted to some considerations about results
given in the thesis, leaving some open questions and tips for future investiga-
tions.



Chapter 1

Backgrounds

“But in our opinion truths of this kind should be drawn from notions rather
than from notations.”

[Johan Carl Frederich Gauss, about the proof of Wilson’s theorem.
In Disquisitiones Arithmeticae (1801) Article 76]

1.1 What is rewriting?
Rewriting is a formalism to represent data systems with discrete local evolu-
tions. With the word local we want to remark that transformations will be
operated on some portions of the data that are supposed to be, in some way,
linked to each other. The word discrete remarks the discontinuous way in
which one observes the evolution of the system “by steps”. This makes rewrit-
ing a perfect candidate to represent computation as processes transforming
data, step by step, by a given local transformation, that is exactly how we
naturally think about computation. Let’s give an example:

Example 1.1.1. If we observe the following expression

2 + 1 + 3 + 7 + 5 + 4 + 4 + 4 + 6 + 3 + 3

we could be tempted by computing the sum. In this case, we can scheme
different ways to do it: relying on the fact that we assume + to be associative,
that is

(a+ b) + c = a+ (b+ c) for all a, b, c ∈ N,

we could calculate it by reducing it to a sequence of sums of two natural
numbers. For example, we could compute it from the left to the right, from
the right to the left or from the inside out, but, in any case, we naturally take
some “pieces” of this expression and substitute them with something else —
in this case we replace the symbol + and the two adjacent numbers by their
sum.

9
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The symbol + links the number on its left to the one on its right, making
sum act locally. We are not assuming, in this example, that we substitute
non adjacent numbers. Indeed, in order to do this, we need to consider an-
other powerful property called commutativity of sum which allows to permute
summands.

If we denote by an arrow→ the transition between the steps of our compu-
tation, one possible way of computing the sum could be the following: firstly
we replace 2 + 1 with 3, then 4 + 4 with 8 and 7 + 5 with 12 and so on

2 + 1+3+7+5+4+4+4+6+3+3 → 3+3+7+5+4+4 + 4−6+3+3 →

→ 3 + 3 + 7 + 5 + 4 + 8 + 6 + 3 + 3 → 3 + 3 + 12 + 4 + 8 + 6 + 3 + 3 → . . .

The evolution of this computation is discrete: we do not care about how we
transform, for example 2+1, but just about the result after the transformation
2 + 1→ 3. Ontologically we limit the observations to the two states in which
is present the datum 2 + 1 and one in which this datum is replaced by 3
ignoring how this new datum has been obtained from the previous one. It
could be obtained by counting sheep (discrete steps), drinking glasses of wine
(continuous steps) or waiting one unity of time after two other ones (fully
continuous).

In this thesis we use some different rewriting systems in an explicit way,
but, for any sort of function, computation or, more generally, for any system
characterized by a discrete observation of its evolution, we can consider a
rewriting system to representing it.

In the next section we introduce some fundamental notions in rewriting
theory by means of the corresponding notions in word (or string) rewriting.
Even if this formalism is shared by different rewriting system such as term
rewriting, Petri nets and string diagram rewriting, our choice is due not only
to its utility in this thesis but also for historical reasons.

1.2 Word rewriting
Historically, word rewriting arose in the form of combinatorial systems by
different authors at the beginning of the 20th century. It was introduced at
the end of the 19th century by Walther Von Dyck in order to study groups
in terms of generators and relations. This way of studying groups allows to
analyze some of its properties without the need of working with the whole
set of its elements. For example, in algebraic geometry, in order to compute
fundamental groups of topological spaces by means of groups amalgams arising
from the Seifert-Van Kampen theorem, we use string rewriting systems as
groups presentations.

This model was well formalized by Thue in 1914 (by means of the so
called semi-Thue systems [82]) and used by Post in terms of Post production
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systems [74] in order to prove what Martin Davis [19] states to be “the first
unsolvability proof for a problem from classical mathematics – in this case the
word problem for semigroups”.

Word rewriting can be considered as the first formal system made to study
computations as a discrete dynamic system. In some sense this made it
the precursor of Church’s lambda calculus (1930), Genzen’s sequent calcu-
lus (1934) and Turing machines (1936) since it is (historically) the first model
in which the object of the study is the computation itself and its potentiality of
achieving a certain result. This means, using some modern terminology, that
word rewriting was the first mathematical study of languages expressiveness.

Definition 1.2.1 (String (or Word) Rewriting System). Given a set of letters
or symbols Σ called alphabet or signature, the set Σ∗ is the set of words on Σ,
that is the set of all possible finite concatenations of symbols of the alphabet
including the empty word 1. A string (or word) rewriting system (SRS for
short) (Σ,R) is given by an alphabet Σ and a set of rewriting rules R ⊆ Σ∗×Σ∗
i.e. a set of ordered pairs of words over Σ. We denote a rewriting rule by
w → w′ instead of (w,w′) and we say that w is the premise or source of
the rule while w′ is its target or its conclusion. Moreover, we allow each
rewriting rule in any context, that is, if (w,w′) ∈ R then uwv → uw′v for
every u, v ∈ Σ∗.

Definition 1.2.2. A subword of a word v is a word w such that v P uwu′ for
some u, u′ ∈ Σ∗ (u u′ can be empty). The overlap of two subwords u and w of
v is the longest word v′ such that u P u′v′, w P v′w′ and u′v′w′ is a subword
of v. If w is a subword of v we say that v contains w, moreover if v P wu
(resp. v P uw) ∃u ∈ Σ∗, w it’s a prefix (resp. suffix) of v.

Notation. If R is a set of rewriting rules, we note →∗R (or simply →∗ if
there is no ambiguity) the transitive closure of R and ↔∗R (respectively ↔∗)
its symmetric and transitive closure. Moreover, in order to avoid ambiguities
with this latter equivalence relation, if w,w′ ∈ Σ∗, we write w P w′ in order
to say that these two words are the same.

Definition 1.2.3 (Reduction chain). If (Σ,R) is a rewriting system, we call
a reduction chain or reduction path a sequence {ai}i∈I of words in Σ∗ such
that for all i ∈ I, wi → wi+1. The lenght of a chain is the cardinality of I.
Hence a reduction chain is finite/infinite according to the cardinality of I.

Definition 1.2.4 (Irreducible). If (Σ,R) is a rewriting system, a word w ∈ Σ∗
is R-irreducible (or simply irreducible if there is no ambiguity) if there is no
reduction chain starting from it. If there are no ambiguities, we denote by
irr(Σ) the set of R-irreducible forms of the rewriting system (Σ,R).

Definition 1.2.5 (Convergent rewriting system). A rewriting system (Σ,R)
is noetherian or terminating if there are no infinite reduction chains.
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A rewriting sytem is confluent or has the Church-Rosser property if for
every u, v, v′ such that u→∗ v and u→∗ v′, there is some w such that v →∗ w
and v′ →∗ w.

u

v v′

w

∗ ∗

∗ ∗

A rewriting system is convergent if it is terminating and confluent.
Moreover we say that a rewriting system is locally confluent if it is confluent

and for any u, v, v′ ∈ Σ∗ such that u → v and u → v′, we have v → w and
v′ → w for some w ∈ Σ∗.

Definition 1.2.6 (Critical Pair). A conflict or critical pair (P1, P2) between
two rewriting rules R1 and R2 appears when R1 and R2 can be applied to a
same word w. In this case one ha two one-step reduction paths P1 : w → v1
and P2 : w → v2. A critical peak is a minimal non-trivial conflict (P1, P2)
where the sources of R1 and R2 are two overlapping subwords of w. For this
reason we often note a critical peak by its source w.

A conflict (P1, P2) is solvable if there exist two rewriting sequences Q1 :
v1 →∗ w′ and Q2 : v2 →∗ w′. We say that (Q1P1, Q2P2) is a solution of the
conflict and we call the following diagram its confluence diagram

w

v1 v2

w′

∗ ∗

.

Remark 1.2.7. In word rewriting, a critical peak is a conflict where the cor-
responding word w contains two subwords v and v′ with non-empty overlap
such that v and v′ are respectively the prefix and the suffix of w

Proposition 1.2.8 (Newman lemma [70]). A terminating rewriting system
is confluent if and only if every critical peak is solvable.

Proof. The left-to-right implication is trivial by definition of confluent rewrit-
ing system and critical peak.
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In order to prove the converse we have to prove that any conflict is solvable.
Lets consider a conflict (P1, P2) and two maximal rewriting paths P ′1P1 : w →∗
v̂1 and P ′2P2 : w →∗ v̂2. If (Q1P1, Q2P2) is a solution of the conflict (P1, P2)
with Q1P1, Q2P2 : w → w′ and we have v̂1 = w′ or v̂2 = w′ the proposition is
proved. Otherwise, we consider the maximal rewriting paths Q̂Q1 : v1 →∗ ŵ′
and Q̂Q2 : v2 →∗ ŵ′.

v1

Q1   

P ′1
,,

Q̂Q1

&&

v̂1

w
P2

&&

P1

88

w′
Q̂

// ŵ′

v2

Q2
>>

P ′2

22
Q̂Q2

88

v̂2

By induction over the length of P ′1P1 and P ′2P2, we are able to prove that
v̂1 = ŵ′ = v̂2.

Definition 1.2.9 (Normal form). If (Σ,R) is a rewriting system and w ∈ Σ∗,
the word w′ ∈ Σ∗ is one irreducible form of w if it is irreducible and there
exists a rewriting path w →∗ w′. Moreover, if this irreducible form is unique,
we call it the normal form of w.

Word problem decidability and Chomsky’s hierarchy

Many interesting decidability results are related to word rewriting. In partic-
ular, the so called word problem is undecidable. It consists in determinating
if, given a rewriting system (Σ,R) and two words w,w ∈ Σ∗, w↔∗w′, that
is there exists an unoriented rewriting path from w to w′. In order to prove
this result, we recall some basic definitions in computer science such as Tur-
ing machines definition. In this section we also recall some results of Noam
Chomsky’s works in linguistic where word rewriting systems are seen as formal
grammars that can be classified on the base of expressivity of the language
they generate, finally resulting related to some limitation over the form of
rewriting rules.

Definition 1.2.10 (Turing Machine). A Turing machine is an abstract ma-
chine consisting of:

• An infinite tape containing cells in which symbols of a fixed alphabet are
written;

• A head which can read and write symbols on the tape and move to the
left (L) or to the right (R) on it;

• A set of instructions for the head depending on the input and the current
state.
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More formally a Turing machine T is a 5-tuple (Q,Σ, q0,⊥, δ) where:

• Q is the set of states;

• Σ an alphabet with special symbol � representing an empty cell (it is
not explicitly written in the list of symbols in Σ);

• q0 ∈ Q is the initial state;

• ⊥ ⊂ Q is a set of final states;

• δ : Σ×Q \ ⊥ → Σ×Q× {L,R} is the transition function.

Definition 1.2.11 (Configuration for a Turing machine). Given a Turing
machine M , a configuration for T is given by the content of its tape, a state
and the head position on the tape. An initial configuration is a configuration
with state q0, a final configuration is a configuration with state qj ∈ ⊥. If a
configuration sn+1 is derivable by sn we note sn →M sn+1 a transition of T .

Definition 1.2.12 (Computation). A computation of a Turing machine T
is a sequence of configurations s0, s1, . . . with s0 an initial configuration and
such that sn →M sn+1 for all n ≥ 0. A computation terminates if it is of the
form s0 → . . .→ sn with sn such that there is no configuration sn+1 such that
sn → sn+1. Otherwise we say that the computation diverges.

Remark 1.2.13. If s⊥ is a transition containing a final state (a final config-
uration), there is no s such that s⊥ →M s, Hence a computation can contain
at most one final configuration at the end of a terminating computation.

Proposition 1.2.14. Every non deterministic Turing machine T = (Q,Σ, q0,⊥, δ)
can be simulated by a word rewriting system.

Proof. Let Σ the alphabet of T and Q = {qi}i∈I the states of T . It is possible
(see [20]) to code any configuration of a Turing machine T by the word over the
alphabet ΣT = Σ∪Q given by the content of its tape (which can be represented
as a word in Σ∗) in which the symbol q (corresponding to a state) is placed
before the one read by the head. For example the word a0 . . . ai−1qai . . . an
corresponds to the following configuration

q̀

. . . a0 . . . ai−1 ai ai+1 . . . an . . .

Under this assumption, every transition in δ is interpreted by a rewriting rule:

qai → a′iq
′ if δ(ai, q) = (a′i, q′, R)

ai−1qai → q′ai−1a
′
i if δ(ai, q) = (a′i, q′, L)
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Hence we have the following result:

Theorem 1.2.15. Word rewriting systems are a Turing-complete computa-
tional model.

Chomsky’s hierarchy

In Chomsky’s works on linguistic ( [15], 1950’s), a variant of classical word
rewriting systems is proposed in order to present a formal method able to
describe the cognitive process involved in the construction of sentences in
any natural language. The idea is to build the grammatical structure of an
utterance starting from a start symbol and then build up a concrete phrase
replacing the non-terminal symbols (which can be seen as grammatical vari-
ables) with terminal symbols (corresponding to concrete words). Obviously a
formal grammar can be seen as a rewriting system over the alphabet made of
grammatical variables and natural language’s words and with the rewriting
rules consisting of these transformations.

Definition 1.2.16 (Formal grammar). A (formal) grammar G = (S,Σ, P, S)
is given by:

• A finite set N of non-terminal symbols;

• A finite set Σ of terminal symbols disjoint from N ;

• A finite set P of production rules of the form (N ∪Σ)∗ → (N ∪Σ)∗ such
that the premise of any rule contains at least one non-terminal symbol
in N .

• A special symbol S ∈ N called start symbol.

We call sentential form an element of (N ∪ Σ)∗ which can be derived by the
start symbol S. It is an element of {w ∈ (N ∪Σ)∗|S →∗ w}. A sentential form
containing no N symbol, that is a sentential form in Σ∗, is called sentence.
The language L(G) is defined as the set of all sentences, i.e. L(G) = {w ∈
Σ∗|S →∗ w}.

Formal grammars can be classified by the form of their production rules:

Definition 1.2.17 (Chomsky’s hierarchy). Formal grammar are classified as
follows:

• type-0 grammars are formal grammars with no additional restriction
over rules. They generate recursive languages;

• type-1 grammars are formal grammars in which rules are of the form
αAβ → αγβ with A ∈ N and α, β, γ ∈ (N ∪ Σ∗), γ 6P 1. They generate
context-sensitive languages;
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• type-2 grammars are formal grammars in which rules are of the form
A→ γ with A ∈ N and γ ∈ (N ∪Σ∗), γ 6P 1. They generate context-free
languages;

• type-3 grammars are formal grammars in which rules are of the form
A→ a or A→ aB with A,B ∈ N and a ∈ Σ or the rule S → 1 if S does
not appear as premise in other rules. They generate regular expressions.

Word problem and algebra

A group is an algebraic structure consisting of a set of elements together with
a binary operation. This operation is a function which associate to any pair
of elements of the group a third one. Moreover, to be a group, four additional
axioms have to be satisfied: closure, associativity, identity and invertibility.

A group is one of the simplest algebraic structures and it was the first one
studied with this modern algebraic point of view. The concept of group arose
from Évariste Galois’ studies (1830’s) on polynomial equations: he linked
their solubility to some particular properties of a group associated to each
polynomial. The study of groups was also developed in some other field of
math: Felix Klein in 1872 in his Erlagen program classifies the new geometries
(non-euclidean and projective) discovered in the 19th century considering their
groups of symmetries. Moreover, in number theory, in order to prove the
Fermat’s last problem, this new notion was used to generalize results to class
of object with similar numerical properties.

Even though the notion of monoid differs from the group one for the ab-
sence of the invertibility axiom, it started to be studied later at the beginning
of 20th century. By eliminating the notion of inverse element, we obtain a
structure which can represent the concept of functions composition in com-
puting processes. In fact, even if we know a result and the transformations we
have done to obtain it, it could be possible that we can’t recover the initial
data due to the fact that some of these transformations could be not reversible.
For this reason monoids are used for models in which there could be some irre-
versible processes ans they found applications in theoretical computer science,
category theory but also probability and dynamic systems.

An important tool in studying monoids (and groups) are monoid presen-
tations. A monoid presentation consists of a set of generators together with
a set of relations between certain of their combinations. Once an orientation
is fixed for each of these relations, a monoid presentation gives a word rewrit-
ing system and vice versa. This allows to study certain infinite objects by
means of a finite set of generators and relations. We show that even in finite
presented monoids and groups we still have some undecidability problems.

We recall some definitions on monoid theory.

Definition 1.2.18 (Group). A group G = (S, ∗) is given by a set S (support
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of G) and a binary operation ∗ on S:

∗G : S × S → S

satisfying the following axioms (group axioms):

• (Closure): ∀g, g′ ∈ G, g ∗ g′ ∈ G;

• (Associativity): ∀g, g′, g′′ ∈ G, g ∗ (g′ ∗ g′′) = (g ∗ g′) ∗ g′′;

• (Identity): ∃e ∈ G such that ∀g ∈ G, e ∗ g = g = g ∗ e;

• (Invertibility): ∀g ∈ G ∃g−1 ∈ G such that g ∗ g−1 = e = g−1 ∗ g;

where g ∈ G means g ∈ S.

Definition 1.2.19 (Subgroup). If H ⊆ G is a subset of elements of G, H is a
subgroup of G (noted by H ≤ G) if 1 ∈ H and H is closed under the operation
of G (the axioms are then necessarily satisfied).

Definition 1.2.20 (Quotient Group). A quotient group Q = G
R is a group

obtained identifying together elements of a group G by a congruence ∼, that
is an equivalence relation R which is compatible with the group operation.
The elements of Q (class of equivalence) are usually noted by [g]R, with g ∈
G. Furthermore, the set N = [1]R of elements which are equivalent to 1G
is a normal subgroup. Vice versa, every N normal subgroup of G induces
acongruence on G given by g ∼ g′ ⇔ gg′−1 ∈ N .

Definition 1.2.21 (Group Homomorphism). Let G,G′ to be groups. A group
homomorphism φ is a map φ : G→ G′ such that: φ(g ∗G g′) = φ(g) ∗G′ φ(g′)

Definition 1.2.22 (Group Isomorphism). A group isomorphism φ : G→ G′

is a bijective homomorphism.

Definition 1.2.23 (Monoid). A monoid M = (S, ∗) is given by a set S and
a binary operation ∗ on S:

∗ : S × S → S

satisfying the following axioms:

• (Closure): ∀g, g′ ∈ G, g ∗ g′ ∈ G;

• (Associativity): ∀g, g′, g′′ ∈ G, g ∗ (g′ ∗ g′′) = (g ∗ g′) ∗ g′′;

• (Identity): ∃e ∈ G such that ∀g ∈ G, e ∗ g = g = g ∗ e.

Definition 1.2.24 (Submonoid). A subset N ⊆ M is a submonoid of M if
it contains the unity and it is closed under the binary operation induced by
that one of M (i.e. for every x, y ∈ N , xy ∈ N).
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Definition 1.2.25 (Quotient Monoid). If M is a monoid and ∼ acongruence
on M , the quotient monoid M

∼ is the monoid given by the set of equivalence
class of M relative to ∼ and the operation induced by the one of M .

Definition 1.2.26 (Monoid Homomorphism/Isomorphism). If M and N are
two monoids, a map f : M → N is an homomorphism if f(x ∗M y) = f(x) ∗N
f(y) for all x, y ∈M . An isomorphism f is a bijective homomorphism.

Definition 1.2.27 (Monoid Presentation). A monoid presentation is given
by a set of generators Σ and a set of relations R ⊂ Σ∗ ×Σ∗. We give monoid
presentations by means of rewriting system. A presentation is called finite if
Σ and R are finite sets.

If M is a monoid, M = 〈Σ,R〉+ means that M is equal to the quotient
Σ∗
↔∗R of the monoid Σ∗ freely generated over Σ where ↔∗R is the congruence
generated by R (the smallest equivalence relation which contains R and is
compatible with the multiplication).

Similarly, a presentation of a group is given by an alphabet Σ and a set of
pairs of words on the alphabet Σ ∪ Σ̄ where Σ̄ = {σ̄|σ ∈ Σ}. By G = 〈Σ,R〉
we denote that the group G is isomorph (as monoid) to the monoid MG =
〈Σ ∪ Σ̄,R∪ IΣ〉+ where IΣ = {(σσ̄, 1), (σ̄σ, 1)}σ∈Σ.

Example 1.2.28. The group Z ' 〈b|∅〉 =: F1 has a canonical presentation
〈b〉 := 〈b, ∅〉 as a group and a canonical presentation 〈{b, b̄},Rb = {(b̄b, 1), (bb̄, 1)}〉+
as a monoid. If w P bb̄, w′ P b̄b then ww′ P bb̄2b = 1.

Definition 1.2.29 (Word problem for monoids). Given a presentation (Σ,R)
of the monoid M , its word problem consists to answer to the following ques-
tion:

Given v, w ∈ Σ∗ do we have v↔∗Rw?

The word problem can be defined in the same way for monoids and groups
which admit a finite presentation.

By the Proposition 1.2.14 we are able to prove the following

Theorem 1.2.30 (Post-Markov ( [75], [63],(1947)). There exists a finite semi-
group with undecidable word problem.

Proof. It is enough to consider the monoid MT = 〈Σ,R〉+ where (Σ,R) is
a word rewriting system coding a Turing machine T . In such a monoid, if
we consider two words w,w⊥ that correspond to two different configurations
of T with w⊥ a final state, verifying whether w↔∗w⊥ corresponds (at least)
to verify whether the computation starting form the configuration w ends.
This implies to answer to an instance of the halting problem for T , which is
undecidable.
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The following example is given by Tseitin in [85].

Example 1.2.31. The semigroup ({a, b, c, d},R) where R are the relations:

ac = ca, ad = da, bd = db, ce = eca, dc = edb, cca = ccae

has unsolvable word problem.

Due to the presence of invertible elements, the proof of this theorem can
not be extended to word problem for groups. Its undecidability was proved
independently in 1950’ by Novikov and Boone.

Theorem 1.2.32 (Novikov-Boone). There exists a group with undecidable
word problem.

Besides the original proofs, some reformulations of them in terms of rewrit-
ing are given by Bokut’ [9], Aandrea-Cohen [1] and Lafont [54]. The difference
between them are highlighted in [2].

The permutation group

In this section we recall the definition of permutations and the algebraic struc-
ture induced by their composition. Moreover we give some additional defini-
tions and tools useful to prove some confluence results in section 3.

Definition 1.2.33 (Permutation). A permutation σ is a bijection of a set S
into itself. There are two different notations for permutations over a finite set:

• Cauchy’s two-lines notation: the first row is the list of elements in S
with, and for each one its image below it in the second row:(

x1 x2 . . . xn
σ(x1) σ(x2) . . . σ(xn)

)

• Disjoint cycles notation: it is a list of disjoint lists of elements of S called
cycles of the form

(x = σnx(x), σ(x), σ2(x), . . . , σk(x)).

The natural integer k ∈ N is called order of x in σ. This notation often
omits to write cycles of order 1.

A transposition is a permutation over a set of two elements. A cycle in Sn
is a permutation of order n.

Definition 1.2.34 (Permutation group). If n ∈ N, the permutation group
over a set of n elements Sn is the group of permutations where the operation
is given by their composition ◦ as function.
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Definition 1.2.35 (Erasing a string). If σ ∈ Sn+1, we define Erk(_) : Sn+1 →
Sn as follows:

Erk(σ) =


Erk(σ)(i) = σ(i) if i < k, σ(i) < σ(k)
Erk(σ)(i) = σ(i)− 1 if i < k, σ(i) > σ(k)
Erk(σ)(i− 1) = σ(i) if i > k, σ(i) < σ(k)
Erk(σ)(i− 1) = σ(i)− 1 if i > k, σ(i) < σ(k)

We write Er{k1,k2}(σ) = Erkj (Erki(σ)) with ki = min{k1, k2} and kj =
max{k1, k2}.

1.3 Some category theory
In this section we recall some definition in category theory in order to fix
notation for the future chapters.

Definition 1.3.1. A category C is given by a class of objects ob(C) and a class
of morphisms or arrows hom(C) such that:

• for any pair of objects a and b it is defined the class homC(a, b) of mor-
phisms from a to b;

• for every three objects a,b and c it is defined a binary operation ◦ :
homC(a, b) × homC(b, c) → homC(a, c) called morphisms composition.
We note the composition of f : a → b and g : b → c as g ◦ f . This
composition satisfies the following axioms

– associativity: for all f : a→ b, g : b→ c and h : c→ d, h◦ (g ◦ f) =
(h ◦ g) ◦ f

– identity: any object a admits an identity morphism ida : a → a
such that for any morphism f : x→ a and every morphism g : a→
x, we have ida ◦ f = f and g ◦ ida = g.

In some sense, a category can be seen as a structure which mix the notions
of monoid, which can be seen as a category with just one object, and of
partial order, which can be seen as a category with just one morphism between
each pair of objects. Moreover we can also interpret a category by means of
simplicial complex with objects as 0-simplices and morphisms as 1-simplices.

Definition 1.3.2. A functor F : A→ B is a morphism between two categories
A and B. It is given by a function Fo : ob(A) → ob(B) which associates
to any object a ∈ ob(A) an object F (a) ∈ ob(B) and a function over the
arrows such that for any f : a → a′ in homA(a, a′) it associates an arrow
F (f) : F (a)→ F (a′) in homB(F (a), F (a′)) such that:

• for all a object of A, F (ida) = idF (a);
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• for all morphism f : a→ a′, g : a′ → a′′ in A, F (g ◦ f) = F (g) ◦ F (f);

Definition 1.3.3 (Category isomorphism). A category isomorphism F : A→
B is an invertible functor.

Definition 1.3.4 (Natural transformation). If S, T : C → B are two functors,
a natural transformation τ : S → T is a function which associate to any object
c of C an arrow τc : S(c) → T (c) of B such that for each f : c → c′ in C the
following diagram commutes:

S(c) T (c)

S(c′) T (c′)

τ(c)

S(f) T (f)

τ(c′) .

Monoidal categories

In this work we focus principally on a particular family of categories called
monoidal categories. These are particular categories with an additional al-
gebraic structure over their objects: monoidal categories are monoids in the
category of categories with the cartesian products [61].

Definition 1.3.5. A monoidal category is a category C equipped with a
(bi)functor � : C × C → C and an object e of C (that can be seen as a
functor e : ∗ → C ) together with three families of natural isomorphisms

α = αxyz : (x � y) � z → x � (y � z),

λ = λx : e � x→ x, ρ = ρx : x � e → x,

such that the following diagrams commute:

• pentagonal identity:

((x � y) � z) � t)

(x � (y � z)) � t) x � ((y � z) � t)

x � (y � (z � t))

(x � y) � (z � t)

α � id

α α

α

id � α
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• triangular identity:

(x � e) � y x � y

x � (e � y)

ρ � id

α id � λ

Theorem 1.3.6 (Coherence theorem for monoidal categories, Mac Lane [61]).

Every diagram made of α, λ, ρ in an arbitrary monoidal category C commutes.

We note that the pentagonal and triangular identities correspond to the
confluence of two critical peaks for the rewriting system given by α, λ and ρ.
In fact, there are three other critical peaks which are handled by the following
lemma, which is proved in Section 2.5.

Lemma 1.3.7 (Kelly [48]).
The commutativity of the following diagrams is derivable from the pentagonal
and the triangular identities:

(e � x) � y x � y

e � (x � y)

λ � id

α λ

(x � y) � e x � y

x � (y � e)

ρ

α id � ρ

e � e e � e
λ

ρ

Definition 1.3.8 (Symmetric monoidal category).
A symmetric monoidal category is a monoidal category C equipped with an
extra family of natural isomorphisms called braidings

τ = τxy : x � y → y � x

such that the following diagrams commute:

• the hexagonal identity:
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(x � y) � z

x � (y � z) (y � z) � x

y � (z � x)

(y � x) � z y � (x � z)

α

τ

α

τ � id
α

id � τ

• involutivity of τ :

x � y x � y

y � x
τ τ

Example 1.3.9. Any cartesian category, for instance the category of sets,
has a structure of symmetric monoidal category, where � is the cartesian
product × and τ : x× y → y × x is the exchange of components.

In particular, we call product category (PRO for short) a monoidal category
with objects in one-to-one correspondence with natural numbers and product
the integer sum. A PROs is a symmetric PRO.

Definition 1.3.10. A diagram is linear1 if every variable appears at most
once on each vertex.

Theorem 1.3.11 (Coherence of symmetric monoidal categories, [62]).
In an arbitrary symmetric monoidal category, every linear diagram made of
λ, ρ, α and τ is commutative.

Remark 1.3.12. The linearity of diagrams is necessary for the statement of
this theorem since in a symmetric monoidal category, we have diagrams such
as

x � x x � x
id
τ

made of parallel arrows which are not equal in general.

In order to give a categorical higher-dimensional point of view on monoidal
categories, we use the cellular syntax: categories are 1-cells, functors 2-cells,
natural transformations 3-cells, diagrams are pairs of parallel 3-cells (same
source, same target) and commutative diagrams are 4-cells. The border of a

1In [61], Mac Lane calls this a formal diagram
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4-cell is the pair of parallel 3-cells that defines its diagram. In this syntax,
coherence corresponds to the existence of a 4-cell whose border is a given pair
of parallel 3-cells for any such pair (corresponding to linear diagrams).

This cellular syntax comes from what we can consider as the extension of
rewriting system constructions: a word rewriting system can express with a
simpler object a more complex monoid with infinite interaction between its
elements, similarly a category can be generated by a graph.

Definition 1.3.13 (Category generated by a graph). If G = (V,A) is a direct
(small) graph with vertex set V and arrows A, the (small) free category gen-
erated G∗ = CG by the graph G has object the set V and, for each a, b ∈ V ,
homC(a, b) the set of paths from a to b.

Definition 1.3.14 (n-Graph). An ω-Graph is givem by a diagram of sets

G0 G1 . . . Gn Gn+1 . . .
s0

t0

s1

t1

s2

t2

s1

t1

s2

t2

such that, for every n ∈ N the following equations hold:

snsn+1 = sntn+1 tnsn+1 = tntn+1.

The elements of Gn are called n-cells. An n-Graph is defined in a similar way
by a finite sequence

G0 G1 . . . Gn.
s0

t0

s1

t1

s2

t2

Definition 1.3.15 (2-Category). The mean idea in building 2-category is
to extend the notion of category to the Hom-sets of C such that for every
X,Y ∈ C, Hom(X,Y ) has a category’s structure. A 2-category is a 2-graph.

C0 C1 C2
s1

t1

s2

t2

satisfying the following properties:

• the graph C0 C1
s1

t1
has a structure of category:

X 7→ X
idX→ X, X

f→ Y
g→ Z 7→ X

gf→ Z

for all X,Y, Z ∈ C0, f, g ∈ C1;
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• the graph C1 C2
s2

t2
has a structure of category:

X
f→ Y 7→ X

f−→
↓ idf
−→
f

X, X

f−→
↓µ−→
↓λ
−→
f ′

Y 7→ X
f−→
↓ λµ
−→
f ′

Y

for all f, f ′ ∈ C1, λ, µ ∈ C2;

• the graph C0 C2
s0s1

t0t1
has a structure of category:

X 7→ X

idX−→
↓ IdX
−→
idX

X, X

f−→
↓ λ
−→
f ′

Y

g′−→
↓ µ
−→
g′

Z 7→ X
gf−→
↓ µ ∗ λ
−→
g′f ′

Z

for all X,Y ∈ C0, λ, µ ∈ C2;

• and the compatibility conditions:

IdX = ididX , µ′µ ∗ λ′λ = (µ′ ∗ λ′)(µ ∗ λ)

for all X ∈ C0, and X
−→
↓λ−→
↓λ′
−→

Y

−→
↓µ−→
↓µ′
−→

Z.

In particular, this last condition explixitally means that there is an exchange

rule (idg′ ∗ λ)(µ ∗ idf ) = µ ∗ λ = (µ ∗ idf ′)(idg ∗ λ) for all X
f ′−→
↓ λ
−→
f

Y

g′−→
↓ µ
−→
g

Z.

Definition 1.3.16 (ω-Category). If C is an ω-graph we define, for 0 ≤ i < j,
a graph Cij :

Ci Cj

sij

tij

with sij = sisi+1 . . . sj−1 and tij = titi+1 . . . tj−1 and, for 0 ≤ i < j < k, a
2-graph Cijk:

Ci Cj Ck

sij

tij

sjk

tjk

An ω-graph has the structure of ω-category if every Cijk is a 2-category for
all 0 ≤ i < j < k (with the above defined compositions and identities). We
denote by ∗k the sequential composition of k-cells.
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Polygraphs [12] (or computads [80]) are the presentation of higher dimen-
sion categories by means of generator and relations.

Definition 1.3.17 (Polygraph). The category Pol0 of 0-polygraph is the
category Set, a 0-cell of a 0-polygraph is one of its elements.

An n-polygraph Σ = (Σn−1,Σ) is given by an (n− 1)-polygraph Σn−1 and
a family Σ of n-spheres on the free (n − 1)-category generated by Σn−1. An
n-cell is an element of Σn and, for all k < n, a k-cell of Σ is a k-cell of the
polygraph Σn−1. An n-polygraph is finite it has a finite number of cells in
every dimension.

Σ1Σ0 Σ2 Σn−2 Σn−1 Σn

Σ∗0 Σ∗1 Σ∗2 Σ∗n−2 Σ∗n−1

. . .

. . .
s̄0

t̄0

s̄1

t̄1

s̄n−2

t̄n2

s0

t0

s1

t1

sn−2

tn−2

sn−1

tn−1

An (n, k)-polygraph is an n-polygraph where the cells of dimension greater
than k are invertible, that is for each p-cell f with k < p ≤ n there exist a
p-cell f−1 such that

f ∗p f−1 = idsp−1(f) and f−1 ∗p f = idtp−1(f)

If we consider polygraphs as presentations for higher-dimensional cate-
gories, the relation between an (n, k)-polygraph and the relative n-polygraph
reminds the one between a group and a monoid presentation given by the
same rewriting system. Hence, even if they are given by the same set of rules,
the presentation of the group implicitly considers a rewriting system enriched
by an additional set of generators (a formal inverses for each generator) and
an additional set of relations (the ones which relate each generator to its in-
verse). In the same way, the (n, k)-polygraph can be consider as its relative
n-polygraph enriched by a formal inverse for each p-cell with k < p ≤ n and
the relative q-cells with p < q representing the equalities with identities. For
a more formal construction of (n, k)-polygraph we remind [37].

1.4 String diagrams
String diagrams (or simply diagrams) are a way of notating natural transfor-
mations and functors (for a gentle introduction to the topic, refer to Chapter
2). The main idea of this representation is to graphic a functor F : C → D as

·FC D



1.4. STRING DIAGRAMS 27

and a sequential composition C F→ D G→ E as

· ·F GC D E
.

Expanding this notation to a bidimensional representation, sequential com-
position will be represent as

F G

C D E

i.e. the objects (in this case categories in Cat) are connected components
of plane and functors their border. A natural transformation φ between two
functon F,G : C → D will be plotted as follow

F

C φ D
G

while the natural transformation ◦ : C F→ D G→ E ⇒ C G◦F→ E :

F G

D
C ◦ E

G◦F

In general, string diagrams can be used to represent 2-arrows in any 2-
category: connected components of the plane are labeled by objects, the
strings (which separate plane portions) represents arrows, and gates (which
connect strings) represents 2-arrows.

Example 1.4.1. String diagrams allow to easy represent natural transforma-
tions of monads.

Definition 1.4.2 (Monad). A monad C is a category equipped with an endo-
functor T : C → C and two natural transformation ε and η such that:

• η : idC → T

• µ : T ◦ T → T

satisfying the coherence conditions

µ ◦ Tµ = µ ◦ µT and µ ◦ Tη = µ ◦ ηT = idT

that is the following diagrams commute
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T 3 T 2

T 2T

µT

µT
µ

µ

T T 2 T

T

Tη

idT

Tη

idT
µ

.

Since the unique functor T we’ll study is an endo-functor on C we can omit
to label the portion of plane (always labeled by C) and the strings (which
suppose to be all labeled by T ). The two natural transformation will be
represented by

µ = η =

The coherence condition of η and µ are represented by the following dia-
grammatic equations:

• µ ◦ Tµ = µ ◦ µT :
=

• µ ◦ Tη = idT = µ ◦ ηT :

= = .

Monochrome String Diagrams

We now recall some basic notions in string diagram rewriting by consider-
ing the monochrome string diagrams settings, where there are no labels on
backgrounds or strings. For an introduction to string diagrams, see J. Baez’s
notes [6].

Given p and q natural numbers, a diagram φ : p⇒ q with p inputs and q
outputs is pictured as follows:

p︷︸︸︷
φ︸︷︷︸
q

Diagrams may be composed in two different ways. If φ : p⇒ q and φ′ : p′ ⇒ q′

are diagrams, we define:

• sequential composition: if q = p′, the diagram φ′◦φ : p⇒ q′ corresponds
to usual composition of maps:

p︷︸︸︷
φ

φ′︸︷︷︸
q′
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This composition is associative with unit idp : p⇒ p for each p ∈ N. In
other words, we have φ ◦ idp = φ = idq ◦ φ. The identity diagram idp is
pictured as follows:

︸︷︷︸
p

• parallel composition: the diagram φ ∗ φ′ : p+ p′ ⇒ q + q′ is pictured as
follows:

p+p′︷ ︸︸ ︷
φ φ′︸ ︷︷ ︸
q+q′

This composition is associative with unit id0 : 0 ⇒ 0. In other words,
we have id0 ∗ φ = φ = φ ∗ id0. This id0 is called the empty diagram.

Our two compositions satisfy the interchange rule: if φ : p ⇒ q and
φ′ : p′ ⇒ q′, so (idq ∗ φ′) ◦ (φ ∗ idp′) = φ ∗ φ′ = (φ ∗ idq′) ◦ (idp ∗ φ′) that
corresponds to the following picture:

φ

φ′
= φ φ′ = φ′

φ

Monochrome string diagrams can be interpreted as morphisms in a PRO,
that is a strict monoidal category whose objects are natural numbers and
whose product on objects is addition. To be coherent with the cellular notation
we use in next sections, diagrams represent 2-arrows in the 2−PRO obtained
by suspension of a regular PRO (see [35]).

Definition 1.4.3 (Signature). A signature S is a finite set of atomic diagrams
(or gates type). Given a signature, a diagram φ : p⇒ q is a morphism in the
PRO S∗ freely generated by S, i.e. by the two compositions and identities. A
gate is an occurrence of an atomic diagram, we note g : α if g is an occurrence
of α ∈ S.

Definition 1.4.4. We say that φ is a subdiagram of φ′ whenever there exist
ψu, ψd ∈ S∗ and k, k′ ∈ N such that φ′ = ψd ◦ (idΓ ∗ φ ∗ id∆) ◦ ψu.

Notation. Given φ ∈ S∗ and S ′ ⊆ S, we write |φ|S′ the number of gates in
φ with gate type α ∈ S ′.

Definition 1.4.5. We call horizontal a diagram φ generated by parallel com-
position (and identities) only in S∗. It is elementary if |φ|S = 1.
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Diagram rewriting

Definition 1.4.6 (Diagram Rewriting System). A diagram rewriting system
is a couple (S,R) given by a signature S and a set R of rewriting rules of the
form

p︷︸︸︷
φ︸︷︷︸
q

*4

p︷︸︸︷
φ′︸︷︷︸
q

where φ, φ′ : p⇒ q are diagrams in S∗.

Definition 1.4.7. We allow each rewriting rules under any context, that is,
if φ *4 φ′ in R then, for every χu, χd ∈ S∗,

χu

φ

χd

*4

χu

φ′

χd

.

We say that ψ reduces, or rewrites, to ψ′ (denoted ψ
∗ *4 ψ′ ) if there is a

rewriting sequence P : ψ = ψ0 *4 ψ1 *4 . . . *4 ψn = ψ′ .

We here recall some classical notions in rewriting:

• A diagram φ is irreducible if there is no φ′ such that φ *4 φ′ ;

• A rewriting system terminates if there is no infinite rewriting sequence;

• A rewriting system is confluent if for all φ1, φ2 and φ such that φ *4 φ1

and φ *4 φ2 , there exists φ′ such that φ1
∗ *4 φ′ and φ2

∗ *4 φ′ ;

• A rewriting system is convergent if both properties hold.

Some observation on notations

In this thesis we work on diagram rewriting systems which can also be pre-
sented polygraphs. For this reason we use both notation and definitions: if
(S,R) is a diagram rewriting system and Σ = (Σ0,Σ1,Σ2,Σ3) a 3-polygraph
we establish the following correspondences:

• diagrams backgrounds are labeled by 0-cells in Σ0;

• diagrams strings are labeled by 1-cells in Σ1;

• diagrams gates are labeled by 2-cells in Σ2, this is, there is a one-to-one
correspondence between S (the set of gate type) and Σ2;

• a diagram φ is a (composed) 2-cell of Σ, we note φ ∈ Σ;
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• rewriting rules in R are the elementary 3-cells in Σ3, the existence of a
rewriting path corresponds to the existence of a composed 3-cell in Σ3;

• a solvable critical pair give correspond to a pair of parallel (i.e. same
source, same target) 3-cells and so we can define a 4-cell in a proper
4-polygraph containing Σ for such pair.

• If Σ is an n-polygraph, we note 〈Σ〉 the set of (n − 1)-cells quotiented
by the set of n-cells.

Twisting Polygraph

In this section we introduce a notion of polygraph which generalizes poly-
graphic presentations of symmetric monoidal categories.

Definition 1.4.8 (Symmetric polygraph). We call the polygraph of permuta-
tion the following monochrome 3-polygraph:

S =
(

Σ0 = {�},Σ1 = {},Σ2 = { },Σ3 =
{

*4 , *4
})

We call symmetric a 3-polygraph Σ with one 0-cell, one 1-cell (i.e. Σ1 = {}),
containing one 2-cell ∈ Σ2 and such that the following holds

= , α = α and α = α for all α ∈ Σ2

in the 2-category Σ∗.

Theorem 1.4.9 (Convergence of S). The polygraph S is convergent.

Proof. As in [52], in order to prove termination we interprete every diagram
φ : n→ m ∈ S∗ with a monotone function [φ] : Nn → Nm. These have a well
founded order induced by product order on Np:

f, g : N∗p → N∗p then f ≥ g iff f(x̄) ≥ g(x̄) for all x̄ ∈ N∗p.

We interprete the gate by the function [ ](x, y)→ (y, x+ y). This allow
as to associate to any 3-cell φ *4 ψ two monotone maps [φ] and [ψ] such that
[φ] > [ψ]: [ ]

(x, y) = (2x+ y, x+ y) > (x, y) =
[ ]

(x, y),[ ]
(x, y, z) = (2x+ y + z, x+ y, x) > (x+ y + z, x+ y, x) =

[ ]
(x, y, z)

By the compatibility of the order with sequential and parallel composition,
this suffice to prove that, for any couple of diagrams, [φ] > [ψ] holds if φ→∗ ψ.
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Since there exists no infinite decreasing suite of monotone maps on positive
integers, infinite reduction paths can not exist.

In order to prove convergence, by Prop. 1.2.8, it suffices to check the
confluence of the following 5 critical peaks 2:

Each diagram in S can be interpreted as a permutation in the group of
permutations over n elements Sn with product ◦ defined as their function
composition. On the other hand, each σ ∈ Sn corresponds to some diagrams
in S. In particular, we interpret the diagram idk−1 ∗ ∗ idn−(k+1) : n → n
as the transposition (k, k + 1) ∈ Sn.
Notation. We call left ladder over n elements a diagram of the form

Ladl1 = : 1⇒ 1 and Ladln = : n⇒ n,

corresponding to the permutation Ladln = (1, n, n−1, . . . , 2) ∈ Sn. In a similar
way, a right ladder over n elements

Ladr1 = : 1⇒ 1 and Ladrn = : n⇒ n

corresponds to the permutation Ladrn = (n, 1, 2, . . . , n− 1) ∈ Sn.

Proposition 1.4.10. For any permutation σ ∈ Sn there is a unique diagram
in normal form σ : n ⇒ n ∈ S corresponding to σ. We call it the canonical
diagram of σ.

Proof. We define S1 = {} and Sn+1 the set of diagrams in S of the form:

σ′ = σ : n+ 1⇒ n+ 1

with σ′ ∈ Sn and = = Ladlk ∗ id(n+1−k). We have
|Sn| = n! since |S1| = 1 and |Sn+1| = (n + 1)|Sn| on account of n + 1 =
|{Ladlk}1≤k≤n+1| = |{Ladlk ∗ id(n+1−k)}1≤k≤n+1|.

To exhibit a one-to-one correspondence between Sn+1 and Sn+1, for any
σ ∈ Sn+1 we define Er(σ) ∈ Sn the permutation

Er(σ) =
{
i→ σ(i+ 1) if σ(i+ 1) < σ(1)
i→ σ(i+ 1) + 1 if σ(1) < σ(i+ 1)

.

2see Section 2.4 for a proper definition of critical peak in string diagram rewriting
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and σ = (Ladlk ∗ id(n+1−σ(1))) ◦ (id1 ∗ Er(σ)).

Any element in Sn contains no subdiagram of the form nor mean-
ing that it is irreducible and so, by the confluence of S, in normal form.

Definition 1.4.11 (Twisting polygraph). A twisting polygraph is a 3-polygraph
Σ with one 0-cell equipped with a set TΣ ⊆ Σ1 called twisting family such that
for each A,B ∈ TΣ there is a twisting operator TA,B : A ∗ B ⇒ B ∗ A ∈ Σ2
and Σ3 includes the following families TR of twisting relations:

• For all A,B,C ∈ TΣ

A B *4 A B and
A B C

C B A

*4

A B C

C B A

; (1.1)

• For all α : Γ→ Γ′ ∈ Σ2, α 6= TA,B with Γ,Γ′ ∈ T ∗Σ, A ∈ TΣ, at least one
of the two possible orientation of the following rewriting rules is in Σ3.

Γ A

α

A Γ′

%/
Γ A

α

A Γ′
eo

and

A Γ

α

Γ′ A

%/
A Γ

α

Γ′ A

eo
. (1.2)

Moreover, if φ, ψ are twisting diagrams (i.e. diagrams made only of twisting
operators) φ

∗
RΣ
*4 ψ iff φ

∗
RT
*4 ψ where RT is the set given by rewriting rules of

(1.1). A total-twisting polygraphy is a twisting polygraph with TΣ = Σ1.

The idea behind twisting polygraphs is to present diagram rewriting sys-
tems where, in equivalence classes modulo rewriting, the crossings of strings
labeled by the twisting family are not taken into account. In fact, the family of
relations (1.1) says that these crossings are involutive and satisfy Yang-Baxter
equation [43] for braidings, while relations in (1.2) allow gates to “cross” a
string in case of fitting labels.

We interpret a twisting diagram σ : Γ⇒ σ(Γ) as the permutations in S|Γ|
acting over the order of occurrence of 1-cells in the word Γ ∈ T ∗Σ. For this
reason, as in S, we define left ladders, right ladders and the standard diagrams
φ̂Γ
σ : Γ→ σ(Γ) (or simply σ) with source and target in T ∗Σ. In conformity with

the twisting polygraph restrictions over Σ3, we can prove the uniqueness of σ
as in Proposition 1.4.10.





Chapter 2

Diagrammatic 2-dimensional
syntax

“I have always considered drawing not as an exercise of particular dexterity
[. . . ] but as a means deliberately simplified so as to give simplicity and

spontaneity to the expression, which should speak without clumsiness, directly
to the mind of the spectator.”

[H. Matisse, Le Point “Revue artistique et littéraire” (1939)]

As seen in Section1.4, string diagrams are a way to denote certain trans-
formations. Their syntax includes a sequential and a a parallel composition,
namely:

in(φ)︷ ︸︸ ︷
φ

φ′︸︷︷︸
out(φ′)

(a) Sequential composition

in(φ)“and”in(φ′)︷ ︸︸ ︷
φ φ′︸ ︷︷ ︸

out(φ)“and”out(φ′)

(b) Parallel composition

These compositions interact by the interchange rule

φ

φ′
= φ φ′ = φ′

φ
.

In order to give solid intuitions in to these three fundamental concepts of
this syntax, we borrow the concepts of sequentiality and contemporaneity form
relativity theory. If we consider the flow of time like an horizontal line sliding
down-wise over diagrams, a diagram can be considered as a transformation

35
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operating on some observables of a system represented by its inputs and its
outputs (Fig. 2.2a).

initial state
φ ↓

final state

(a) Flowing of time

initial state
↓φ

↓
intermediate state

φ′

final state

(b) Sequentiality

initial state
φ φ′ ↓

final state

(c) Contemporaneity

Figure 2.2

Hence, a sequential composition is a succession of transformations where,
at each step, all observables are taken into account in order to perform some
modifications. Each observable in the final state of the system (output) de-
pends on all transformations on the initial observables (inputs). Whereas, a
parallel composition should be interpreted as multiple transformations modi-
fying independents observables.

Moreover, this independence has to be considered as “contemporaneity”
with respect to our relativistic point of view: two events are considered con-
temporary if they can be observed at the same time with respect to a frame of
reference. For example, any observation we can measure on the event horizon
should be considered contemporary even if we are measuring an event hap-
pened some seconds after the big bang. Similarly, by interchange rule, the
relative position of parallel diagrams does not matter as long as we consider
the final outputs. This means that we can bend the sliding horizontal line of
time until we do not need to consider simultaneously some observables, either
to perform new transformations (sequential composition) or to record the final
state (outputs).

It is not a coincidence that string diagrams appeared for the first time in
Richard Feynman’s notes [25] as syntax for describing the behavior of sub-
atomic particles in quantum field theory. Without entering into detail, the
idea behind Feynman diagrams is to represent particles as strings and their
interactions by points in a two dimensional space there the sliding line of time
swipe from left to right [30]. As Feynman recalled later [65]:

“Each diagram signified a mathematical expression [...] I would like to make
little pictures of all that was going on; these were physical pictures involving

the mathematical terms.”

Even if parallel composition is represented vertically and sequential compo-
sition horizontally, we keep the interchange rule. This allows to change mutual
position of points and consequently to represent with the same diagram many
equivalent equations, which describe the same configuration of interactions
observed by different temporal point of view. On the other hand, in Feynman
diagrams we allow string crossing and string turn-backs. On the ontological
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point of view, they are more a graphical (by means of graph) syntax than a
diagrammatic one.

The introduction of the category theory by Eilenberg and Mac Lane (1945,
[24]) and in particular the notion of monoidal category (1963, [62]), gives
some new mathematical backgrounds also to quantum physics. In particular,
in Roger Penrose paper [73] from 1971 we have a formalism for morphisms in a
particular monoidal category used to represent subatomic particles interaction.
By the way, this formalism was inspired from Feynman diagrams more than
category theory syntax.

Finally in 1991 in their paper on braided monoidal categories [44], An-
dré Joyal and Ross Street, formalized the syntax of string diagram presented
in the previous chapter. Once defined, this higher dimensional syntax was
progressively taken into account in representation of algebraic theories due to
their categorical interpretation given by Lawvere [57].

In this chapter we want to formalize some notions of this diagrammatic 2-
dimensional syntax. In particular we give formal definitions to some intuition
we have in using the graphical representation of string diagrams.

Then we underline some particular features of this language which do not
appear in the “classical” mathematic language where terms are, in some sense,
one dimensional. In particular, as we show, some of them give new paradigms
of interaction between terms and subterms which cause the weakening of some
finitary properties such as ruling out an extension of the Squier theorem for
monoids based on word rewriting ( [78], [79]) in the more general framework
of string diagram rewriting. Moreover we show how term equivalence and to
recognize subterms become non-trivial in this paradigm.

We conclude the chapter with a proof of Mac Lane’s coherence for sym-
metric monoidal categories based on diagram rewriting only. We detail the
proof of the confluence of the 68 critical peaks of this system given in [52].
Then, using the same homotopical methods presented by Guiraud and Malbos
in [36] for their non-constuctive proof of the theorem, we give an homotopy
base for this rewriting system and we use it in order to give a strategy of proof
for the theorem.

In order to have a more manageable syntax for the presentation of our new
notions, in this chapter we work in monochrome string diagrams paradigm,
that is, with neither background nor string labels.

2.1 Formal diagrams

In this section we give an alternative construction of string diagrams as purely
2-dimensional words we call formal diagrams. In this formalism, string di-
agrams are equivalent classes of formal diagrams under a set of equivalences
corresponding to interchange rules. We give a normalization procedure for
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formal diagrams in order to have a normal form showing how we can use this
procedure in order to decide formal diagrams equivalence.

Definition 2.1.1 (Diagram signature). A diagram signature (or simply sig-
nature) is a set S equipped with two maps in, out : S → N. An element α ∈ S
is called a gate type, we denote α : p→ q when p = in(α) and q = out(α).

Definition 2.1.2 (Parallel Diagram). A parallel diagram over the signature
S is a list

d1 ∗ · · · ∗ dn
where di ∈ Sid = S ∪ {id1}. Let HS be the set of parallel diagrams over S
and we say that the symbol ∗ represents the parallel composition of parallel
diagrams.

We use the symbol id0 for the empty list and the symbol idk for the list
id1 ∗ · · · ∗ id1︸ ︷︷ ︸

k

. A gate g of type α (noted g : α) is an occurrence of a symbol

α ∈ S while an atomic diagram (in S) is a gate of S or a list idk for some
k ∈ N.

We extend the definitions of the two maps in, out to any element h =
d1 ∗ · · · ∗ dn ∈ HS as follows:

in(h) =
n∑
i=1

in(di) out(h) =
n∑
i=1

out(di)

where, by definition, in(id1) = out(id1) = 1.
With the help of a second (partial) composition depending on these two

functions, we are able to give a notion of formal diagram: a particular kind of
2-dimensional word. The sequential composition h1 ∗h2 is defined if out(h1) =
in(h2). Whenever it is defined, we consider it associative.

Definition 2.1.3 (Formal Diagram). A formal diagram (over the signature S)
is a (well-defined) sequential composition F = h1 ◦· · ·◦hk of parallel diagrams.
We denote by FormS the set of formal diagrams over S.

To extend the parallel composition ∗ of parallel diagrams to formal di-
agrams, we want it to be compatible with sequential definition, that is, to
satisfy the following law:

(h1 ◦ h2) ∗ (h′1 ◦ h′2) = (h1 ∗ h′1) ◦ (h2 ∗ h′2).

For this purpose, we define the function height of a formal diagram

hgt : FormS → N
F = h1 ◦ · · · ◦ hk → hgt(F ) = k

in order to give the following definition.
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Definition 2.1.4 (Parallel composition extended to formal diagrams). Given
two formal diagrams F = h1 ◦ · · · ◦ hk, F ′ = h′1 ◦ · · · ◦ h′k′ ∈ HS , their parallel
composition F ∗ F ′ is defined:

• if hgt(F ) = hgt(F ′) = k then F ∗ F ′ = (h ∗ h′) ◦ · · · ◦ (hk ∗ h′k);

h
...
hk

∗
h′...
h′k

=
h∗h′...
hk∗h′k

• if hgt(F ) = k and hgt(F ′) = k + n then

F ∗F ′ = (h1 ∗h′1)◦ · · · ◦ (hk ∗h′k)◦ (idout(F ) ∗h′k+1)◦ · · · ◦ (idout(F ) ∗h′k+n);

h
...
hk

hk+1...
hn+k

∗

h′...
h′k

...

=

h∗h′...
hk∗hk

hk+1∗id...
hn+k∗id

• if hgt(F ′) = k′ and hgt(F ) = k′ + n then

F ∗F ′ = (h1∗h′1)◦· · ·◦(hk ∗h′k)◦(hk′+1∗idout(F ′))◦· · ·◦(hk′+n∗idout(F ′)).

h
...
hk

...

∗

h′...
h′k

h′k+1...h′n+k

=

h∗h′...
hk∗hk

id∗hk+1...id∗hn+k

This coincides with the parallel composition in HS since every parallel
diagram can be seen as a formal diagram of height 1.

Definition 2.1.5. If F ∈ Form, we denote by |F | the number of gates of F .
If S ′ ⊆ S, we denote by |F |S′ the number of gates in F of type α ∈ S ′.

To proceed, we need to introduce some notion on formal diagrams.

Definition 2.1.6 (Formal subdiagram). If F ∈ FormS is a formal diagram,
we say that F ′ is a formal subdiagram of F (noted F ′ ⊆ F ) if there exist
Fu, Fd, Fl, Fr ∈ FormS (the letters u, d, l, r stand for up, down, left and
right) such that:

F = Fu ◦ (Fl ∗ F ′ ∗ Fr) ◦ Fd.
We say that a formal subdiagram is horizontal if Fu = Fd = id0 and vertical
if Fl = Fr = id0.
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Diagrams and formal diagrams

In order to recover the semantics of diagrams, we have to quotient the set of
formal diagrams by the equivalence relation 'exc generated by

(α ∗ idin(β)) ◦ (idout(α) ∗ β)'excα ∗ β'exc(idin(α) ∗ β) ◦ (α ∗ idout(β))

in a compatible way with the two compositions ◦ and ∗, that is, if F'excF ′,
for all G ∈ FormS then F ∗G'excF ′∗G, G∗F'excG∗F ′ and F ◦G'excF ′◦G,
G ◦ F'excG ◦ F ′ (when they are defined). Moreover, by compatibility with
units, if F ∈ FormS then F ◦ idin(F ) = F = idout(F ) ◦ F

This relation is called the interchange rule due to its diagrammatic repre-
sentation

φ

φ′
= φ φ′ = φ′

φ
.

Remark 2.1.7. The interchange rule can be derived by the neutrality of idk’s
for the sequential composition. In fact if we assume idin(h)◦h = h = h◦idout(h),
then (idin(α) ∗ β) ◦ (α ∗ idout(β)) = (idin(α) ◦α) ∗ β = α ∗ β = α ∗ (idin(β) ◦ β) =
(α ∗ idin(β)) ◦ (idout(α) ∗ β) by definition of parallel composition.

The equivalence relation, 'exc leads to a decision problem on formal dia-
grams:

Definition 2.1.8 (Diagrams equivalence problem). The equivalence problem
for formal diagrams consists to answer the following question:

Given two formal diagrams F and F ′, are they equivalent modulo 'exc?

In order to answer to this question we define a family of formal diagrams
and we show it is in one-to-one correspondence with the equivalence classes
in some non-degenerate signatures.

Definition 2.1.9 (Degenerate signature). A signature S is degenerate if there
α ∈ S with in(α) = 0 and β ∈ S with out(β) = 0.

Definition 2.1.10 (Squeezed form). A squeezed form is a formal diagram F
containing no horizontal formal subdiagram of the form h ◦ idout(h) or (h′x ∗
idin(α)∗h′′x)◦(h′x+1∗α∗h′′x+1) with out(h′x) = in(hx+1)′ and out(h′x) = in(h′′x+1).

The following procedure associate to any formal diagram a unique squeezed
form:

Definition 2.1.11 (Squeezing procedure). If F = h1 ◦ h2 ◦ · · · ◦ hm where
hi = di,1 ∗ · · · ∗ di,ni , di,j ∈ S ∪ {idk}k∈N, the squeezed form of F is formal
diagram Sqz(F ) defined by iterating, as long as possible, on F the following
transformations:
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• if hi = idk and i > 1 then hi−1 ◦ hi →s hi−1. This correspond to the
following move on string diagrams:

φ

...
// φ ;

• if hx = h ∗ idin(α) ∗ h′ and hx+1 = h′′ ∗α ∗ h′′′ for some 1 ≤ x < m, α ∈ S,
h, h′, h′′, h′′′ ∈ FormS such that out(h) = in(h′′), then

hx ◦ hx+1 →s (h ∗ α ∗ h′) ◦ (h′′ ∗ idout(α) ∗ h′′′).

This correspond to the following move on string diagrams:

h h′

h′′ g h′′′
//

h g h′

h′′ h′′′
;

These transformations respectively correspond to the neutrality of idi’s for
(defined) sequential post-compositions and to the application of the inter-
change rule moving a gate “upwards”, i.e. the neutrality of idk’s in sequential
composition.

In particular, for all h, h′ ∈ S◦id, if α ∈ S such that in(α) = 0 and k′+k′′ =
out(h ◦ h′) we have

(h ◦ h′) ◦ (idk′ ◦ α ◦ idk′′)→s (h ◦ α ◦ h′).

This corresponds to the following move on string diagrams:

h h′

α
// h α h′ .

This may generate conflicts in case of β ∈ S such that out(β) = 0 since

(α ∗ id0) ◦ β = α ◦ β = (id0 ∗ α) ◦ β

α ∗ β β ∗ α
s s

.

In order to prove the existence of a squeezed form for a given formal
diagram we need a proof that the squeezing procedure ends. For this purpose,
we study these transformations as rewriting rules over (a particular family of
strings over) the alphabet ΣS = S ∪ {id1, ∗, ◦}. If we denote

S∗id = {word of the form d1 ∗ · · · ∗ dk|di ∈ S ∪ {id1}}

and we keep this notation with idk = id1 ∗ . . . id1 and the definitions of the
two functions in, out : FormS → N, the above relations correspond to the
following set RS of rewriting rules:
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i) for all h ∈ S∗id,
◦h ◦ idout(h)◦ → ◦h◦;

ii) for all α ∈ S such that in(α) 6= 0 and for all h′x, h′′x, h′x+1, h
′′
x+1 ∈ S∗id such

that out(h′x) = in(h′x+1) and out(h′′x) = in(h′′x+1),

◦h′x ∗ idin(α) ∗h′′x ◦h′x+1 ∗α ∗h′′x+1◦ → ◦h′x ∗α ∗h′′x ◦h′x+1 ∗ idout(α) ∗h′′x+1◦;

iii) for all α ∈ S such that in(α) = 0 and for all h′x, h′′x, h′x+1, h
′′
x+1 ∈ S∗id such

that out(h′x) = in(h′x+1) and out(h′′x) = in(h′′x+1),

◦h′x ∗ h′′x ◦ h′x+1 ∗ α ∗ h′′x+1◦ → ◦h′x ∗ α ∗ h′′x ◦ h′x+1 ∗ idout(α) ∗ h′′x+1◦

where h′x 6= g ∗ z for some z ∈ S∗id with out(z) = 0.

Lemma 2.1.12 (Tetris Lemma). The rewriting system (ΣS ,RS) terminate.

Proof. We associate to any string s ∈ ΣS the ordinal:

ord(s) = L0(s) + 2L1(s) + 22L2(s) + · · ·+ 2‖s‖◦L‖s‖◦(s)

where the Li’s are the maps associating to a string s ∈ ΣS the number of
symbols in S occurring after the i-th and before the (i+ 1)-th occurrence of a
symbol ◦ plus 1. This is, Li(s) corresponds to 1 + ‖hi‖S (the number of gates
in hi plus 1) whenever F = ∗

i
hi ∈ FormS and ◦F◦ ∈ ΣS .

For any rewriting rule s→ s′ ∈ ΣS , ord(s) > ord(s′). Indeed:

• for the rules in i), we observe that:

ord(◦h ◦ idout(h)◦) = ord(◦h◦) + 22+‖h‖◦ > ord(◦h◦);

• for any k ∈ N, h′x, h′′x, h′x+1, h
′′
x+1 ∈ S∗id we have

ord(◦wx◦h′x+1∗idk∗h′′x+1) = ord(◦wx◦wx+1◦) = ord(◦h′x∗idk◦h′′x◦wx+1◦)

if wx = h′x ∗ h′′x and wx+1 = h′x+1 ∗ h′′x+1 . So, for any s→ s′ in the sets
ii) and iii), we have

ord(s) = 2‖wx‖S + 4(‖wx+1 + 1) < ord(s′) = 2(‖wx‖S + 1) + 4‖wx+1‖S

It follows that there can not be an infinite reduction chain since any reduc-
tion path induces a decreasing chain of ordinals — which are well-ordered.
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In a degenerate signature, the coexistence of some α ∈ S with in(α) = 0
together with some β ∈ S with out(β) = 0 generates conflicts in the corre-
sponding rewriting system (ΣS ,R). In fact, for any h′x, h

′′
x, h
′
x+1, h

′′
x+1 ∈ S∗id

such that out(h′x) = in(h′x+1) and out(h′′x) = in(h′′x+1), both rules

◦h′x ∗ β ∗ h′′x ◦ h′x+1 ∗ α ∗ h′′x+1◦ → ◦h′x ∗ β ∗ α ∗ h′′x ◦ h′x+1 ∗ idout(α) ∗ h′′x+1◦

and

◦h′x ∗ β ∗ h′′x ◦ h′x+1 ∗ α ∗ h′′x+1◦ → ◦h′x ∗ α ∗ β ∗ h′′x ◦ h′x+1 ∗ idout(α) ∗ h′′x+1◦

are in iv). The reason why we isolate this set of rules is due to the fact that
it arises only in case of degenerate signatures, causing the divergence of the
system.

Lemma 2.1.13. If S is non-degenerate then the rewriting system (ΣS ,R) is
confluent.

Proof. As remarked, a non-degenerate signature gives a rewriting system (ΣS ,R)
where no conflict generate by two rules in iv) is defined, then the rewriting
system has the following classes of local confluent critical peaks:

• ◦h ◦ idout(h) ◦ idout(h)◦;

• ◦h ◦ idout(h) ◦ idk ∗ β ∗ id(out(h)−k)◦;

• ◦(h′x ∗ idin(α) ∗ h′′x) ◦ (h′x+1 ∗ α ∗ h′′x+1) ◦ idout(hx+1)◦;

• ◦(h′x ∗ idin(α) ∗ h′′x ∗ idin(β) ∗ h′′′x ) ◦ (h′x+1 ∗ α ∗ h′′x+1 ∗ β ∗ h′′′x+1)◦;

• ◦(h′x ∗ idin(α) ∗ h′′x) ◦ (h′x+1 ∗ α ∗ β ∗ h′′x+1)◦;

• ◦(h′x ∗ idin(α) ∗ h′′x) ◦ (h′x+1 ∗ βα ∗ ∗h′′x+1)◦.

for all h, h′x, h′′x, h′′′x , h′x+1, h
′′
x+1, h

′′′
x+1 ∈ S∗id, α, β ∈ S with in(β) = 0.

The local confluence of all critical peaks permits, by Proposition 1.2.8, to
prove the convergence of (ΣS ,R).

This yields the following theorem.

Theorem 2.1.14 (Decidability of the equivalence problem). The equivalence
problem for formal diagrams is decidable.

Proof. The rules in (ΣS ,R) correspond to the neutrality of idk’s diagrams for
sequential composition. By Remark 2.1.7, this is equivalent to the equivalence
under the interchange rule of RS-equivalent formal diagrams, so in order to
test if F'excF ′ we should prove that F↔∗RSF ′, i.e. we have to solve a word
problem on (ΣS ,R).
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If the signature is non-degenerate, the confluence of (ΣS ,R) allows to
assert the equivalence of two formal diagrams F and F ′ if and only if they
have the same RS-normal form.

In the degenerate case, we solve the equivalence problem for two element
F, F ′ exhibiting an element F̄ such that F̄ →∗ F̂ and F̄ →∗ F̂ ′ where F̂ and
F̂ ′ are respectively squeezed forms of F and F ′:

F

∗
��

F̄

∗
rr

∗
++

F ′

∗
��

F̂ F̂ ′

If we bipartite RS in Rc = {rules in i), and ii)} and Rd = {rules in iii)}
we note that there are no critical pairs between rules in Rc and Rd. This
means that any critical pair between a rule in Rc and Rd is locally confluent.
By this fact we deduce that if H is a common ancestor of any irreducible
formal diagram in [F ] and H →∗Rc F̄ then F̄ → F̂ for any F̂ ∈ [F ].

As remarked, the non-convergent conflicts of the system arise from conflicts
between rules in iv), namely in presence of formal diagrams of the form G◦G′
with in(G) = 0 and out(G′) = 0 which can be rewritten as both G′ ∗ G and
G ∗G′.

Let F̄ be the minimal ancestor of F̂ such that F̄ contains no subdiagrams of
such form.This is the diagram obtained by substituting in F̂ all subdiagrams
of the form G′ ∗ G or G ∗ G′ with G ◦ G′, whenever in(G′) = out(G) = 0.
By definition F̄ → F̂ and, as remarked, it reduces to any formal diagram F̂ ′

obtained by F̂ pemutating G and G′ in some subdiagrams G⊗G′ or G′ ⊗G
of F̂ with in(G) = out(G) = 0. It turns out that those are all the irreducible
formal diagrams equivalent to F̂ .

By these facts, in order to answer equivalence problem for two formal
diagrams F, F ′, it suffice to compute F̄ and test if one of its irreducible form
F̂ ′ is equal to one of irreducible form of F̄ .

Of course, the decidability of equivalence problem for formal diagram can
be proved using a method similar to the one introduced by Guiraud in his the-
sis [32] using the categorical construction of string diagram together with the
fact that equivalent formal diagrams correspond to the same string diagram.

Our proof setting is motivated by the fact that we want to keep this re-
sult as pure rewriting of 2-dimensional words, that is more manageable set-
ting used in computer program literature (for example [34]) to code string
diagrams. This result finally results independent form the interpretation of
formal diagram by means of string diagram in order to work.

Definition 2.1.15 (Expanded form). A formal diagram F ∈ FormS is an
expanded form if it is of the form:

F = ◦
1≤i≤h(F )

(idi1 ∗ αi ∗ idi2)
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with αi ∈ S or F = id0.

Proposition 2.1.16. Any formal diagram admits a 'exc-equivalent expanded
form.

Proof. Let F ∈ FormS , by induction on the number of gates:

• if F = Fexp ◦ F ′ and Fexp is an expanded form, it suffices to find an
expanded F ′exp equivalent to F ′ = (idj ∗ h) ◦ F ′′. Then Fexp ◦ F ′exp will
be the formal diagram we are looking for.

• if F = (idj ∗ h) ◦ Fd with h = α ∗ idj2 ∗ h′, the formal diagram

F ′ = (idj ∗ α ∗ idj′2) ◦ (idj+out(α)+j2 ∗ h
′′) ◦ Fd

is 'exc-equivalent to F and the number of gates in h′′ is less than in the
one in h′.

By definition, a formal diagram can admit different 'exc-equivalent ex-
panded forms. Unless specified, we refer to an expanded form Fexp of a given
formal diagram F as the one obtained by the above procedure.

With the definition of formal diagram and the exchange rule, we can finally
recover what we have previously introduced as diagram over a signature.

Definition 2.1.17 (Diagram, alternative definition). A diagram or string
diagram (over the signature S) is an equivalence class of formal diagrams
modulo the equivalence relation 'exc.

Firstly, we want prove the equivalence between this definition and the
standard one of string diagram.

Theorem 2.1.18. Given a non-degenerate signature S, any digram φ (over
S) represents an equivalence class [F ]'exc of formal diagrams (over S). Fur-
thermore there is a one-to-one correspondence between diagrams and formal
diagrams in squeezed form.

Proof. To prove it we give a bijection between these two sets. By induction
on the number of gates in a diagram φ ∈ S∗, we define J·K−1 : S∗ → FormS

'exc as
follows:

• if φ = ∅ then JφK−1 = [id0]'exc ;

• if φ = idi then JφK−1 = [idi]'exc ;
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• if φ contains at least a gate then

JφK−1 = [idj ∗ α ∗ idin(φ′)]'exc ◦ Jidj+out(α) ∗ φ′K−1 ◦ Jφ′′K−1,

where α is the upper-leftmost gate in φ, that is φ = idi ◦ idj ∗α ∗φ′ ◦φ′′
for some i, j ∈ N and φ′, φ′′ ∈ S∗ with number of gates less than that of
φ.

By the compatibility of 'exc with the two operations ◦ and ∗, we have found
the equivalence class JφK−1 = [ ◦

1≤i≤h
(idi1 ∗ αi ∗ idi2)]'exc .

In the same way, given the equivalence class [F ]'exc of a formal diagram
F with expanded form Fexp = ◦

i
(idi1 ∗ αi ∗ idi2), we define

JF K = ◦
i
Jidi1 ∗ αi ∗ idi2K

since [F ]'exc = [F ′]'exc .
Moreover in a non-degenerate signature, by Lemma 2.1.12, each represen-

tative of the same equivalence class φ = JF K has the same squeezed form. This
induces a one-to-one correspondence between formal diagrams in squeezed
form and diagrams.

Definition 2.1.19 (Lifting of a diagram). If φ ∈ S∗ is a diagram and S a
non-degenerate signature, the lifting of φ is the unique squeezed form F in
the equivalence class JφK. We denote φ̃ = F the lifting of φ.

Now that we have proven the equivalence of these two definitions, to make
uniform the notation we adopt the following convention: we note the atomic
diagrams with the letters d (if they are gates we also use the letter g), we
denote d : α with α ∈ Sid when d is of type α i.e. when d is an occurrence of
the symbol α. If not necessary to specify it, we note d : id for d ∈ {idi}i∈N.

Topology on diagrams

With this new formalism of formal diagrams, we are able to define some topo-
logical concepts on diagrams coming from some notion which we like to borrow
from graph theory. Intuitively, we consider diagrams as a sort of circuits where
information flows in the strings up-to-down . In these circuits, gates operate
some elementary transformations on their inputs returning some outputs so
that any diagram φ : p⇒ q represents a process with p inputs and q outputs.
Their parallel and sequential compositions represent respectively the parallel
and sequential execution. Identity diagrams are represented by parallel wires
in which information has no transformation.

In this section a fixed signature S is always supposed to be given.

Definition 2.1.20 (Free port). Given a diagram φ : p⇒ q, a free port f of φ
is one of its inputs or outputs, which we enumerate from left to right.
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Definition 2.1.21 (Communicating gates). Two atomic diagrams d, d′ are
subsequential in φ = Jh1 ∗ · · · ∗ hnK if there is an 1 ≤ i ≤ n such that hi =
hi,1⊗d⊗hi,2, hi+1 = hi+1,1⊗d′⊗hi+1,2 and out(hi,1) ≤ in(hi+1,1) < out(hi,1⊗d).
This means that one of the output port of d is linked by a wire with an input
port of d′.

Two gates g, g′ are communicating (denoted ↓gg′) if there exists a sequence
of subsequential atomic diagrams g = d0, d1, . . . , dn = g′ such that di : id for
all 0 < i < n.

In a twisting polygraph, two gates d, d′ which are not twisting operators
are twisting-communicating if the diagram contains a subdiagram of the form

φ g φ′

σ

ψ g′ ψ′

where σ : n⇒ n is a twisting diagram corresponding to the permu-
tation σ ∈ Sn with n = out(φ) + out(g) + out(φ′) = in(ψ) + in(g′) + in(ψ′)
such that

∃i, j whit out(φ) < i < n− out(φ′) , in(ψ) < j < n− in(ψ′) and σ(i) = j.

The communication condition can be graphically interpreted by the ex-
istence of a string connecting an output port of g and an input port of g′
possibly crossing gates of twisting operators.

Definition 2.1.22 (Port). A port (input or output port) of a gate g : α of φ
is the corresponding free port of a diagram φα consisting of a single gate of
type α. A port of a gate g of φ is free if

• φ̃ = h⊗ g ⊗ h ∗ F or φ̃ = (h⊗ d⊗ h′) ∗ φ̃′, d : id and ↓dg;

• φ̃ = F ∗ (h⊗ g ⊗ h) or φ̃ = φ̃′ ∗ (h⊗ d⊗ h′), d : id and ↓gd;

for some F, F ′ ∈ FormS , h, h′ ∈ HS .

Definition 2.1.23 (Gates path). A gate path P : g1  gn in a diagram is
given by a sequence of gates g1, . . . , gn such that ↓gigi+1 for all 1 ≤ i ≤ n − 1.
In a twisting polygraph, a gate path is made of twisting-communicating non-
twisting gates.

An undirected gate path P : g! g′ is a sequence of gates g = g1, . . . , gn =
g′ such that ↓gigi+1 or ↓gi+1

gi for all 1 ≤ i < n.

This allows to define connectedness in diagrams:

Definition 2.1.24 (Connection). If Σ is a polygraph, a diagram φ ∈ Σ is
connected if for all gates g, g′ ∈ φ, g, g′ not twisting operators, there is an
undirected gates path P : g! g′.
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Some gates in diagrams will play a particular role in further discussion:

Definition 2.1.25 (Left/Right/Central external gate). A gate g of φ is left
(right) external in φ if there is an expanded form Fexp'excφ̃ of the form
Fexp = F ′ ∗ (g ⊗ idk) ∗ F ′′ (resp. Fexp = F ′ ∗ g ∗ F ′′) for some F ′, F ′′ ∈ S∗,
k ∈ N. It is central if both properties hold, i.e. Fexp = F ′ ∗ (g) ∗ F ′′

A gate g of a diagram φ is internal if it is not external, that is, no input
or output port is free in φ.

The notion of subdiagram can be recovered by the notion of formal sub-
diagram:

Definition 2.1.26 (Subdiagram). A diagram φ′ ∈ S∗is a subdiagram of φ
(noted φ′ ⊆ φ) if there are F, F ′ ∈ FormS such that φ′ = JF ′K, φ = JF K and
F ′ ⊆ F .

These definitions correspond to the following intuition: if we consider a
diagram φ as a sort of electronic circuit, we should think a subdiagram as a
piece of this circuit which is able to “work”, that is, each gate g ∈ G has its
ports either free or connecting it to another gate g′ ∈ G.

Definition 2.1.27 (Subdiagram generated by a set of gates). If φ is a diagram
and G a subset of its gates, the smallest subdiagram generated by G is the
subdiagram φG containing all gates in G.

It can be found as JFGK−1 where FG is the biggest formal subdiagram of
F containing all gates in G.

Subdiagram decidability] To check if ψ is a subdiagram of φ is decidable.

Proof. Let Gφ and Gψ be the set of gates of φ and ψ respectively. If Gψ 6⊆ Gφ
then ψ 6⊆ φ, otherwise, we consider all subdiagrams of φ generated by its
subset of gates in a one-to-one correspondence with Gψ conform with gate
types. Then it suffice to prove if any of such diagrams is equivalent to ψ,
which is decidable by Theorem 2.1.14.

This definition allows to define the intersection of two subdiagrams.

Definition 2.1.28 (Subdiagrams intersection). If φ′, φ′′ ⊆ φ we define φ′∩φ′′
as the biggest subdiagram ψ ⊆ φ such that ψ ⊆ φ′ and ψ′′ ⊆ φ′′.

Definition 2.1.29 (Border). The border of a diagram φ is the set ∂(φ) of
gates with free ports.

Definition 2.1.30 (Expandable intersection). Two subdiagrams φ′ and φ′′ of
a diagram φ with non-trivial intersection have expandable intersection if there
are communicating in φ, g′ ∈ ∂(φ′) and g′′ ∈ ∂(φ′′) such that g′, g′′ /∈ φ′ ∩ φ′′.
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For example if we consider the diagram and its subdiagrams and

, these have an expandable intersection.
We define some peculiar subset of gates in a diagram:

Definition 2.1.31 (Cone). Given a gate g in a diagram φ we define:

• the upper cone of g ∂φ(g) = {g′ ∈ φ|∃ a gate path P : g′  g};

• ∂φ(g) = {g′ ∈ φ|∃ a gate path P : g  g′};

• the cone of g in φ is the set of gates ∂φ(g) := ∂φ(g) ∪ ∂φ(g).

Similarly, if φ′ ⊆ φ, we define its cone:

• the upper cone of φ′ ∂φ(φ′) = {g ∈ φ|g /∈ φ′, ∃g′ ∈ φ′ such that g ∈
∂φ(g′)};

• ∂φ(φ′) = {g ∈ φ|g /∈ φ′, ∃g′ ∈ φ′ such that g ∈ ∂φ(g′)};

• the cone of φ′ in φ is ∂(φ′)φ = ∂(φ′)φ ∪ ∂(φ′)φ.

In a twisting polygraph, a twisting-cone is given by the set of non-twisting
gates connected by gates paths with respect to twisting-communication.

In particular, the border is the part of the diagram that interact with
others diagrams in sequential composition.

Definition 2.1.32 (Stripe). If f is a free port of a diagram φ and gf the
unique gate such that f ∈ gf , then the following are defined:

• ∂φ(f) =
{
∂φ(gf ) if f is an output
∅ if f is an input

;

• ∂φ(f) =
{
∅ if f is an output
∂φ(gf ) if f is an input

;

If F is an initial or final segment of the set of inputs (or output) free ports,
that is, a set of form {1, 2, . . . , k} or {k′, k′+ 1, . . . , n} where n = in(φ) (resp.
n = out(φ)), we define:

• ∂φ(F ) = {g ∈ φ|g ∈ ∂φ(gf ) exists f ∈ F};

• ∂φ(F ) = {g ∈ φ|g ∈ ∂φ(gf ) exists f ∈ F}
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The left (n,m)-stripe of φ is the subdiagram of φ generated by the set of gates

{g ∈ φ|g /∈ ∂φ(Fn) ∩ ∂φ(Fm)}

where Fn is the set of the last in(φ)−n input ports and Fm the set of the last
out(φ)−m ports.

The right (n,m)-stripe of φ is defined in the same way but with Fn and Fm
respectively the set of the first in(φ)−n input ports and the set of out(φ)−m
ports.

2.2 Diagram term rewriting
In this section we introduce the notion of diagrammatic variables and a relative
diagrammatic term substitution. The main idea is to consider the signature of
diagrammatic variables

Ξ = {χi,j = χij : i⇒ j|i, j ∈ N}

and include it in a signature:

Definition 2.2.1 (Extended signature). If S is a signature, we call ΞS = S∪Ξ
the extended signature of S.

Then we define a variable substitution for diagrams.

Definition 2.2.2. If φ, φ′ ∈ ΞS are two diagrams such that φ contains a gate
x : χi,j ∈ Ξ and φ′ : i → j, we define the substitution of x by φ′ in φ as the
diagram φ[φ′/x] replacing the occurrence of x in φ by φ′:

φ = φ =
χu

x

χd

 

χu

φ′

χd

= φ[φ′/x]

In the string diagram formalism, we are able to define a substitution which
happens to be not well-typed in the classical terms of rewriting.

Definition 2.2.3 (External substitution). If φ, φ′ ∈ ΞS are two diagrams
such that φ contains a right-external gate x : χi,j ∈ Ξ and φ′ : i′ → j′ with
i ≤ i′, j ≤ j′, we define the right-external substitution of x by φ′ in φ as the
following diagram:

φ = φ =
χu

x

χd

 

χu

φ′

χd

= φ[φ′/x].

In a similar way, if x is left-external we define the left-external substitution of
x by φ′ in φ as φ[φ′/x].
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Definition 2.2.4 (Closed term (diagram)). If S is a signature, a diagram
φ ∈ Ξ∗S is a closed term if |φ|Ξ = 0, otherwise it is an open term. We call it
semi-closed term if the following conditions are satisfied:

• no gate of type χ ∈ Ξ has all its input or all its output ports free;

• if X ⊂ φ and X ∈ Ξ∗, then |X| = 1.

A semi-closed term can be intuitively seen as a diagram with non adjacent
“holes” labeled by diagrammatic variables. The introduction of the external
substitution gives a model for diagram term rewriting in which we do not need
the diagram which we are going to substitute to fit with the type of variable.
We recall Samuel Mimram [69] where a similar result for external substitution
is given by extending diagrammatic semantics to compact closed and rotative
categories.

Definition 2.2.5 (Partial sub-diagram). If S is a signature, a partial sub-
diagram of φ with φ ∈ S∗ is a semi-closed term in φ′ ∈ ΞS with |φ|Ξ = k such
that there are φ1, . . . , φk ∈ S∗ such that φ = φ′[φ1/x1, . . . , φk/xk] .

2.3 2-Dimensional grammars
As shown in the previous section, a string diagram can be seen as a term in a
language generated by certain formal grammar. In this section we underline
that those grammars are characterized by the fact that there exist certain
term patterns are forbidden while, on the other hand, some others give a new
form of interaction between subterms.

We are not able to give a well-ordered classification with respect to inclu-
sion, also because some characteristics of this classification are independent.
Consequently, in the next section we show how these features can influence
the confluence property of rewriting.

Definition 2.3.1 (1-Factor). A signature S has the 1-factor of size k if there
exist φ ∈ S∗, φ : k → k such that there exists a family of diagrams {φ◦n =
n◦

i=1
φ} with φ 6= id.

This feature is natural in word syntax, in fact if a is a symbol of an
alphabet, we can always iterate the symbol in order to express a word of
length n ∈ N by successive occurrence of this letter. On the other hand, such
feature is not present, for example, in the signature of binary trees { }, where
all non-identity diagrams are of type n→ m with n > m.

Another important feature that diagrammatic syntax can present is what
we call dark energy.

Definition 2.3.2 (0-Factor). A signature S has the 0-factor if there exist at
least an element φ ∈ S∗ such that φ : 0→ 0.
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As remarked in [77], the existence of such elements create some particular
paradigms in the language: it breaks the duality of the two compositions
causing problems in diagram equivalence problem complexity. In fact, if φ
and φ′ are of type 0→ 0, then

φ ∗ φ′ = φ ◦ φ′ = φ′ ∗ φ = φ ◦ φ.

Moreover remark first that the existence of a such term implies the existence

of an infinity of terms of such type: it suffices to consider the set of
k∗
i=1
φ with

k ∈ N.
The choice of name them dark energy is due to the fact that, following

the interpretation of diagrams as transformations of inputs to outputs observ-
able data, such diagrams operate no transformations such as dark energy in
quantum physics can not be observed.

One of the particularity of the existence of such terms is related to the
existence of another factor:

Definition 2.3.3 (2-Factor). A signature S has a 2-factor if there exists a
φ ∈ S∗ such that there exist two gate paths with same source and same target.
We call a connected portion of background contained between two such strings
a cage.

The presence of cages and dark energies give us two possible ways of rewrit-
ing diagrams: on one side we have a rewriting inspired by graph rewriting (we
call it graphical) and on the other hand we have the rewriting induced by
polygraphic formulation of string diagram rewriting systems (we call it poly-
graphical).

The graphical interpretation considers diagrams as a sort of planar directed
graphs. In case of dark energy inside a cage there are no limitation in rewriting.
We only have to choose where dark energies are placed if a cage get splitted or
opened. It could also happen that it does not matter where we place it since
it could move freely in the diagram causing no interaction with the rest of it.
On the other hand, a polygraphical rewriting is blocked in case of no specific
rules to manage dark energy in a cage: if some dark energy appear in a cage
of a diagram either this whole term (the diagram with its dark energy) is a
premise of a rewriting rule rewriting is stacked.

Let consider the following example: S = { : 2 → 2, : 0 → 0} with a
unique rewriting rule *4 . In this case we have the following possi-
bilities:
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Graphical rewriting Polygraphical rewriting

�'
�w�
Irreducible

Due to the categorical interpretation we give to string diagrams, in this
text we consider polygraphical rewriting in order to see diagrams rewriting as
a formalism for higher dimensional category theory.

Definition 2.3.4 (Irreducible Factor). A diagram rewriting system has irre-
ducible 0-factor if there exists an irreducible term φ ∈ S∗ with φ : 0 → 0. It
has irreducible 1-factor if there exists an irreducible non-identity term φ ∈ S∗

such that the family {φ◦n =
n◦

i=1
φ} is made of irreducible terms. It has irre-

ducible 2-factor if there exists an irreducible term φ ∈ S∗ which has a 2-factor.

Some examples are given in Appendix C.

2.4 Confluence problems in rewriting

Once specified our syntactical and computational settings (polygraphical rewrit-
ing), we want to show some computational properties relates to the presence
of factors. In particular, we give some necessary conditions in order to have
an extension of Squier theorem for monoids based to word rewriting to more
general algebraic theories presented by diagram rewriting.

In this section, we assume to work in terminating rewriting systems so that
we focus only on the verification of confluence. The termination of a rewriting
system can be proved by some methods e.g. by that of Yves Lafont in [52] or,
more in general, by means of reduction orders as proposed by Yves Guiraud
in his thesis [32]. In particular, we show how some combinations of factors
can rule out in diagram rewriting the finiteness of some homotopy properties,
generalizing some cases observed by Yves Guiraud and Philipe Malbos in [35].

Definition 2.4.1 (Archetype of conflict). If (S,R) is a diagram rewriting
system, an archetype of conflict (A,B) (or archetype for short) is a minimal
semi-closed term φ ∈ ΞS with two subdigrams s(A), s(B) ⊆ φ with no ex-
pandable intersection such that if g : χ ∈ Ξ, g has no free ports. An archetype
is closed if it is a closed term.

The condition to have no expandable intersection minimize the number of
archetypes. In fact, without this condition we obtain an additional one for any
diagram substitution of a gate g : χn,n ∈ Xi with the corresponding identity
idn.
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Proposition 2.4.2. In a finite rewriting system (S,R) there exists a finite
number of archetypes.

Proof. The finiteness of the number of rewriting rules implies the finiteness of
possible intersections. By definition, an archetype is minimal for each inter-
section.

Definition 2.4.3 (Local irreducibility). If (S,R) is a rewriting system, φ′ ⊆ φ
and Rφ the set of rewriting rules applicable on φ, then φ is locally irreducible
on φ′ if s(A)∩φ′ = ∅ for all A ∈ Rφ. We say that φ it is left-(n,m)-irreducible
if it is on its left-(n,m) stripe. We define in an analogous way the notion of
right-(n,m)-irreducible.

We can now give an alternative definition of critical peak in a diagram
rewriting system:

Definition 2.4.4 (Critical peak). A critical peak of a rewriting system (S,R)
is given by a pair of rewriting rules (R1, R2) such that s(R1)∩ s(R2) is a non-
empty diagram. In particular, a critical peak can be represented by a diagram
φ such that:

• φ = s(R1) ◦ ψ;

• φ = ψ′ ◦ s(R2);

• s(R1) ∩ s(R2) 6= ∅

• φ = φGR1∪GR2
where GR1 and GR2 are respectively the set of gates of

s(R1) and s(R2);

• No rewriting rules different from R1 either R2 can be applied to φ.

We are also able to characterize the diagrams representing a critical peak
as follows:

Proposition 2.4.5. If φ is a diagram representing a critical peak, then it is
a closed term obtained by term substitution of from archetype of conflict ψ:

φ = ψ[X1/x1, . . . Xn/xn, Y1/y1, . . . Yk/yk, Z1/z1, . . . Zk/zh]

where x1, . . . , xn are internal gates, y1, . . . , yk are left-external gates and z1, . . . , zh
are right-external gates of type in Ξ while X1, . . . Xn, Y1, . . . Yk, Z1, . . . Zk
are irreducible, right-(in(yi), out(yi)) irreducible and left-(in(zi), out(zi)) irre-
ducible for all i respectively.

Definition 2.4.6 (Global conflict). In a rewriting system (S,R), a global
conflict (or indexed critical pair [35]) is a family of critical peaks obtained by
a term substitution from the same non-closed archetype of conflict. A reduced
global conflict is its subfamily obtained by a substitution with irreducible
terms. A global conflict is solvable if all of its elements are solvable.
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Theorem 2.4.7 (Confluence). A rewriting system (S,R) is confluent if and
only if all of its critical peaks are confluent.

Corollary 2.4.8. A rewriting system (S,R) is confluent if all its archetype
of conflicts are confluent.

Corollary 2.4.9. It is possible to extend Squier theorem to all convergent
rewriting systems (S,R) whose archetypes are all closed.

Proof. Since the number of archetypes of a rewriting system is finite and they
are all closed, the number of critical peak is finite. Then it suffices to give
the construction of the homotopy basis as in the original formulation of the
theorem.

In particular, here we can note where factors play a role in diagram rewrit-
ing confluence.

Proposition 2.4.10. If Σ = (S,R) is a a rewriting system, then:

1. If there is a non-closed archetype and Σ has irreducible 0-factor then Σ
has an infinite number of non-confluent critical peaks;

2. If there is an external-open archetype φΞ and Σ has irreducible 1-factor
of size k, if g : χ ∈ Ξ is an external gate in φΞ with in(g), out(g) ≤ k
then Σ has an infinite number of critical peaks.

Proof. 1. If an archetype is not closed, than any diagrammatic term sub-
stitution creates at least one cage. This means that in this cage can be
present some dark energy and the global conflict results unsolvable.

2. The existence of the irreducible 1-factor {φn}n∈N implies, by external
substitution, that there is an infinite family of critical peaks {φΞ[φn/g]}n∈N.

For this reason we define our last factor

Definition 2.4.11 (3-Factor). A rewriting system (S,R) has a 3-factor if it
has non-closed archetypes of conflicts.

Some examples of these notions are given in Appendix C.

2.5 The coherence of symmetric monoidal
categories

In this section we show an example of the tools presented in the previous sec-
tions. We focus on the convergence proof of two diagram rewriting systems
M and F that presents functors and natural isomorphisms of respectively
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monoidal category and symmetric monoidal categories and we prove their
confluence. In particular, in order to prove the confluence of F stated by La-
font in [52], we check its 68 critical peaks. Then, using the method presented
in [36], we give a new constructive proof of the coherence theorems using
rewriting: since the confluence of our rewriting systems which present func-
tors and natural transformations of these theories is proved, we extend these
polygraphs by a set of unoriented 4-cells. This allow us to construct a 4-cell
for each pair of unoriented parallel 3-cells corresponding to linear diagram in
the theory of symmetric monoidal categories. This method leads to a refine-
ment of Kelly’s Lemma 1.3.7 which tell us that the five coherence conditions
given are sufficient. Finally we are able to prove the theorems establishing a
correspondence between 4-cells and commutative or trivial diagrams.

The coherence theorem for monoidal categories can be interpreted as an
equivalence between terms differing on parenthesis dispositions only. As sug-
gested by Huet in [41] (see also Mellie’s notes [66]), the natural transformations
of this theory can be interpreted as rewriting rules and coherence theorem as
the confluence of this system. The main difference between the proof given
in this Section and the one given by Mac Lane in [62] concerns the formalism
of symmetries in the proof. In the original Mac Lane’s proof they are some
actions external to the syntax acting on the position of variables inside terms
while in our proof they are integrated in the syntax. Moreover, the choice
of Lafont’s rewriting system instead of Guiraud-Malbos’ one suggest that, in
this representation of symmetries, the structure they generate can not be sep-
arated from the monoidal structure due to the interaction with the bifunctor
of the product if we want to achieve the uniqueness of normal forms.

Definition 2.5.1. Let F be the rewriting system defined on the signature
given by the following gates

and with the following rules:

*4 *4 *4 (2.1)

*4 *4

*4 *4

*4 *4 *4

(2.2)

*4 *4 (2.3)
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By restriction, we define the rewriting system M as the one given by the
signature { , } and the set of rules (2.1).

Remark 2.5.2. The set of rule can be derived by the following set of equiva-
lencies:

= = = =

= = = .

We have divided this set of rules into three subsets: the subset (2.1) consisting
of monoidal rules that are the same rules as M which correspond to associa-
tivity and left and right unitor, the structural rules (2.2) to manage resources
and their interaction and the subset (2.3) consisting of rules , correspond-
ing to the natural transformation τ , and which is added to our rewriting
system to obtain its confluence.

Remark 2.5.3. Lafont’s and Guiraud-Malbos’ presentations of polygraphs
representing symmetric monoidal categories differ in the orientations of the
rules 2.2. In particular, the two systems differ for the orientation of

Lafont: *4 Guiraud-Malbos: *4

and the presence in Lafont’s system of the rule *4 needed to

recover confluence.
Guiraud-Malbos system is not confluent; more precisely, the following con-

flict is not solvable:

*4


� 
�

6= .

On the other hand, confluence is guaranteed in confluence diagrams concerning
the string diagrams representing terms in symmetric monoidal categories, i.e.
the ones with just 1 output. Moreover their method is not constructive and,
using the existence of a Tietze-equivalent [13] confluent presentation (the one
given by Lafont), they are still able to prove the coherence theorem.

This leads an important observation:
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Remark 2.5.4. In a theory including a monoidal category, the structure of
symmetries can not be separated form the one of product (and unit) whenever
they interact without occurring in confluence problems.

In this particular case, the non-solvability of the exhibited conflict is due
to the impossibility of applying the symmetry of the product to the leftmost
irreducible diagram because of the presence of other symmetries.

Here, for completeness, we recall the proof of termination for the polygraph
F given in [52].

Proposition 2.5.5. The rewriting system F is terminating.

Proof. To prove the termination we use the method given in [] Where any
diagram φ : p→ q in F is interpreted as a monotone function [φ] : N∗p ⇒ N∗q
where N∗ = N \ {0}. We give a (product) order on N∗p defined as follow:

(x1, . . . , xp) ≥ (y1, . . . , yp)⇔ x1 ≥ y1, . . . , xp ≥ yp

that we use to define a well founded order on monotone functions: if f, g :
N∗p → N∗p then f ≥ g iff f(x1, . . . , xp) ≥ g(x1, . . . , xp) for all (x1, . . . xp) ∈
N∗p. Both diagram compositions (sequential and parallel) are compatible with
this order: if φ, ψ : p→ q and [φ] ≥ [ψ] so [φ∗χ] ≥ [ψ ∗χ] and [χ∗φ] ≥ [χ∗ψ]
for any χ since ≥ is a product order and for any χ′ : q → q′ and χ′′ : p′ → p,
[φ◦χ′] ≥ [ψ◦χ′] and [χ′′ ◦φ] ≥ [χ′′ ◦ψ] since we are considering only monotone
maps on positive integers.

Each gate of the signature can be interpreted as follows:

[ ](x, y)→ (y, x+ y) [ ](x, y)→ 2x+ y [ ](∅)→ 1.

This allow as to associate to any rule φ→ ψ two monotone maps [φ] and [ψ]
such that [φ] > [ψ]:[ ]

(x, y, z) = 4x+ 2y + z > 2x+ 2y + z =
[ ]

(x, y, z),

[ ]
(x) = x+ 1 > x =

[ ]
(x),

[ ]
(x) = x+ 1 > x =

[ ]
(x),[ ]

(x, y) = (2x+ y, x+ y) > (x, y) =
[ ]

(x, y),[ ]
(x, y, z) = (2x+ y + z, x+ y, x) > (x+ y + z, x+ y, x) =

[ ]
,

[ ]
(x) = (x+ 1, 1) > (x, 1) =

[ ]
(x),[ ]

(x) = (x+ 1, x) > (1, x) =
[ ]

(x),
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[ ]
(x, y, z) = (2x+ y+ z, 2x+ y) > (x+ y+ z, 2x+ y) =

[ ]
(x, y, z),

[ ]
(x, y, z) = (3x+ 2y + z, x) > (x+ 2y + z, x) =

[ ]
(x, y, z),

[ ]
(x, y, z) = (3x+ y + z, x+ y) > (2x+ y + z, y) =

[ ]
(x, y, z),

[ ]
(x, y) = 3x+ 2y > 2x+ y =

[ ]
(x, y),

[ ]
(x, y, z) = 4x+ 2y + z > 2x+ 2y + z =

[ ]
(x, y, z).

By the compatibility of the order with sequential and parallel composition,
this suffice to prove that, for any couple of diagrams, [φ] > [ψ] holds if φ→∗ ψ.
Since there exists no infinite decreasing suite of monotone maps on positive
integers, infinite reduction paths can not exist.

By restriction on the sets of 2 and 3-cells we prove also the termination
for M.

Corollary 2.5.6. The rewriting system M is terminating.

In the original proof of F confluence given by Yves Lafont in [52], it is given
a method to recognize the 68 critical peaks of this system but is not shown
their confluence. Here we detail both these aspects of the proof: we argument
the individuation of the critical peaks and we constructively exhibit their
solutions. In order to give some practical examples of some notion introduced
in the previous section we give a slightly different way express the original
method.

The rewriting system F has the following archetypes of conflict:

x x x x x x

and so

Proposition 2.5.7 (F’s global conflicts). In F, there are six global conflicts φ


φ∈I

,

 φ


φ∈I

,

 φ


φ∈I

,
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 φ


φ∈I

,

 φ


φ∈I

,

 φ


φ∈I

where I =
{
φ ∈ F∗| φ = φ : 1 + n⇒ 1 +m

}
.

In order to prove F (and M) confluence we need to prove some additional
properties:

Lemma 2.5.8. An irreducible 2-cells of F have one of the following four class
of shapes:

φ , φ , φ ,
φ

φ′
.

Proof. In order to prove the lemma, we observe how the rewriting rules act
on a 2-cell belonging in one of the above class: a 2-cell of the first two classes
can be rewritten only in a 2-cell of the same class, a 2-cell of the third one
can be rewritten in one of the first three classes while a 2-cell of the fourth in
any of these classes.

Moreover, these are the only possible configurations where the number of
gates of a 2-cell we cross following the left-most path going from the left-most
input to the left-most output is less than two. If this condition is not satisfy,
we note that a 2-cell can not be irreducible. In fact, by induction over the
number of gates in a 2-cell, the possible shapes with irreducible context are
the following:

φ
,

φ
,

φ

φ′

,

φ

φ′

,

φ

φ′

,

φ

φ′

,

φ

φ′

,

which result all reducible.

Lemma 2.5.9 (Global conflict solution). In a confluent rewriting system
(S,R) all critical peaks in a global conflict are confluent if and only if all
reduced global conflicts are.

Proof. The left-to-right implication is trivial. In order to prove the right-to-
left implication it suffice to remark that every 2-cell φ̂ associated to a of a
critical peak in a global conflict reduces, by the convergence, to a reduced
global conflict φ. If the latter have admit the following confluence diagram:
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φ1

Q1P1 �,
φ

Q1

�+

P1

3A

φ′

φ2

P1Q1

2@

,

then the confluence diagram of φ̂ is the following:
φ̂1

R
*4 φ1

Q1P1 �+
φ̂

R
*4

Q1

�+

P1

3A

φ

Q1

�+

P1

3A

φ′

φ̂2
R

*4 φ2

P1Q1

3A

.

Proposition 2.5.10. The rewriting system F is convergent.

Proof. The rewriting system is terminating so it suffice to prove the local con-
fluence in order to have convergence. After Proposition 2.5.7 and Lemma2.5.8,
by Lemma 2.5.9, the local convergence is proved verifying the following 68 crit-
ical peaks. We will handle them in batches:

• 5 non-trivial base peaks

these correspond to coherence conditions except the last two which define
the natural transformation needed for confluence;


�

*4 *4

v�

*4

*4


�

:I

*4


�

:I
*4


� 
�
*4

*4


�

*4

*4

9H
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• 9 non-trivial Kelly-peaks:

each conflict is generated by two non-structural rules and the confluence
of diagrams is given by non-structural rules;

*4


�

9H
*4


�

9H 0<
".

*4


� 
�
*4

*4


� 
�
*4

*4


� 
�
*4

*4


�

�
*4

*4


� 
�
*4

*4


�

*4


�

*4 *4

• 8 non-trivial weak-Kelly-peaks:
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each conflict is generated by a structural rules and a non-structural rules,
the confluence of diagrams are given by non-structural rules;

*4


�

9H
*4


�

*4

*4

9H

*4


�

*4


�

*4 jt


�

*4 *4


�

*4 *4


�

*4 *4

�#
*4 *4 *4


�

*4 *4

�$

*4 *4 *4
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�

*4

�$
*4 *4

*4


�

*4


�

*4 *4

• 18 simply trivial peaks:

the confluence diagrams are made of parallel 3-cells consisting of the
same non-structural rule modulo structural ones;

*4

�%

*4


�

*4

*4


�

*4


�

*4 *4

*4


� 
�
*4

*4


�

*4

x�
*4

*4


�

�

jt

*4


� 
�
jt

*4


�

�
*4

*4


�

�
*4



2.5. THE COHERENCE OF SYMMETRIC MONOIDAL CATEGORIES65

*4


�

*4

*4 *4

JT

*4


�

*4 *4

*4 *4

9H

*4


�
�$

*4 *4

*4


�

*4


�

*4 *4

*4


�

*4 *4

{	
*4 *4

*4


�

*4 *4

z	

*4 *4
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*4


�

*4


�
*4 *4

*4


�

*4 *4

*4 *4

:I

*4


�

*4 *4

z	

*4 *4

*4


�

*4


�

*4 *4

• 28 strongly trivial peaks:

all the rules in confluence diagrams are made of structural rules:
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/;
#/ *4


�

�

jt


�

*4
9H

*4


�

9H

/9
%/ *4


�

*4

*4

:I
*4


�

*4

*4

:I

*4


�

*4

*4

:I
*4


�

�

*4

*4


�

*4

JT

*4


� 
�
*4

*4


�

*4

JT
*4


�

*4

JT


�

*4
9H

*4


�

*4

JT
*4


�

*4 *4

*4 *4 *4

JT



68 CHAPTER 2. DIAGRAMMATIC 2-DIMENSIONAL SYNTAX

*4


�

*4 *4

z	

*4 *4

*4


�

9H

*4


�

*4


�

*4 *4

*4


�

*4


�

*4 jt

*4


�

*4


�
*4 *4

*4


�

*4 *4


�

*4 *4 *4

*4


�

*4


�

*4 *4
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*4


�

*4 *4

z	

*4 *4

*4


�

*4

z	
*4

*4


�

*4 *4

*4 *4

9H

*4


�

*4


�

*4 *4

*4


�

*4

�$

*4 *4 *4

It follows:

Theorem 2.5.11. The rewriting systems F is convergent.

Proof. The confluence of F follows Propositions 2.5.10 and 2.5.5.
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Corollary 2.5.12. The rewriting systems M is convergent.

Proof. The confluence of M can be evinced by Proposition 2.5.10 since the
solutions given for its critical peaks

are made only of 3-cells inM. This property, together with termination proved
in Corollary 2.5.6, permits to prove the statement.

In order to use the confluence of these rewriting systems, we need to extend
these polygraph by a set of 4-cells. Since these cells represent identities, the
natural setting for this extension is the one of (n, k)-polygraph. We define some
non-oriented 4-cells representing identities corresponding to some coherence
conditions.

Definition 2.5.13. In F, we define the following 4-cells with border the so-
lution of the five base critical peaks:

*4

�(

6F

!-

1=

*4

�&

:I

�&

�&

8G

8H
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*4

�$

:I

�&

8G

jt *4

8H

We denote F+ the (4, 3)-polygraph F enriched by these non-oriented 4-cells.

Remark 2.5.14. The rule corresponds to an extra (superfluous) natural
isomorphism that we add to symmetric monoidal category theory. It is defined
by the commutativity of one of the two following diagrams

(x � y) � z

(y � x) � z y � (x � z)

x � (y � z)

τ

α

α

γ

y � (x � z)

y � (z � x)

x � (y � z) (y � z) � x

τ

τ

α

γ

Since the hexagonal identity is defined in the theory and it represents the
commutativity of the diagram obtained merging the two above diagrams along
the side γ, if we chose the first one as definition of γ = ατα−1, the commu-
tativity of the second one trivially follows.

On the other hand, in Mac Lane’s definition of symmetric monoidal cat-
egories the natural transformation corresponding to the 3-cell is not
defined and together with the two coherence conditions relative to and

. At their place we have the hexagonal identity which should correspond
to a 4-cell . The border of this latter can not be represented by a pair
of parallel 3-cells of our (4, 3)-polygraph as shown in the following Lemma.

Lemma 2.5.15. The 4-cells and allow one to define a 4-cell
with border made of non-parallel 3-cells interpretable as the hexagonal identity:
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Proof.

*4

�%

=

�$

9H :I

jt *4

:I

and so

�&

=

%/

jt *4

8H

JT

*4

8H

By this fact, we should extend our construction to (4, 2)-polygraphs as the
cases studied in [36] and [60] in order to be able to define this cell as atomic.
On the other hand, with this construction we weaken our setting more than
how we really need. With a more accurate observation, the only 3-cell we ask
to be invertible are the one corresponding to twisting relations (see Definition
1.4.11) which correspond to trivial identities whenever we interpret 2-cells by
functors. In the particular case given above, we ask the invertibility of the

3-cell *4 to be able to recover a good orientation of the border

of the 4-cell .
This means that, once we give the 4-cell , if we give the 4-cell

then a 4-cell with the same border of can be derived. In our rewriting
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system we choose to keep the two 4-cells and instead of and
for some reasons related to the prove of coherence theorem.

This construction reminds Kelly’s lemma for monoidal categories [48] which
assert that just three of the five coherence conditions originally given by Mac
Lane, corresponding the rewriting system conflicts, suffice to prove coherence.
In the same way, we can prove that the five coherence conditions given in sym-
metric monoidal categories suffice. To prove this result, we construct a 4-cell
for any Kelly and weak-Kelly critical peaks (corresponding to non-trivial con-
flicts in the theory) using only the 4-cells defined by the coherence conditions
together with the 4-cells which have a trivial interpretation in the theory.

Proposition 2.5.16 (Refinement of Kelly’s lemma for symmetric monodal
category).
For all Kelly-peaks and weak-Kelly-peaks, a 4-cell can be defined from set of
4-cells {

, , ,
}

plus the set of 4-cells with border a solution of a trivial or strongly-trivial
critical peak (we note them with the symbol

⊙
).

Proof. See Appendix B for the proof.

Remark 2.5.17. In this proof the 4-cell corresponding to the hexago-
nal coherence condition is not needed. On the other hand, we use the 4-cell

which can be derived by an extended higher-dimensional Knuth-Bendix
completion [39] when we introduce the superfluous 3-cell in the (4, 2)-
polygraph 

{
�
}
,{}
,{

, ,
}
,

*4 , *4 ,

*4 , *4

*4 , *4

*4 , *4

*4 , *4



,

{
, , ,

}


Tietze-equivalent [83] to F by Remark 2.5.2.
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From this Proposition we can recover an alternative proof of the original
Kelly’s Lemma 1.3.7.

Corollary 2.5.18 (Kelly’s lemma). The 4-cells and suffice to define
a 4-cell for every critical peak of M:

Using the (4, 3)-polygraph given by M enriched with the two non-oriented
4-cells and , we are able to prove the original Mac Lane theorem.

Theorem 2.5.19 (Coherence theorem for monoidal categories, Mac Lane
[61]).
Every diagrams made of α, λ, ρ in an arbitrary monoidal category C commutes.

Proof. We observe that all 2-cells of M with one output can be interpreted
by functors in a monoidal category. Moreover, the rewriting system M has
exactly one 3-cell for each natural transformation in a monoidal category,
which guarantees a one-to-one correspondence with pairs of parallel 3-cells
with target and source a one output 2-cells. The two coherence conditions
defined by the triangular and the pentagonal identities correspond to the 4-
cells and and, by Cor.2.5.18, they suffice to generate all 4-cells with
border any critical peak. Moreover, the convergence of M (Prop.2.5.12) allows
one to find (using Lemma 2.5.9) a 4-cell with border any pair of parallel 3-cells
just using the aforementioned 4-cells.

Finally, the commutativity of each diagram in the monoidal category the-
ory follows by the correspondence between confluence diagrams and parallel
3-cells and, in particular, between commutative diagrams and 4-cells.

This theorem can be interpreted as follows: any object of a monoidal
category a can be transformed by means of natural transformation to an object
of the form

(x1 � (. . . � (xn−2 � (xn−1 � xn)) . . . )
where xi 6= e for all i = 1, . . . , n, that is where we associate to the right.
In fact, rules move a gate of type to the right moving the corresponding
parenthesis positions to the right and the rules which erase an occurrence of a
gate together with the relative gate correspond to the elimination of an
occurrence of e and the relative parenthesis.

In order to apply a similar method to prove coherence for symmetric
monoidal categories, we need the following lemma in order to prove that we
can represent a confluence diagram of this theory by some 3-cells in F:

Lemma 2.5.20. For every confluence diagram in a symmetric monoidal cate-
gory, there is a pair of non-oriented 3-cells representing it modulo the standard
interpretation of .

Proof. Given a confluent diagram we want to prove its commutativity, this
pair of can be found in the following way, as example we show this algorithm
works on the hexagon identity:
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(x � y) � z

x � (y � z) (y � z) � x

y � (z � x)

(y � x) � z y � (x � z)

α

τ

α

τ � id
α

id � τ

• for all vertexes of the diagram, we take a 2-cell which is irreducible
modulo the rewriting rules (2.2) of F which represents the corresponding
object;

τ //

α

��

α

AA

τ � id
��

α //

id � τ

BB

• for all arrows of the diagram, we draw the corresponding 3-cell ( if
α, if ρ, if λ, if τ) adding, when needed, their source or target
2-cells;

*4

�%

�$

9H

*4

:I
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• if some 2-cells has been added, then there exist a rewriting path made
of 3-cells in (2.2) from these latter to the one given in the first step since
both can be interpreted by the same object in the confluence diagram;

*4

�%

�$

9H

jt *4

:I

If we consider the (4, 3)-polygraph F+ as a (4, 2)-polygraph , we are able
to give a proof of Mac Lane theorem for symmetric monoidal categories.

Theorem 2.5.21 (Coherence of symmetric monoidal categories, [62]).
In an arbitrary symmetric monoidal category, every linear diagram made of
λ, ρ, α and τ is commutative.

Remark 2.5.22. The linearity of diagrams is necessary for the statement of
this theorem since in a symmetric monoidal category, we have diagrams such
as

x � x x � x
id
τ

made of parallel arrows which are not equal in general.

Proof. As in the previous theorem, in order to prove the commutativity of all
linear diagrams of symmetric monoidal category theory, we want to use the
fact that for every pair of parallel 3-cells of the rewriting system F a 4-cell in
the (4, 2)-polygraph F+ having such pair as border is defined from the set of
atomic 4-cells corresponding to the coherence conditions.

On the other hand, the previous method have to be adapted since, in
this case, not every pair of parallel 3-cells in F naturally corresponds to
a linear diagram of the theory even if their source and target 2-cells have
one input. This incongruence is due to the fact that the 2-cell does not
correspond to any natural isomorphism in the symmetric monoidal category
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theory. Its introduction is due to the fact that, in general, in order to represent
an algebraic theory through diagrams [49], we need some operators to manage
resources: duplication, erasing and permutation (in this particular case we only
consider linear diagrams, so we need no duplication nor erasing). We give a
standard interpretation of in the sense that we consider an equality between
the pairs (x, y) and (y, x). This lead the identification of the interpretation of
some diagrams corresponding to the same term and, consequently, the trivial
interpretation (by an identity) of a 3-cell between them. By this fact, if a
pair of parallel 3-cell is solution of a semi-trivial or trivial peak, the 4-cell
associated to it corresponds to a trivial commutative diagram (no natural
isomorphisms or two times the same one). This is reason why, in order to
simplify the notation, we have chosen to note all such 4-cells with the same
symbol

⊙
.

Since F is confluent (Propositions 2.5.11), once given a set of 4-cells with
border the solutions of all critical peaks, one can find a 4-cell with border each
pair of parallel 3-cells by lemma 2.5.9. Moreover, by Proposition 2.5.16 this
set of 4-cells can be restrict to the set{

, , ,
}

plus the set of 4-cells we denote with
⊙

, i.e. with border a solution of a
trivial or strongly-trivial critical peak. These cells correspond respectively
to pentagonal, triangular and τ -involutivity coherence conditions, the one
defining the natural transformation γ plus some trivial coherence conditions.

Even if some linear diagram can not be represented by a pair of parallel
3-cells in the (4, 3)-polygraph F+ by Lemma 2.5.20, we can always found a
pair of parallel 3-cells in F+ if we consider it as a (4, 2)-polygraph such that,
by the standard interpretation of , represent the given diagram. Any such
diagram, can be decomposed whenever a critical pair appear in order to define
a 4-cell, as done for the decomposition of the hexagon identity given in Lemma
2.5.15.

The commutativity of each linear diagram of symmetric monoidal category
theory follows by the correspondence between 4-cells , , , ,

and commutative (or trivial) diagrams in this theory.

This theorem have the same interpretation of the one for monoidal cate-
gories: any object of a symmetric monoidal category a can be transformed by
means of natural transformation to an object of the form

(x1 � (. . . � (xn−2 � (xn−1 � xn)) . . . )

where xi 6= e for all i = 1, . . . , n, that is where we associate to the right.
The rules concerning the monoidal structure only act on the shape of

therms in the same way. Moreover, the other rules do not change it since they
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perform modifications over the shape of symmetries and they move gates of
type to the right or gates of type downward (until they reach a gate of
type to be canceled).



Chapter 3

String diagrams for linear
logic

“We have taken the word, the sentence, logic and number as the foundation
stones of our civilisation, forcing our brains to use limiting modes of

expression which we assume are the only correct ones.”

[Tony Buzan. The mind map book (1993)]

In this chapter we give a new diagrammatic syntax for linear logic proofs
by means of proof diagrams. As the primal scope of proof net is to give a 2-
dimensional representation of proofs which helps reasoning thanks to the fact
that they represent equivalence classes of proofs (see Appendix A). More-
over we equip this syntax with an intuitive semantics, in order to be able to
represent with a diagram a class of equivalent proofs.

Jean-Yves Girard’s proof nets are the first graphical syntax for proof theory
introduced for linear logic multiplicative sequent calculus [28]. Their underline
syntax, formalized by Yves Lafont’s interaction nets, comes from graph theory
and reminds by their semantical properties the use of Roger Penrose’s dia-
grams for equation representation. On one hand proof nets allow to represent
sequent calculus derivations allowing to represent by the same net equivalent
proofs. On the other hand, this syntax requires correctness criteria in order
to check if a term correspond to a correct proof. In particular, in order to ac-
commodate multiplicative units, we should add some additional linking in the
nets which rules out the correspondence between proof nets and equivalence
classes of proofs. The same problem rises in the representation of exponential
inference rules together with the necessity of introducing boxes in order to
verify well-typing of promotion rule.

In order to familiarize with the syntax and semantic of proof diagrams and
to underline the differences with proof nets, we firstly give some polygraphs
that reproduce the graphical notation of proof structures with an explicit no-
tation for string crossings. Although proof diagrams representation reminds

79
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proof net one, these have a more sequentialized structure. Due to the inter-
change rule together with the semantic of twisting relations, this semantics
is immediately compatible with all the rule commutations captured by the
equivalence relation over proofs induced by proof nets.

Then we extend this syntax with two non-twisting string types which can
be interpreted as a 2-dimensional denotation for parenthesis. In some sense,
this concept is already used in proof nets boxes notation where a portion of
a net is isolated; in proof diagrams this become part of the syntax making
possible to represent correct application of inference rules only. This means
that, when control strings are included in proof diagrams syntax, we are not
able to represent terms corresponding to non-sequentializable proof structures.

The definition of some diagram rewriting rules allows us to recover a se-
mantic including any rules commutation which does not change splitting order,
these are all commutation different from the following:

...
` Γ, A,B

...
` Γ′, C

⊗1
` Γ,Γ′, (B ⊗1 C), A

...
` Γ′′, D

⊗2
` Γ,Γ′,Γ′′, (A⊗1 D), (B ⊗2 C)

∼

...
` Γ, A,B

...
` Γ′′, D

⊗2
` Γ,Γ′, (A⊗1 D), B

...
` Γ′, C

⊗1
` Γ,Γ′,Γ′′, (A⊗1 D), (B ⊗2 C)

and

...
` Γ′′, D

...
` Γ′, C

...
` Γ, A,B

⊗1
` Γ,Γ′, (C ⊗1 B), A

⊗2
` Γ,Γ′,Γ′′, (D ⊗1 A), (C ⊗2 B)

∼

...
` Γ′, C

...
` Γ′′, D

...
` Γ, A,B

⊗2
` Γ,Γ′, (D ⊗1 A), B

⊗1
` Γ,Γ′,Γ′′, (D ⊗1 A), (C ⊗2 B)

ruling out the cut-elimination theorem due to the impossibility of removing
commutative cuts.

In order to have a model respecting the whole semantics of equivalent
proofs, we finally extend our model in order to include some rewriting rules
corresponding to a normalization procedure on proof derivation trees. This
eliminates commutative cuts by re-ordering the axioms and 1 positions accord-
ing to the order of splitting rules. In this model we define a cut-elimination
procedure proving the cut-elimination theorem for proof diagrams.

3.1 Proof diagrams for MELL
In this section we give two particular 3-polygraphs for MELL and its sub-
fragments, i.e. string diagrams representing linear logic derivations that we
call proof diagrams.

In describing these polygraphs, we give them by means of some class of
cells which are indexed by the linear logic formulas of the sequent calculus
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we want to represent. We start each construction of one of these two poly-
graphs from the set of cells we need to represent proof of the multiplicative
fragment of linear logic. Then we extend it to the one representing the mul-
tiplicative fragment with units and, finally, to the polygraph representing the
multiplicative and exponential fragment (with unit).

In our construction, each extension is given by the sets of cells representing
the new rules of the fragment and their interactions. However we have to
keep in mind the presence of an abuse of notation motivated by the choice
of avoiding heavy notations or redundant definitions: even if we say that we
include some sets of cells of the previous polygraph, this is not sound. In fact,
in order to give a complete definition, we should extend the sets of formulas
indexing these sets of cells to the set of formulas of the fragment we consider.
Notation. In order to unify sequent and 1-cell composition notations, we
replace the ∗ symbol of parallel composition with a comma.
Notation. When not needed we will not explicitly specify the type indexes
of a gate type, for example denoting g : ⊗ instead of g : ⊗A,B.

Definition 3.1.1. The 3-polygraph ΣMLL is the polygraph of multiplicative
linear logic with cut-elimination. It is given by the following sets of cells:

• ΣM
0 = { � };

• ΣM
1 = FM``;

• ΣM
2 =



⊗A,B : A,B ⇒ A⊗B =
A B

⊗
A⊗B

`A,B : A,B ⇒ A`B =
A B

`
A`B

AxA : � ⇒ A,A⊥ =
A

AA⊥

CutA : A,A⊥ ⇒ � = AA⊥

A

TA,B : A,B ⇒ B,A =
A B

B A


A,B∈FM``

If there is no ambiguity we note and instead of A and A ;

• ΣM
3 = ΣM

Twist ∪ ΣM
Cut where:

– ΣM
Twist is given by the following twisting relations, for all A,B,C ∈

FM``:
A B

A B

*4 A B ,

A B C

C B A

*4

A B C

C B A

,
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B

B AA⊥

*4
B

B AA⊥
,

B

AA⊥B

*4
B

AA⊥B
,

AA⊥B

B

*4
AA⊥B

B
,

B AA⊥

B

*4
B AA⊥

B
,

A B C

⊗

C A⊗B

*4

A B C

⊗
C A⊗B

,

A B C

⊗

B⊗C A

*4

A B C

⊗
B⊗C A

,

A B C

`
C A`B

*4

A B C

`
C A`B

,

A B C

`
B`C A

*4

A B C

`
B`C A

;

together with two rules representing the involution A⊥⊥ = A

A

A⊥A

*4 A⊥

A⊥ A

,
A⊥A

A

*4
A⊥ A

A⊥ ;

– ΣM
Cut is the set of rules for the cut elimination:

A B B⊥A⊥

` ⊗ *4
A B B⊥A⊥

,

A B B⊥A⊥

⊗ ` *4
A B B⊥A⊥

,

Γ A

A Γ

*4
Γ A

A Γ
,

A Γ

Γ A

*4
A Γ

Γ A

,

A

A

*4 A ,

A Γ

σ

A σ(Γ)

*4

A Γ

σ

A σ(Γ)

for any
Γ

σ

σ(Γ)
canonical diagram of σ.
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The twisting relations are the rule we need to introduce in order to make
the polygraph twisting, that is to make gates able to cross strings. Their
orientation is different from the one given in for the polygraph F since, even if
⊗ and ` interact with twisting operators ,they are not commutative ( = )
and this avoids the confluence problem we occur in F. Rules in ΣM

Cut are the
rules for cut-elimination. The first two rules reminds the usual rules we have
in proof net cut-elimination, the others all corresponds to the cut-elimination
with Ax. The reason why we have a wide number of rules is due to the
explicit notation for crossing which have to take into account all the possible
configurations of irreducible twisting diagrams. Moreover, this set is complete
with respect to all possible shapes of irreducible diagrams modulo twisting
relations rewriting.

Definition 3.1.2. The polygraph of multiplicative linear logic with units and
cut-elimination ΣMLLu is given by the following sets of cells:

• Σu
0 = { � };

• Σu
1 = FM``u ;

• Σu
2 =

1 : � ⇒ 1 = 1

⊥ : � ⇒ ⊥ = ⊥

 ∪ ΣM
2 ;

• Σu
3 = Σu

Twist ∪ Σu
Cut where:

– Σc
Twist is ΣM

Twist along with the following twisting relations for all
A ∈ FM``u :

A

A ⊥

*4
A

A ⊥
,

A

⊥ A

*4
A

⊥ A
,

A

A 1

*4
A

A 1
,

A

1 A

*4
A

1 A
;

– Σu
Cut is ΣM

Cut along with the following rules for cut elimination:
*4 ∅ , *4 ∅ .

Definition 3.1.3. The 3-polygraph ΣMELL is the polygraph of non-commutative
multiplicative exponential linear logic (with cut-elimination). It is given by the
following sets of cells:

• ΣMELL
0 = { � };

• ΣMELL
1 = FMe``;
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• ΣMELL
2 = Σc

3 ∪ ΣELL
3 where:

ΣELL
3 =



?WA : ⊥ → ?A = ?
?A

?DA : A → ?A =
A

?
?A

?CA : ?A, ?A → ?A =
?A?A

?
?A

!P?Γ,A : ?Γ, A → ?Γ, !A =
?Γ A

!

?Γ !A


A∈FMe``,Γ∈FMe``

∗

• ΣMELL
3 = ΣMELL

Twist ∪ ΣMELLu
Cut where

ΣMELL
Twist = Σc

Twist ∪ ΣELL
Twist ∪ ΣELL

Box ∪ ΣELL
mon

and ΣMELL
Cut = Σc

Cut ∪ ΣELL
Cut with:

– ΣELL
Twist is the set of twisting relations:

A

?

A ?B

*4
A

?
A ?B

,

A

?

?BA

*4
A

?
?BA

;

A B

?

B ?A

*4

A B

?
B ?A

,

A B

?

?BA

*4

A B

?
?BA

;

?A?AB
?

B ?A

*4

?A?AB

?
B ?A

,

A ?B?B
?

?B A

*4

A ?B?B

?
?B A

,

?Γ A B

!

B ?Γ !A

*4

?Γ A B

!

B ?Γ !A

,

B ?Γ A

!

?Γ !A B

*4

B ?Γ A

!

?Γ !A B

,

– ΣELL
Box is the set of relation for boxes:

?Γ ?∆ A

?
!

?Γ ?B ?∆ !A

*4

?Γ ?∆ A

!
?

?Γ ?B ?∆ !A

,
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?Γ ?A?A ?∆ B

?
!

?Γ ?A ?∆ !B

*4

?Γ ?A?A ?∆ B

!
?

?Γ ?A ?∆ !B

,

?Γ ?A?B ?∆ C

!

?Γ ?A?B ?∆ !C

*4

?Γ ?A?B ?∆ C

!

?Γ ?A?B ?∆ !C

,

– ΣELL
mon is the set of relation for the monoidal structure concerning

contraction and weakening:

?
?

?A

*4
?

?
?A

,
?

?
?A

*4 ?A ,
?

?
?A

*4 ?A , ?
?A

*4 ?
?A ;

– ΣELL
Cut is the set of rules for the cut elimination:
∗ Box vs Dereliction:

?Γ AA⊥

! ?

?Γ

*4
?Γ AA⊥

?Γ
,

A⊥ ?Γ A

? !

σ

?Γ

*4
A⊥ ?Γ A

?Γ

for all σ ∈ S|?Γ|+2 such that σ(|Γ + 2|) = σ(1) + 1,
∗ Box vs Weakening

φ

! ?

?Γ

*4
? ?

?Γ
,

φ

!

σ

?

?Γ=?Γ′,?Γ′′

*4
? ?

?Γ

for all σ ∈ S|?Γ|+1 such that σ−1(|?Γ′ + 1|) = |?Γ|+ 1,



86 CHAPTER 3. STRING DIAGRAMS FOR LINEAR LOGIC

∗ Box vs Contraction

φ

A⊥A⊥

! ?

?Γ

*4

φ φ

! ! A⊥A⊥

µ

? ?

,

φ

?A?A !

σ

?

?Γ=?Γ′,?Γ′′

*4

φ φ

?A?A
! !

µ

? ?

?Γ

for any σ ∈ S|?Γ+3| with σ(2) = σ(1) + 1 and σ(|?Γ| + 3) =
σ(2)+1 and µ canonical diagram of µ ∈ S2n with µ(i) =
µ(i+ n) for all i ∈ {1, . . . , n}, and φ ∈ ΣMELLc;
∗ Box vs Box

?Γ A ?∆ B

! !

σ

Σ Σ′

*4

?Γ A ?∆ B

!
σ

!

if σ−1(|Σ|+1) = |?Γ, A| and |?Γ, A| ≤ σ−1(|Σ|+2) ≤ |?Γ, A, ?∆|,

?Γ A ?∆ B

! !

σ

Σ Σ′

*4

?Γ A ?∆ B

!
σ

!

if σ−1(|Σ|+ 2) = |?Γ, A, ?∆, B| and σ−1(|Σ|+ 1) ≤ |?Γ|.

In this polygraph, we introduced some 2-cells !P in order to represent
boxes: these should be considered as the border of a box and, as in the ex-
tension of Mazza [64] proof nets, they can be considered as cells with multiple
active ports .
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As for ΣM , twisting relations represent the gate crossings of strings. More-
over, we introduce the set ΣELL

Box representing the interaction of twisting opera-
tors, weakening and contraction gates with the boxes. The set ΣELL

mon gives the
symmetric monoidal structure concerning contraction and weakening rules.
Finally, the set ΣELL

Cut gives all the possible configurations of cut-elimination
taking into account the structure of twisting diagrams.

Remark 3.1.4 (Monoidal structure of contraction and weakening). The rules
in ΣELL

mon gives the structure of commutative comonad of !. Any diagram made
only of gates of type ?W and ?C can be considered as a multiple weakening or
a multi-contraction with unordered inputs and one output (all labeled by the
same formula ?A). Moreover, the last rule gives the commutative structure of
contraction.

Remark 3.1.5. The polygraphs ΣMLL , ΣMLLu and ΣMELL are total-twisting.
This is we can represent any string crossings.

This means that, in these polygraphs, we have the same interaction be-
tween gates and crossing we find in linear logic proof nets. On the other hand,
this syntax has some important differences with respect of proof nets:

Remark 3.1.6. The 2-cells in ΣMELL are similar to MELL proof structures.
We remark the following important differences:

• Ax and Cut rules are not wirings but cells;

• Wiring may cross only by means of twisting operators, that is, only if
both wires are labeled by colors of the twisting family;

• Diagrams have a top-to-bottom orientation, that is, there are not dia-

grams like , nor upside-down tensor like
A⊗B
⊗

B A

;

• Twisting relations and rewriting rules concerning cut elimination have
the same semantical status;

• There are no boxes but just some 2-cells representing their border.

Proof diagrams, as proof nets, can be used to represent linear logic deriva-
tions. Moreover, we can characterize the structure of input and outputs of
proof diagrams corresponding to derivations.

Theorem 3.1.7 (Interpretation of proofs in ΣMELL). For any derivation d(Γ)
of ` Γ in MELL there is a proof diagram φd(Γ) : � ⇒ Γ ∈ ΣMELL.

Proof. Let d(Γ) be a derivation in MELL of ` Γ. First we observe that, if
there is a diagram φ : ∆⇒ Γ then there is a diagram φσ = φ̂σ ◦ φ : ∆⇒ σ(Γ)
for any permutation σ ∈ S|Γ|. By this fact we can proceed by induction on
the number of inference rules appearing in d(Γ):



88 CHAPTER 3. STRING DIAGRAMS FOR LINEAR LOGIC

• If just one inference rule occurs in d(Γ), it must be an Ax rule, Γ = A,A⊥

and φd(Γ) = AxA : � ⇒ A,A⊥;

• If n+ 1 inference rules occur in d(Γ), then we consider the last one and
we distinguish two cases depending on its arity (see Rem. A.0.2):

– If it is unary and Γ = Γ′,⊥, then, by inductive hypothesis, there is
a diagram φΓ′ : � ⇒ Γ′ and φΓ = φΓ′ ,⊥;

– Similarly if Γ = Γ′, ?A, by inductive hypothesis, there is a diagram
φΓ′ : � ⇒ Γ′ and φΓ = φΓ′ , ?A;

– If it is unary and Γ = Γ′, A ` B, then, by inductive hypothesis,
there is a diagram φd(Γ′,A,B) : � ⇒ Γ′, A,B of the derivation
d(Γ′, A,B) with n inference rules. Therefore

φd(Γ) = (idΓ′ ,`A,B) ◦ φd(Γ′,A,B) : � ⇒ Γ;

– Similarly if the last rule is a unary ?C with Γ = Γ′, ?A, then, by
inductive hypothesis there is a diagram φΓ′,?A,?A : � ⇒ Γ′, ?A, ?A
and

φΓ = (idΓ′ , C?A) ◦ φΓ : � ⇒ Γ;

– Similarly if the last rule is a unary ?D with Γ = Γ′, ?A, ten, by
inductive hypothesis there is a diagram φΓ′,A : � → Γ′, A and

φΓ = (id?Γ, D?A) ◦ φΓ′,A : � ⇒ Γ;

– If it is a unary !S, Γ = ?Γ′, !A, then, by inductive hypothesis, there
is a diagram φΓ′,A : � ⇒ Γ′, A and

φΓ = P?Γ′,A ◦ φ?Γ′,A : � ⇒ Γ;

– If it is binary and Γ = ∆, A⊗B,∆′, then, by inductive hypothesis,
there are two diagrams φd(∆,A) : � ⇒ ∆, A and φd(B,∆′) : � ⇒
B,∆′ relative to the two derivations d(∆, A) and d(B,∆′) with at
most n inference rules. Therefore

φd(Γ) = (id∆,⊗A,B, id∆′) ◦ (φd(∆,A), φd(B,∆′)) : � ⇒ Γ

– Similarly, if it is binary and Γ = ∆, Cut(A,A⊥),∆′, then

φd(Γ) = (id∆, cutA, id∆′) ◦ (φd(∆,A), φd(A⊥,∆′)) : � ⇒ Γ.

Even if we do not give the more general case for diagrams in ΣMELL, it is
possible to characterize the irreducible diagrams in the polygraph ΣMLLu
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Proposition 3.1.8. If φ ∈ ΣMLLu then there is a diagram φ̄ ∈ ΣMLLu such
that φ and φ̄ are equivalent modulo the equivalence relation 'Tw generated by
Σc
Twist and φ̄ in the form:

Γ′

Cut

∆′
◦

σ(Γ)

c

Γ′
◦

Γ

σ

σ(Γ)
◦

∆

AX

Γ

where:

• AX is an horizontal diagram over the signature {AxA}A∈FM``u
;

• σ = φ̂σ for some σ ∈ S|Γ|;

• c is a diagram over the signature {⊗A,B,`A,B,⊥}A,B∈FM``u
;

• Cut is an horizontal diagram over the signature {CutA}A∈FM``u
.

Proof. The equivalence relation'Tw permits to avoid configurations as

or since 'Tw and 'Tw .
Together with the natural orientation of twisting relation for `,⊗ and ⊥,

the interchange rule and the unicity of φ̂σ proved in Proposition 1.4.10, this
allow to find a diagram φ̄ with the required properties.

As intuition suggests, we can use this syntax in order to represent proof
nets

Proposition 3.1.9. We can associate a proof structure Pφ to any proof dia-
gram φ ∈ ΣMELL.

Proof. Let φ ∈ ΣMELL, the associate proof net Cφ is the one given by:

• the set of free ports is the set of free ports of φ;

• the set of cells is the set of gates in φ which are not twisting operators;

• the label l(c) of a cell c ∈ Cφ is the gate type of the corresponding gate
g;

• the set of wires is the set pair of twisting-communicating gates in φ;

• the set ∂(w) defined by the associate pair of gates;

• for every gate g : !P is defined the box Bg given by the set of gates g′ ∈ φ
such that g′  g with respect of twisting communication.
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In particular, the semantics of ΣMELL results to be the same of MELL
linear logic proof nets.

Theorem 3.1.10 (Proof net correspondence in ΣMELL). There is a one-to-
one correspondence between the set of proof diagrams in ΣMELL modulo the
equivalence relation 'Tw generated by ΣMELL

Twist and the set of multiplicative
proof structures with constants.

Proof. It suffices to remark that twisting relations do not change (twisitng)
communicating relations between gates corresponding to adjacencies in the
corresponding proof net.

Since we want to prove this result to ΣMELL where contraction and weak-
ening cells are free to move inside or outside certain boxes, we have to consider
any !P?Γ,A gate present in a gate path as an identity over all its ?Γ inputs and
outputs ports as below:

?Γ A

!

?Γ !A

as to be consider as
?Γ A

!
?Γ !A

.

Then, we define a (twisting) communication relation between all gates in a
proof diagrams φ.

The proof net Pφ is the one defined by this adjacency relation over the set
of cells in one-to-one correspondence with non-twisting gates of φ. The boxes
of Pφ are the upper cones ∂(g) of the gates g : !P, g ∈ φ.

On the other hand, we can consider proof diagrams as some particular rep-
resentations in the plane of the corresponding proof structure graphs. If two
proof diagrams can be interpreted by the same proof structure this means that
the twisting adjacency relations for these two diagrams are the same and so
their graphs are isomorph. It can be easily checked that in order to show that
the transformations in the 2-dimensional graph representation corresponding
to twisting relations suffices whenever want to keep the orientation of ingoing
(inputs) and outgoing (outputs) edges on nodes in a representation with no
loop on wires.

If we note [P ]Tw the class of 'Tw-equivalent diagrams in ΣMELL corre-
sponding to the proof net P , we formulate the following

Corollary 3.1.11 (Cut-elimination step correspondence). If P, P ′ are two
proof nets, then

P  cut P
′ ⇔ ∃φ, φ′ ∈ ΣMELLc, φ ∈ [P ]Tw, φ′ ∈ [P ′]Tw such that φ

ΣMELLc
Cut

*4 φ′ .

Proof. It follows the definition of Pφ, Pφ′ = P ′ and [P ]Tw.
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This leads to a cut-elimination theorem for ΣMELL:

Theorem 3.1.12 (Cut elimination in ΣMELL). If φ : � ⇒ Γ ∈ ΣMELL is
irreducible and it corresponds to a correct proof net, then in φ there is no gate
g : Cut.

3.2 Proof diagrams with control for MELL
In order to have a correctness criterion for proof diagrams, we enrich the set
of string labels with two new non-twisting colors L (left) and R (right) and
re-define some 2-cells.

The idea is to use the latter to internalize the notion of well-paranthesization
in a setting where a proof derivation can be seen as a sequence of operations
over lists of sequents: unary derivation rules act on single sequents (as in the
case of `), binary ones act on two sequents (as in the case of ⊗ and Cut) and
the 0-ary one, that is Ax, generates a new sequent.

In order to integrate the the control strings with the cellular syntax, we
need to make interact cells with these strings any time they interact with
sequents parenthesization: Ax and 1 generate new sequents, so they should
have no inputs and outputs of the form L,A,A⊥, R and L, 1, R respectively
while ⊗ and Cut have to be with inputs of the form A,R,L,B. We underline
that unary promotion rule acts on a whole sequent (not locally) and for this
reason the relative 2-cells, even if the rule is unary, have a structure interacting
with control strings. For this reason, cells representing promotion rules will
be with inputs of the form L, ?Γ, A,R and output Ł, ?Γ, !A,R.

Definition 3.2.1. The control polygraph of multiplicative linear logic M̃ is
given by the following sets of cells:

• M̃0 = { � };

• M̃1 = FM`` ∪ {L = , R = };

• M̃2 =



⊗A,B : A,R,L,B ⇒ A⊗B =
A B

⊗
A⊗B

`A,B : A,B ⇒ A`B =
A B

`
A`B

AxA : � ⇒ L,A,A⊥, R = A

AA⊥

CutA : A,R,L,A⊥ ⇒ � = A A⊥

TA,B : A,B → B,A =
A B

B A


A,B∈FM``

;
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• M̃3 = M̃Twist is given by the following twisting relations:

A B

A B

*4 A B ,

A B C

C B A

*4

A B C

C B A

,

A B C

`
C A`B

*4

A B C

`
C A`B

,

A B C

`
B`C A

*4

A B C

`
B`C A

;

together with one rule representing the involution A⊥⊥ = A:

A

A⊥A

*4
A⊥

A⊥A
.

Definition 3.2.2. The control polygraph of multiplicative linear logic with
constants Ũ is given by

• Ũ0 = { � };

• Ũ1 = FM``u ∪ {L = , R = };

• Ũ2 =


1 : � ⇒ L, 1, R = 1

⊥ : � ⇒ ⊥ = ⊥

 ∪ M̃2;

• Ũ3 = ŨTwist =
{ A

A ⊥

*4
A

A ⊥
,

A

⊥ A

*4
A

⊥ A

}
A∈FM``u

∪ M̃Twist.

Remark 3.2.3. The polygraphs Ũ (resp. M̃) is twisting with twisting family
FM``u (resp. FM``) .

This means that in these polygraph we can represent string crossing be-
tween all non-crossing strings, recovering the possibility to reorder sequents
(vieved as lists).

The introduction of control string allows to prove a correspondence be-
tween certain proof diagrams and linear logic derivations. In fact, the well
parenthesization guarantees that binary rules are applied to two formulas ap-
pertaining different sequents while unary to formulas appertaining to the same
sequent. This characteristic can not be formalized in linear logic proof net syn-
tax since string crossings have not a formal statute: they are just graphical
representations of adjacency relation between cells.

Moreover, the control strings guarantee also the sequentializability of proof
diagrams even in presence of ⊥ gates. In fact, in proof nets need jumps in
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order to prove correctness and these have no restrictions on their assignation.
In proof diagrams, any ⊥ gate can be associated only to certain Ax and 1
gates leafs of the derivation tree branching which it belongs. This branching
is limited by the ⊗ or Cut gate of which the considered ⊥ is a subformula of
its principal formulas.

Theorem 3.2.4 (Proof diagrams correspondence in Ũ).

`MLLu Γ⇔ ∃φ ∈ Ũ such that φ : � ⇒ L,Γ, R.

Proof. To prove the left-to-right implication ⇒, as in Teor. 3.1.7, we remark
that, if there is a diagram φ : � ⇒ L,Γ, R with Γ sequent in MLLu , then
there is a diagram

φσ = (idL, φ̂σ, idR) ◦ φ : � ⇒ L, σ(Γ), R

φ

σ

σ(Γ)

for any permutation σ ∈ S|Γ|. Then we proceed by induction on the number
of inference rules in a derivation d(Γ) in MLLu :

• If just one inference rule occurs d(Γ), then it is an Ax or 1 and Γ =
A,A⊥ and φd(Γ) = AxA : � ⇒ L,A,A⊥, R or respectively Γ = 1 and
φd(Γ) = 1 : � ⇒ L, 1, R:

AA⊥
, 1 ;

• If n + 1 inference rules appear, then we consider the last one and we
distinguish two cases in base of its arity:

– If it is unary it could be a ` or ⊥. In the first case, Γ = Γ′, A`B,
then, by inductive hypothesis, there is a diagram φd(Γ′,A,B) : � ⇒
L,Γ′, A,B,R of the derivation d(Γ′, A,B) and

φd(Γ) = (idL,Γ′ ,`A,B, idR) ◦ φd(Γ′,A,B) : � ⇒ L,Γ, R

φ

`
Γ′ A`B

Similarly if it is a ⊥, Γ = Γ′,⊥, then, by inductive hypothesis, there
is a diagram φΓ′ : � ⇒ L,Γ′, R and φΓ = (L,⊥, idΓ′ , R) ◦ φΓ′ ;
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– If it is binary and Γ = ∆, A⊗B,∆′, then, by inductive hypothesis,
there are two diagrams φ1 = φd(∆,A) : � ⇒ L,∆, A,R and φ2 =
φd(B,∆′) : � ⇒ L,B,∆′, R relative to the two derivations d(∆, A)
and d(B,∆′) with at most n inference rules. Therefore

φd(Γ) = (idL,∆,⊗A,B, id∆′,R) ◦ (φd(∆,A), φd(B,∆′)) : � ⇒ L,Γ, R

φ1 φ2

⊗
∆ A⊗B ∆′

– Similarly, if it is binary and Γ = ∆, Cut(A,A⊥),∆′, then

φd(Γ) = (idL,∆, CutA⊥ , id∆′,R)◦(φd(∆,A), φd(A⊥,∆′)) : � ⇒ L,Γ, R.

In order to prove sequentialization, i.e. the right-to-left implication⇐, we
proceed by induction on the number |φ|S of gates in φ:

• If |φ|Ũ = 0 then φ : idΓ : Γ ⇒ Γ. By hypothesis φ has no input (i.e.
s2(φ) = � ) so it is the identity diagram over the empty string, this is
the empty diagram id0 : � ⇒ � which it is not sequentializable since
t2(φ) = � 6= L,R;

• If |φ|Ũ = 1 then φ is an elementary diagram. The elementary diagrams
with source � and target L,Γ, R with Γ ∈ FM``u

∗ are atomic made of
a unique 2-cell of type AxA : � ⇒ L,A,A⊥, R for some A ∈ FM``u or
1 : 0 → L, 1, R. The associated sequents ` A,A⊥ and ` 1 are derivable
in MLLu ;

• Otherwise there is 2-cell of type α : Γ′ ⇒ α(Γ′) ∈ Ũ2 and Γ = ∆, α(Γ′),∆′.
In this case φ = (idL,∆, α, id∆,R) ◦ φ′ where φ′ : � ⇒ L,∆,Γ′,∆′, R.
We have the following cases:

– If α = TA,B, Γ′ = A,B and α(Γ′) = B,A. The diagram φ′ is
sequentializable by inductive hypothesis since |φ|Ũ = |φ′|Ũ + 1;

– Similarly if α = `A,B, Γ′ = A,B and α(Γ′) = A`B;
– Similarly if α = ⊥, Γ′ = ∅ and α(Γ′) = ⊥;
– If α = ⊗A,B so Γ′ = A,R,L,B, α(Γ′) = A⊗B and

φ′ : � ⇒ L,∆, A,R, L,B,∆′, R.

This diagram is a parallel composition φ′ = φ′l, φ
′
r with

φ′l : � ⇒ L,∆, A,R and φ′r : � ⇒ L,B,∆′, R

of two diagrams which satisfy inductive hypothesis since |φ|Ũ =
|φ′l|Ũ + |φ′r|Ũ + 1;
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– Similarly if α = CutA with B = A⊥ we have Γ′ = A,R,L,A⊥ and
α(Γ′) = ∅.

This theorem assure that proof diagrams can be used to represent any
proof derivation (with explicit exchange rules) in MLLu . In particular, we
have a bijection between proofs in MLLu with explicit exchange rules and
proof diagrams with no input and output of the form L,Γ, R.

Layers structure of irreducible proof diagrams in Ũ

By the interchange law, is possible to rearrange the position of some gates in
a proof digram, in particular we can move upward and downward the leafs
of derivation and parallel applications of inference rules, i.e. rules acting on
independent sets of formulas.

Then, the structure of irreducible multiplicative proof diagrams in Ũ is
characterized by a layer structure. An irreducible multiplicative proof diagram
has the following form:

Leafs

φ1,1 φ1,n1

Split1

φ2,1 φ2,n2

Split2

φ3,1 φ3,n3

...

where each φk,k′ : σ−1
k,k′(∆k,k′ ,Γk,k′ ,Σk,k′) ⇒ out(N l

k,k′), idΓk,k′ , out(N r
k,k′) is a

diagram of shape

φk,k′ =

σ−1
k,k′ (∆k,k′ ,Γk,k′ ,Σk,k′ )

σk,k′

∆k,k′ Σk,k′
idΓk,k′

N l
k,k′

Nr
k,k′

out(N l
k,k′ ) , Γk,k′ , out(Nr

k,k′ )

satisfying the following conditions:
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• ∆k,k′ ,Γk,k′ ,Σk,k′ could be empty sequents;

• N l
k,k′ , N

r
k,k′ are empty diagrams (and so ∆k,k′ ,Σk,k′ are empty sequents)

if respectively k′ = 1 and k′ = ni for every i;

• Leafs is an elementary diagram over the signature {AxF , 1}F∈FM``u
:

Ax : � ⇒ ,Γ1, , . . . , ,Γn0 ,

with Γi = Fi, F
⊥
i for some Fi ∈ FM``u or Γi = 1;

• σk,k′ is a twisting diagram;

• Spliti is an elementary diagram over the signature {⊗, Cut}, we enu-
merate its gates α1, . . . , αsi from left to right so that

Spliti = , idW1 , α1, idW2 , . . . , idW1 , αsi , idWsi

where idWj = idΘj,1 , , . . . , idΘj,mj for some Θj,k ∈ FM``u
∗ and mj ∈ N

such that
si∑
j=1

mj = ni − si.

With respect of this notation, we can observe the following property:

Proposition 3.2.5 (Layers in Ũ). An irreducible multiplicative proof diagram
in Ũ has a standard layer form:

Layer` ◦ · · · ◦ Layer1 ◦ Leafs : � ⇒ L,Γ, R

where Layeri = Posi ◦Negi ◦ Twisti with

• Leafs is an elementary diagram over the signature {AxF , 1}F∈FM``u
:

Leafs : � ⇒ ,Γ1, , . . . , ,Γn0 ,

with Γi = Fi, F
⊥
i for some Fi ∈ FM``u or Γi = 1;

• Twisti is a block twisting diagram:

Twisti = , σi,1, , . . . , , σi,ni ,

in particular we have that Twist1 is an identity;

• Negi = Block−i,1, . . . , Block
−
i,ni

is the ith negative layer with

Block−i,k = , N l
i,k, idΓi,k, N

r
i,k,
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• Posi = Block+
i,1, . . . , Block

+
i,ni

is the ith positive layer of the form

Block+
i,k = idW 1

i,k
, idW 2

i,k
, . . . idW t

i,k
, , id∆i,k

, αi, idΣi,j , idW t+1
i,k

, . . . , id
W
mi,k
i,k

where id
W j
i,k

= ,Γji,k, for some sequent Γji,k ∈ FM``u
∗;

This layer structure of an irreducible proof diagram φ corresponds to a
particular arrangement of inference rules application in the relative derivation
d(φ): each positive rule (⊗ or Cut) is preceded by all and only inference
rules needed to produce their active formula. This is due to the fact that
twisting relations concerning ` and ⊥ gates moves downward and, together
with interchange rules, allows to perform the corresponding inference rule
latest.

In order to achieve a focalized structure ( [5], [56]) of proof diagrams we
should performs not only the essential asynchronous inference rules. We claim
that reversing the direction of twisting relations concerning ` and ⊥ gates (so
moving these gates upward in a diagram) we should be able to achieve an
irreducible form corresponding to a focalized proof.

3.3 Proof diagrams in MELL

In this section we extend the polygraph Ũ in order to accommodate the 2-cells
for exponential rules.

We remind the reader that unary promotion rule acts is a context-sensitive
rule: even if it acts only on the formula it promotes, this rule require some
condition on the whole sequent on which it is applied. Then, in order to define
the 2-cells representing promotions, we have to make it properly interact with
control strings. A cell representing promotion rules needs to control all the
sequent on which it is applied, then its inputs have to be of the form L, ?Γ, A,R
and its output of the form L, ?Γ, !A,R.

Definition 3.3.1. The control polygraph of multiplicative exponential linear
logic Ẽ is given by the following sets of cells:

• Ẽ0 = { � };

• Ẽ1 = FMe`` ∪ {L = , R = };

• Ẽ2 = Ũ2 ∪ Exp where
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Exp =



?WA : � → ?A = ?
?A

?DA : A → ?A =
A

?
?A

?CA : ?A, ?A → ?A =
?A?A

?
?A

!P(?Γ,A) : ?Γ, A → ?Γ, !A =
?Γ A

!

?Γ !A


A∈FMe``,Γ∈FMe``

∗

;

• Ẽ3 = ẼTwist ∪ ẼBox ∪ Ẽmon where:

– ẼTwist is the set ŨTwist together with the following twisting rela-
tions:

A

?

A ?B

*4
A

?
A ?B

,

A

?

?BA

*4
A

?
?BA

,

A B

?

B ?A

*4

A B

?
B ?A

,

A B

?

?BA

*4

A B

?
?BA

,

?A?AB
?

B ?A

*4

?A?AB

?
B ?A

,

A ?B?B
?

?B A

*4

A ?B?B

?
?B A

,

for all A,B ∈ FMe``;
– ẼBox is the set of relation for boxes:

?Γ ? ?∆ A

!

?Γ ?B ?∆ !A

*4

?Γ ?∆ A

!
?

?Γ ?B ?∆ !A

,

?Γ ?A?A ?∆ B

?
!

?Γ ?A ?∆ !B

*4

?Γ ?A?A ?∆ B

!
?

?Γ ?A ?∆ !B

,

?Γ ?A?B ?∆ C

!

?Γ ?B?A ?∆ !C

*4

?Γ ?A?B ?∆ C

!

?Γ ?B?A ?∆ !C

,
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for all A,B,C ∈ FMe`` and Γ,∆ ∈ FMe``
∗;

– Ẽmon is the set of relation for the !-comonad, that is the symmetric
monoidal structure concerning contraction and weakening:

?
?

?A

*4
?

?
?A

,
?

?
?A

*4 ?A ,
?

?
?A

*4 ?A , ?
?A

*4 ?
?A ,

for all A ∈ FMe``.

Any gate g : !P can be interpreted as the border of a MELL proof net
box. In particular, the content of this box is the subdiagram ∂(g). The set of
rewriting rules of this polygraph consists of the set of twisting relation plus
two sets EBox and Ẽmon. The set ẼBox gives the interactions between the
promotion rule with contraction, weakening and, of course, twisting opera-
tors. In this polygraph we move twisting operators upward while we move
contraction and weakening outside a box. In order to give the semantics of
commutative monoid for contraction and weakening, we define the set Ẽmon
reminding the set of rewriting rules of F we have defined in Section 2.5 for the
symmetric monoidal categories. In particular, they represent respectively the
associativity, left and right unitor, the commutativity of contraction rule.

Remark 3.3.2 (Monoidal structure of contraction and weakening). The rules
in Ẽmon gives to the diagrams made of ?W and ?C gates a structure of
monoidal category reminding the polygraph F. By this fact, anytime a subdia-
gram made only of these gates occurs, we can consider it as multiple parallel
weakening or a unique multi-contraction gates with n inputs and one output
all labeled by the same formula ?A.

Remark 3.3.3. The polygraph Ẽ is twisting with twisting family FMe``.

This means that we can represent any crossing of strings labeled by MELL
formulas and these crossings have the behavior we attend with respect of their
interaction with cells connected with no control strings.

Moreover, we are able to prove the termination in this polygraph. This
means that in this polygraph we have irreducible proof diagrams we can use
as representative of their equivalence classes.

Theorem 3.3.4 (Termination of Ẽ). The polygraph Ẽ is terminating.

Proof. Similarly to the proof of Proposition 2.5.5, in order to prove ter-
mination, we define a termination order [33] associating to any proof dia-
gram φ a triple JφK = ([φ], [φ]C , ‖φ‖XBox) given by two monotone functions
[φ], [φ]C : N∗p ⇒ N∗q and the integer

‖φ‖XBox =
g∈φ∑
g:!P
|∂(g)|TA,B .
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counting the number of twisting operator in the lower cone of a gate of type
!P. Then, by the order over function induced by the product order on N∗p,
we give a lexicographic order over these pairs.

We associate the following functions to each gate of the signature Ẽ:

[ ] : ∅ → (1, 1, 1, 1) , [ ] : (z1, x, y, z2)→ ∅ ,

[ ` ] : (x, y)→ x+ y + 1 , [ ⊗ ](x, z1, z2, y)→ x+ y + 1 ,

[ ] : (x, y)→ (y, x+ y) , [ ] : (∅)→ 1 , [ ] : (∅)→ (1, 1, 1) ,

[ ? ] : (x, y)→ x+ y + 1 , [ ? ] : (x)→ x+ 1 , [ ? ] : (∅)→ 1 ,

[ ! ] : (z1, x1, . . . xn, z2)→ (z1, 2x1, . . . 2xn, z2) .

The function associated by [−]C differs from the one associated by [−] only in
the following case:

[ ? ]C : (x, y)→ 2x+ y ,

In particular, this allows us to associate to any rule φ *4 φ′ two monotone
maps [φ] and [φ′] such that [φ] > [φ′] (and then JφK > Jφ′K), in fact:[ ]

(x, y) = (2x+ y, x+ y) > (x, y) =
[ ]

(x, y),

[ ]
(x, y, z) = (2x+y+z, x+y, x) > (x+y+z, x+y, x) =

[ ]
(x, y, z),

[ ]
∅ = (0, 2, 1, 0) > (0, 1, 1, 0) =

[ ]
∅,[

`
]
(x, y, z) = (x+y+z+1, x+y+1) > (x+y+z, x+y+1) =

[
`

]
(x, y, z),

[
?

]
(x, y, z) = (x+y+z+1, x+y+1) > (x+y+z, x+y+1) =

[
?

]
(x, y, z),

[
`
]
(x, y, z) = (y+z+1, x+y+z+1) > (y+z+1, x+y) =

[
`

]
(x, y, z),

[
?
]
(x, y, z) = (y+z+1, x+y+z+1) > (y+z+1, x+y) =

[
?

]
(x, y, z),

[ ]
(x) = (x+ 2, 1) > (x, 1) =

[ ]
(x),[ ]

(x) = (x+ 2, x) > (1, x) =
[ ]

(x),
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[
?
]
(x) = (x+ 2, 1) > (x, 1) =

[
?
]
(x),

[
?
]
(x) = (x+ 2, x) > (1, x) =

[
?
]
(x),

[ ?
!

]
(z1, x1, . . . , xn, z2) = (z1, 2x1, . . . , 2xk, 2, 2xk+1 . . . , 2xn, z2) >

> (z1, 2x1, . . . , 2xk, 1, 2xk+1 . . . , 2xn, z2) =
[

!
?

]
(z1, x1, . . . , xn, z2),

[ ?
!

]
(z1, x1, . . . , xn, z2) = (z1, 2x1, . . . , 2(xk + xk+1 + 1), . . . , 2xn, z2) >

> (z1, 2x1, . . . , 2xk+2xk+1+1 . . . , 2xn, z2) =
[

!
?

]
(z1, x1, . . . , xn, z2),

[ ?
?

]
(x) = x+ 2 > x =

[ ]
(x),

[ ?
?

]
(x) = x+ 2 > x =

[ ]
(x),

[
?

]
(x, y) = 2x+ y + 1 > x+ y + 1 =

[
?

]
(x, y),

[
?

?

]
(x, y, z) = 2x+ y + z + 2 > x+ y + z + 2 =

[
?

?

]
(x, y, z).

The rules ?
?

*4 ?
?

and ! *4 ! does

not satisfy this inequality, in fact

[ ?
?

]
(x, y, z) = x+ y + z + 2 = x+ y + z + 2 =

[ ?
?

]
(x, y, z) ,

[
!

]
(z1, x1, . . . , xn, z2) = (z1, 2x1, . . . , 2(xk + xk+1), 2xk, . . . , 2xn , z2) =

= (z1, 2x1, . . . , 2xk+2xk+1, 2xk, . . . , 2xn, z2) =
[

!
]
(z1, x1, . . . , xn, z2).

On the other hand, we have JφK > Jφ′K also in these cases since

[ ?
?

]
C

(x, y, z) = 4x+ 2y + z > 2x+ 2y + z =
[ ?

?

]
C

(x, y, z) .
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and

‖ ! ‖XBox > ‖ ! ‖XBox

By the compatibility of the order with sequential and parallel composition,
this suffice to prove that, for any couple of diagrams, JφK > Jφ′K holds if
φ
∗ *4 ψ . Since there exists no infinite decreasing suite of monotone maps on

positive integers, infinite reduction paths can not exist.

We can extend the proof diagrams correspondence proved for Ũ in Theorem
3.2.4 to Ẽ. In this polygraph we observe the good properties of correctness for
?W gates for similar argumentations of ⊥ gates in Ũ while ?C and ?D gates
gives no correctness problems as ?C and ?D do in MELL proof nets. Moreover,
the shape of !P cells guarantee, the correctness the application of a promotion
rule. In fact, any gate g : !P determines a subdiagram ∂(g) : � ⇒ L, ?Γ, A,R
which is correct by induction over their number of !P gates. We can identify
any such upper cone ∂(g) with the content of a box in a MELL proof net.
Also in this case, the presence of control strings prevent the crossing of boxes
and that a string cross a box border.

Theorem 3.3.5 (Proof diagrams correspondence in Ẽ).

`MELL Γ⇔ ∃φ ∈ Ẽ such that φ : � ⇒ L,Γ, R.

Proof. In order to prove the theorem, we have to extend proof of Theorem
3.2.4 with the new cases relative to exponential inference rules and the relative
2-cells.

To prove the left-to-right implication⇒ we have to consider the cases when
the last of inference rules of a derivation d(Γ) in MELL is an exponential rules:

• If it is an unary ?W , then Γ = ∆, ?A,Σ and

φΓ = (id∆, ?WA, idΣ) ◦ φ(∆,Σ) =
φ

?
∆ ?A Σ

• If it is an unary ?D, then Γ = ∆, ?A,Σ and

φΓ = (id∆, ?DA, idΣ) ◦ φ(∆,A,Σ) =
φ

?
∆ ?A Σ

• If it is an unary ?C, then Γ = ∆, ?A,Σ and

φΓ = (id∆, ?CA, idΣ) ◦ φ(∆,?A,?A,Σ) =
φ

?
∆ ?A Σ
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• If it is an unary !P , then Γ = ?Γ′, !A and

φΓ = (id?Γ′ , !P(?Γ′,A)) ◦ φ(Γ′,A) =
φ

!
?Γ !A

In order to prove sequentialization, i.e. the right-to-left implication ⇐,
we have have the following additional cases when it exists a 2-cell of type
α : Γ′ ⇒ α(Γ′) ∈ Ẽ2 and Γ = ∆, α(Γ′),∆′:

• If α = ?WA, Γ′ = ∅ and α(Γ′) = ?A;

• If α = ?DA, Γ′ = A and α(Γ′) = ?A;

• If α = ?CA, Γ′ = ?A, ?A and α(Γ′) = ?A;

and then φ = (idL,∆, α, id∆,R) ◦ φ′ where φ′ : � ⇒ L,∆,Γ′,∆′, R exists by
inductive hypothesis on the number of gates.

On the other hand, if α = !P(?Γ,A), α : L, ?Γ, A,R ⇒ L, ?Γ, !A,R and
φ = !P(?Γ,!A) ◦ φ′ where φ′ : � ⇒ L, ?Γ, A,R exists by inductive hypothesis
on the number of gates.

Corollary 3.3.6 (Linearity of sequentializability in Ẽ). It is possible to check
if a proof diagram in Ẽ is sequentializable in linear time.

Proof. It suffice to verify if in(φ) = � and out(φ) is a string over FMe``∪{ , }
of the form L,Γ, R with Γ ∈ FMe``

∗.

This complexity result we are able to give strongly depends on the in-
troduction of control strings. Indeed, the construction of terms is have to
satisfies the well-typing of diagrams with respect of control (corresponding to
well-parenthesization) that guarantees the impossibility of configuration such
as binary inference rules applied to two formulas of the same branching of
a derivation tree or unary inference rules applied on two formulas from two
different branching.

However, the direct management of string crossing generate a wider family
of critical pairs in rewriting. Some of these critical peaks are not solvable such
as the ones in the global conflict generated by the archetype of conflict

X

for example

⊗ .
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This rules out a confluence for this polygraph. We can assert that the lose
of the existence of a unique canonical normal-form representative is the price
we pay in order to have linear correctness criterion.

This result should not be surprising after Remark 2.5.4. In fact Ẽ contains
the monoidal structure of the !-comonad creating some conflicts with the same
shape of the one given in Remark 2.5.2.

As shown in Section 3.2 for the polygraph Ũ, irreducible Ẽ proof diagrams
have, by interchange law, a layer structure. Then, an irreducible proof diagram
in Ẽ can be interpreted as a focalized MELL proof (with explicit exchanges).

As in Ũ, irreducible proof diagrams in Ẽ are arranged by layers.

Proposition 3.3.7 (Layers in Ẽ). Irreducible proof diagrams in Ẽ have a
standard layer form:

Layer` ◦ · · · ◦ Layer1 ◦Ax : � ⇒ L,Γ, R

where Layeri = Boxi ◦ Posi ◦Negi ◦ Twisti with

• Ax is an elementary diagram over the signature {AxF , 1}F∈FMe``u
:

Ax : � ⇒ ,Γ1, , . . . , ,Γn0 ,

with Γi = Fi, F
⊥
i for some Fi ∈ FMe``u or Γi = 1;

• Twisti is a block twisting diagram:

Twisti = , σi,1, , . . . , , σi,ni ,

in particular we have that Twist1 is an identity;

• Negi is the ith negative layer, a diagram over the signature {`,⊥, ?C, ?W, ?D};
• Posi is the ith positive layer, an horizontal diagram over the signature
{⊗, Cut};

• Boxi is the ith boxes layer, an horizontal diagram over the signature
{!P};

3.4 Towards a new syntax for proofs
In the previous section, we have presented proof diagrams, a particular class
of string diagrams suitable for interpreting linear logic proof derivations. In
particular, such a setting exhibits an internal correction criterion and, as we
have shown, a correspondence between MELL (with or without constants,
one-sided) sequent calculus proof derivations and proof diagrams. Moreover,
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the sequentiability of a proof diagram, i.e. whether it corresponds to a proof
in sequent calculus, can be verified in linear time.

Our results raise an important question about the quotient set over proofs
introduced by proof diagrams, and how it relates to that performed by proof
nets. For this, let ∼D be the equivalence relation over proof derivations in-
duced by proof diagrams equivalence in 〈Ẽ〉, ∼N one induced by proof net
quotient and ∼ the standard proof equivalence (see Appendix A).

One the one hand, on multiplicative fragment, ∼D captures all commuta-
tions of reversible inference rules ` and ⊥ by the interchange rule and twisting
relations that make the induced quotient less coarse than ∼N since in proof
net syntax the assignation of jumps for ⊥ cells is mandatory for correctness.
Moreover, ∼D also captures ?W, ?C, ?D interactions with string crossings
and boxes interactions with weakening, duplication and, of course, twisting
operators. On the other hand, proof diagrams are not able to identify all
binary commutation. In fact, for ⊗ and Cut, ∼D equates only permutations
of the following kind

1

...
` Σ, A

2

...
` B,Γ, C

α
` Σ, α(A,B),Γ, C

3

...
` D,∆

β
` Σ, α(A,B),Γ, β(C,D),∆

∼

1

...
` Σ, A

2

...
` B,Γ, C

3

...
` D,∆

β
` A,Γ, β(C,D),∆

α
` Σ, α(A,B),Γ, β(C,D),∆

where α, β ∈ {⊗, Cut}, that is, when ⊗ or Cut permutations that do
not change the order of the leafs in a derivation tree. It follows that proof
nets equivalence is coarser, in some sence, than proof diagrams one on the
multiplicative fragment with no unit.

For a concrete example, consider a provable linear logic sequent of the form
` B ⊗C,A⊗D: this latter exhibits two different derivations that correspond
to the following two non-equivalent proof diagrams

1 2 3
A B C D

⊗

⊗

6'

1 3 2
A B D C

⊗

⊗

.

On the other hand, the two proof derivations have the same proof net.
In order to achieve a semantics for proof diagrams including the equiva-

lence described above, we should be able to perform some transformation on
diagrams corresponding to leafs permutation in the derivation trees. These
transformation are forbidden in Ẽ since the presence of control strings pre-
vent the application of any twisting relation. In exchange, the possibility
of doing such such transformation is crucial in order to prove linear logic
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cut-elimination. In fact, some occurrences of cut rules can be applied to non-
active formulas, requiring the application of the rule of commutative cut in
cut-elimination procedure, that is a permutation between two branching in a
derivation tree.

In particular, the syntax of proof diagrams allows to observe the “tangle”
nature in formulas management underlying these configurations thanks to the
informations given by the structure of string crossing. Now we want to give a
procedure to untangle proofs, this is a standardization procedure in order to
recover the whole proof equivalence. For this scope, we need to give a specific
order for axioms in a proof diagram in order to avoid configurations presenting
what we call a crossing split.

Definition 3.4.1 (Crossing split). If φ ∈ Ẽ is an irreducible proof diagram, we
consider its layer form, we says it has a crossing split if it contain a subdiagram
of the form

Γ Γ′ A B ∆ C Σ

N

α

N ′

β

α(N,B) ∆ β(N ′,C) Σ

or

Σ C ∆ B A Γ′ Γ

N

α

N ′

β

Σ β(C,N ′) ∆ α(B,N)

where α, β are splitting cell (i.e. gates of type ⊗ or Cut). This is a subdiagram
with two splitting gates of type ⊗ or Cut where the leftmost (resp. rightmost)
split gate g has in its upper cone ∂(g) one free port such that the successive
(resp. previous) of type R (L).

In other words, we have a crossing split every time we have two applications
of binary rule (Cut or ⊗) where one of the active formula of the second rule is
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the last (resp. first) formula of the first (resp. second) sequent on which the
first binary rule is applied.

These correspond to derivations equivalent of one with the following form:

1
...

` Γ,Γ′, A
N

` Γ, A,N(Γ′)

2
...

` B,∆
α(N(Γ′), B)

` Γ, α(N(Γ′), B),∆, A

3
...

` C,Σ
β(A,C)

` Γ, α(N(Γ′), B),∆, β(A,C),Σ
or

1
...

` Σ, C

2
...

` ∆, B

3
...

` Γ,Γ′, A
N

` N(Γ′), A,Γ
α(B,N(Γ′))

` A,∆, α(B,N(Γ′)),Γ
β(C,A)

` Σ, β(C,A),∆, α(B,N(Γ′)),Γ

Recovering proof equivalence for proof diagrams

In this section we extend control polygraph rewriting in order to be able to
permute the position of certain Ax and 1 gates in a diagram and their relative
sub-derivation. Even if this procedure can be given by means of “big steps”,
this would imply the definition of rewriting rules with open terms. In order
to keep rewriting local, we introduce some new gates representing branching
crossing and some rewriting rules able to use them to cross derivation tree
branching. This will be done by means of some gates of shape

W W ′

W ′ W

which can be seen as some “big twist” crossing a two blocks of strings of the
form L,W,R and L,W ′, R where W,W ′ ∈ (FMe`` ∪ { , })∗, intuitively:

W W ′

W ′ W

∼

W W ′

W ′ W

.
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We show that this rewriting system terminates, this procedure of crossing
branching is convergent and that we keep our complexity result for proof
diagram correction.

Definition 3.4.2 (Polygraph of diagrammatic MELL proof nets). The poly-
graph of diagrammatic MELL proof nets is the polygraph obtained extended
the polygraph Ẽ with the following cells:

• E0 = Ẽ0;

• E1 = Ẽ1;

• E2 = Ẽ2 ∪Big where

Big =

BW,W =
W W ′

W ′ W


W,W ′∈(FMe``∪{L,R})∗

;

• E3 = Ẽ3 ∪EBig where EBig is made of the following 3-cells for all Γ,∆ ∈
FMe``

∗, x ∈ Ẽ2:

– B-introduction: for any α, β ∈ {Cut,⊗} and φ, φ1, φ2, ψ, ψ1, ψ2
irreducible in E we define
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φ φ1 φ2

α

N

β

Γ α ∆ β Σ


�
φ φ1 φ2

N

β

α

Γ α ∆ β Σ

where, if Γ′ = Γ′′, B, φ is of the form

φ

Γ Γ′ A
=

φ′

N ′

Γ Γ′′ B A

with N,N ′ ∈ { ,`,⊥, ?D, ?W, ?C}∗,
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ψ1 ψ2 ψ

α

N

β

Σ β ∆ α Γ


�
ψ1 ψ2 ψ

N

β

α

Σ β ∆ α Γ

where, if Γ′ = B,Γ′′, ψ is of the form

ψ

A Γ′ Γ
=

ψ′

N ′

A B Γ′′ Γ

with N,N ′ ∈ { ,`,⊥, ?D, ?W, ?C}∗;

– The untangle relations: for any x ∈ Ẽ2

W x W ′ ∆

∆ W W ′

*4
W W ′ ∆

∆ W x W ′
,

∆ W x W ′

W W ′ ∆

*4
∆ Γ Γ′

W x W ′ ∆
.

Under the interpretation of B-gates as some kind of big twists crossing
two derivation branching, the B-introduction rules act on a crossing split in
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order to eliminate it in an irreducible diagram in Ẽ. In order to do this, a B-
introduction rule operate on the three branching concerning the crossing split:
it untangle the string twistings on the principal branch (the one in common of
both splitting cells) and it crosses the other two branchings in the derivation
tree by the introduction of a B-gate. Additionally, the untangle relations
moves gates from the top to the bottom of a B-gate, with respect of the
intuition that a B-gate represent a sort of big twisting operator, progressively
rewriting the starting diagram into another one where the order of Ax and 1,
preventing the presence of the crossing split that induced the B-introduction.

We observe some important properties for rewriting rules in E3:

Proposition 3.4.3. If φ ∈ E is a proof diagram φ : � ⇒ L,Γ, R, then there
is a 3-cell generated by the set of of untangle relations

UnB(φ) :
φ ∆

∗ *4 ∆ φ .

Proof. By induction over the number of gates in φ, it suffice to show that each
untangle relation decrease the number of gates of the upper cone ∂̄(g) of a
B-gate.

Proposition 3.4.4 (Untangle procedure is confluent). If φ ∈ Ẽ is an irre-
ducible proof diagram φ : � ⇒ L,Γ, R, then there is a unique diagram φ̂ ∈ Ẽ

with no crossing split such that φ
EBig
*4 φ̂ .

Proof. Let →B be the rewriting over the proof diagrams diagrams in E gen-
erated by 3-cells in Big. We note that a diagram with no crossing split is
irreducible for this rewriting since it contains no B-gates and no B-gates can
be introduced. For any proof diagram, the number of crossing split is finite,
then also the number of B-introduction rules present in any rewriting path is
finite. By induction on the number of gates in a diagram φ and the Proposition
3.4.3, it results that this rewriting terminates. In order to prove convergence,
it suffices to remark that untangle relations critical pairs are strongly conflu-
ent. Moreover B-introduction rules generate no non-trivial conflicts.

Corollary 3.4.5 (Untangle sequence). Any path with irreducible target in
→B can be written as a sequence of untangle sequences, these are rewriting
path made of a single B-introduction followed by untangle relations we need
to erase this cell.

Corollary 3.4.6. Conflicts between 3-cells in Ẽ3 and EBig are confluent and
the corresponding rewriting rules commute.

This lead the following theorem about the termination of rewriting in E.
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Corollary 3.4.7 (Termination in E). The polygraph E is terminating.

Proof. By Theorem 3.3.4 we know that Ẽ terminates and by Proposition 3.4.4
the rewriting of untangle procedure too. The result follows by the possibility
of commutation of these two rewritings remarked in Corollary 3.4.6 and by the
fact that rules in EBig rewrites on irreducible proof diagram modulo Ẽ3.

A whole untangle sequence on a proof diagram corresponds to the elim-
ination of a non-commutative cut commuting the order of branching in the
derivation tree.

We extend the Theorem 3.3.5 to proof diagrams in E. This leads the
extension of Corollary 3.3.6 of the linear complexity of sequentializability of a
proof diagram in E.

Theorem 3.4.8 (Diagrammatic proof net correspondence in E).

`MELL Γ⇔ ∃φ ∈ E such that φ : � ⇒ L,Γ, R.

Proof. In order to prove this theorem, we have to modify the proof of the
right-to-left implication in Theorem 3.3.5 in order to include the cases of 2-
cells in Big. We observe that a proof diagram φ : � ⇒ L,Γ, R contains a
gate of type B ∈ Big iff

φ = (idL,Γ′ , α, idΓ′′,R) ◦B ◦ (φ′, φ′′)

with α a binary rule in {Cut,⊗} and Γ = Γ′,Γ′′. So, in case of a binary rule
α we have the following four cases:

φ1 φ2

⊗
Γ′ A⊗B Γ′′

,

φ1 φ2

Γ′ Γ′′
,

φ1 φ2

φ′2 φ′1

⊗
Γ′ A⊗B Γ′′

,

φ1 φ2

φ′2 φ′1

Γ′ Γ′′

.

the first two cases are handled by the same strategy. In order to prove sequen-
tialization for the two new cases it suffices to remark that the idea behind the
B-gates are twisting, so even if the diagram (φ′2, φ′1) ◦ B ◦ (φ1, φ2) : � ⇒
L,Γ′′, R, L,Γ′, R is not sequentializable, the diagrams φ′1 ◦ φ1 : � ⇒ L,Γ′, R
and φ′2 ◦ φ2 : � ⇒ L,Γ′′, R are.
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By the termination of E we deduce that each proof diagram corresponds to
a focalized linear logic derivation with explicit exchanges (before positive rules)
and without crossing split. That is, the rewriting of E induce a standardization
procedure over the splitting order in linear logic derivations.

The polygraph E is the candidate for a new semantic of proof net. By
the twisting relations we are able to make proof diagrams gates interact with
crossings (twisting operators) as cells are free to move with respect of crossings
in proof net representations. Nevertheless, the presence of the non-twisting
control strings require the machinery of B-gates and untangle sequences in or-
der to recover this interaction in some particular cases concerning the splitting
rules.

Moreover, the control strings plays two other important roles in units and
box correctness. On one hand, the position of a ⊥ or ?W with respect of
control strings assigns plays the same role of jump assignation in proof net
correctness but, on the other hand, this position is not so abridging as a
jump since it links the cell not to a leak of a derivation tree but to one of its
branchings, and consequently to any leaf of such branching. Furthermore, the
structure of !P gates assures that its upper cone is a proof diagram φ : � ⇒
L, ?Γ, A,R, that is a proof diagram corresponding to a linear logic derivation.
This implies the correctness criterion on boxes for MELL proof net.

Theorem 3.4.9 (Proof net correspondence in E). There is a one-to-one cor-
respondence between the set of proof diagrams in E modulo modulo the equiv-
alence relation 'Tw generated by ẼTwist ∪ EBig and the set of multiplicative
proof structures with constants.

Proof. Without losing generality, by Proposition 3.4.3, we consider proof di-
agrams with no B-gates. As in Proposition 3.1.10, it suffices to remark that
twisting relations do not change (twisting) communicating relations between
gates which correspond to adjacencies in the associated proof net. Then, if
we consider any !P?Γ,A gate as below

?Γ A

!

?Γ !A

as to be consider as !

?Γ A

?Γ !A

we define a (twisting) communication relation between all gates in a proof
diagrams φ.

The proof net Pφ is the one defined by this adjacency relation over the set
of cells in one-to-one correspondence with non-twisting gates of φ. The boxes
of Pφ are the upper cones ∂(g) of the gates g : !P, g ∈ φ.
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3.5 Cut elimination for proof diagrams

In this section we give the set of 3-cells corresponding to cut-elimination. We
note that the absence of crossed split avoids the presence of the so called
non-commutative cuts.

Definition 3.5.1 (Cut-elimination 3-cells). We define the following sets of
3-cells:

• M̃Cut is made of the following 3-cells:

A

A

*4 A ,
A

A

*4 A ,

A B Γ B⊥A⊥

⊗
`

Γ

*4

A B Γ B⊥A⊥

Γ

,

A B Γ B⊥ A⊥

⊗
`

Γ

*4

A B Γ B⊥ A⊥

Γ

,

for all A,B ∈ FMe``, Γ ∈ FMe``
∗;

• ŨCut is made of the following 3-cells:

*4 , *4 ;

• ẼCut is made of the following 3-cells:

φ

?Γ A

! ?

?Γ

*4
? ?

?Γ
,

φ

?Γ A

!

?

?Γ

*4
? ?

?Γ
,
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?Γ A A⊥

! ?

?Γ

*4 A A⊥

?Γ ,

A⊥ ?Γ A

!

?

?Γ

*4

A⊥ ?Γ A

?Γ

,

φ ?A?A

?Γ A

! ?

?Γ

*4

φ φ ?A?A

?Γ A ?Γ A

! !

σ

? ???

?Γ

,

A⊥A⊥ φ

?Γ A

!

?

?Γ

*4

A⊥A⊥ φ φ

?Γ A ?Γ A

! !

σ

? ? ? ?

?Γ

,

?Γ A ?∆?A⊥?∆′ B

! !

?Γ ?∆ ?∆′ !B

*4

?Γ A ?∆?A⊥?∆′ B

!

!

?Γ ?∆ ?∆′ !B

,
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?Γ ?A ?Γ′ B ?∆ A⊥

! !

?Γ ?Γ′ !B ?∆

*4

?Γ ?A ?Γ′ B ?∆ A⊥

!

?

?Γ ?Γ′ !B ?∆

,

for all A,B ∈ FMe``, Γ,Γ′,∆,∆′ ∈ FMe``
∗, φ ∈ Ẽ irreducible, σ ∈ S2n

such that σ(i) + 1 = σ(n+ i).

We can now define the semantics of linear logic by means of polygraphs:

Definition 3.5.2. We define the polygraph of diagrammatic MELL proof
nets ECut the one given by E plus the set of 3-cells M̃Cut∪ ŨCut∪ ẼCut. By its
restrictions over the 2-cell sets we can define the polygraph of diagrammatic
MLL and MLLu proof nets MCut and UCut .

In these polygraphs, as in linear logic sequent calculus, it is possible to
prove a cut-elimination theorem following their termination.

Theorem 3.5.3 (Termination of ECut). The polygraph ECut is terminating.

Proof. The termination of ECut follows from the one of E together extend-
ing the termination order JφK = ([φ], [φ]C , ‖φ‖XBox) given for Ẽ to JφKCut =
(‖φ‖Cut, JφK) where

‖φ‖Cut =
g∈φ∑
g:Cut

‖g‖Cut

is the sum of the weights of Cut-gates. This weights is defined in the same
way of the one in the cut-elimination proof for linear logic sequent calculus
(See Theorem A.0.3 in Appendix A).

Theorem 3.5.4 (Cut-elimination in ECut). If φ ∈ ECut is irreducible, then
|φ|{Cut} = 0.

Proof. If φ ∈ ECut is irreducible, then it is irreducible also in E. This means
that in φ there are no crossing split and then any Cut-gate belongs in a
subdiagram ψ of φ of the shape of a source s(R) of a 3-cell R ∈ ẼCut.

Another proof of this theorem follows the correspondence between gates
in a proof diagram and cells in the associate proof net and the cut-elimination
theorem for MELL proof nets. In fact, it suffice to give an interpretation of how
the three sets of rules Ẽ3, ECut and Big act on the proof net corresponding
to the proof diagram: twisting relation in Ẽ3 corresponds to no action or,
rules in ẼBox to take of some cell from out of a box, the set of rule Ẽmon
give the monoidal structure over weakening and contraction, each rule in ECut
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correspond to a cut-elimination step and rules in Big correspond to no action
since even if 2-cells in Big corresponds to no possible label for interaction nets
cells, their interpretation is wire crossing.





Chapter 4

Conclusions

“A mathematician is a blind man in a dark room looking for a black hat
which isn’t there.”

[C. Darwin]

In Chapter 2 we have formalized the structure of string diagrams and their
semantics. In particular, it is given a construction of these terms in term of
2-dimensional word rewriting. This allows us to formalize some notions such
as gates adjacency, gates paths and connection reflecting the intuition given
by their graphical representation and their adaptation into the case of twisting
polygraphs. Moreover, in this formalism we can also define some topological
notions such as the one of internal and external gates.

With the introduction of the diagrammatic variables, we also formalize
the diagrammatic term substitution. Together with the notion of external
gates, this allows well-define some non-well-typed term substitutions giving
some new paradigms for the notion of context which allow to recover some
finiteness properties for finite rewriting systems.

Future study of confluence in sting diagram syntax, should be take into
account of these tools which leads to some open questions about their appli-
cation.

In Chapter 3 is defined a new semantic of proof diagrams for the linear logic
proof nets. The principal innovation with respect of proof net is the control
of string crossings which allow the definition of the control strings , . On
one hand, this guarantees the introduction of an internal correctness criterion
which prevent the formulation of incorrect terms because they reproduce,
in some sense, a good parethesization in derivation underlying the splitting
order. On the other hand, this rule out from the semantic of M̃, Ũ and
Ẽ the commutativity of ⊗ and Cut when they are not in parallel. As we
shown, in order to recover the full semantic of linear logic and a one-to-one
correspondence between equivalence classes of proofs and 2-cells, we have to
extend these models to the polygraphs M,U and E. As we remarked, in

119
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this model the tool of jumps is not more required: crucial in our settings
is the fact that ⊥ gates have a specific position in diagrams, that one can
interpret as a jump assignment. For example, given a ⊥ gate, we can point
its jump to the unique gate of type Ax or 1 connected to the left-nearest
L string. In particular, this means that equivalent proof diagrams in (Ũ)∗
may correspond to different jump assignments on the same proof net and
this justify the fact that the complexity of correction is still linear. Indeed,
proof diagrams exhibit a local sequentialization criterion which is ruled out
in proof nets by complexity arguments (P. Lincoln and T. Winkler [59] , W.
Heijltjes [40] ), due to the number of jumps to check.

Moreover, the 3-cells in ẼBox guarantee the good semantic of boxes with
the possibility of taking out a box a !W or a !C. We underline that, even
in this case, control strings prevent guarantee the well-definition of boxes
since the diagram given by the upper cone ∂(g) of a gate of type !P is a
correct proof diagram (corresponding to a branch of a derivation tree). We
also observe that Emon gives some rules which allow us to give a standard
form for multiple contraction/weakening over the same formula.

The definition of 3-cells for cut-elimination, complete this model with a
representation of proof net with linear correctness criterion for the studied
fragment and a semantics less coaster then the one of proof nets coinciding
with the semantics of equivalent linear logic MELL proofs.

4.1 Open questions on 2-dimensional grammars

Determination of global conflicts

One possible direction of study is to decompose rewriting rules premises in
order to defineminimal active diagrams (MAD for short), these are irreducible
partial diagrams together with a set of their free port such that, properly
composing with another such diagrams give a reducible diagram. Once define
the set of a rewriting system’s MAD, we can use them in order to restrict the
number of elements in a global conflict.

Example 4.1.1. In S we have the following MAD:

( , {in1, in2}) ( , {out1, out2}) ( , {in1, out1})

( , {in1, in2}) ( , {in2, in3}) ( , {out1, out2}) ( , {out1, out2})

( , {in1, in2}) ( , {in2, in3}) ( , {out1, out2}) ( , {out1, out2})

(, {in1, in2}) ( X , ∅)
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and a unique archetype of conflict

X

{
 �#

X
X

which is solvable only if we give a proper substitution of the 2-cell X . In
fact, observing MAD we note that rewriting can be possible only in case of
the substitution with a or , which corresponds to the two critical pairs

and

of the generated global conflict.

On syntax’ dimension

A possible investigation comes out from the study of string diagrams related
to a notion of dimension of a syntax. In fact, diagrams can not properly be
considered in general as a 2-dimensional syntax since gates with a number of
input and outputs different from 1 reduce the degrees of liberty in the con-
struction of terms. For example, in binary trees generated by { }, each node
gives not only the information of its inputs and its output, but also an order
over them. Moreover, these information rule out some possible configuration
for terms such as, in this case, the absence of 1-factor.

Question 1. Is it possible to define a notion of dimension for diagrammatic
grammars?

In particular we are interested if factors have any correlation to the prop-
erty of finite derivation type for string diagrams and the relative application
to an extension of Squier Theorem [78].

4.2 Open questions on proof diagrams model
On proof diagram semantics

We have defined the set of cut-elimination rules ẼCut over the set of diagrams
in E. This choice is due to the fact that, in cut-elimination procedure, we are
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forced to apply non-commutative cuts in order to arrange derivation in suitable
configurations. As we have shown, these non-commutative cuts corresponds
to untangle procedures. If we consider the proof equivalence induced by Ẽ over
linear logic proof, this is not able to equate some configurations of ⊗ and Cut,
morally leading out the cut-elimination result. Considering this observation,
the following question arises:

Question 2. If we define ẼCut the polygraph Ẽ extended with 3-cells in ECut,
what does it represents the induced semantics over linear logic proofs?

On confluence

The presence of some non-convergent critical peaks rules out the confluence
of the polygraphs presenting proof diagrams. This is due to some unsolvable
critical pairs concerning twisting operators.

On the other hand, since proof diagrams propose is to represent equiva-
lent linear logic derivations, we can naturally consider some equivalences over
proof diagrams concerning the representations and the positions of the twist-
ing operators, i.e representing the omission of exchange rules in linear logic
sequent calculus.

Question 3. Is it possible to define an equivalence relation over proof dia-
grams in order to achieve a confluence modulo ?

Additives

The use of proof diagrams for linear logic proof net can be extended in order
to include additives and define a polygraph LL representing the whole linear
logic sequent calculus. If we note F`` the set of formulas of linear logic, the
idea is to define the some new gate types


A

⊕B
A⊕B

,

A

B⊕
B⊕A

,

Γ A B Γ

&

Γ A&B

,
>


A,B∈F``,Γ∈F``∗

,

the relative twisting relations for the ⊕-gates and some relations for &-gates,
similar in shape with rules il ẼBox for boxes, in order to recover the proof
equivalence in this semantics. Of course, also for this fragment, we should
adapt the rules for the introduction of B-gates with a set of 3-cells LBig in
order to accommodate the new binary operator &. In this polygraph, we can
finally describe the 3-cells for cut-elimination rules.

Question 4. How many shape of 3-cells do we need?
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Question 5. Do we need the introduction of auxiliary 2-cells (such as B-gates
in E) in order to recover the proof semantics?

For this model we attend the linearity of the correctness criterion such as
the one for E due to the restrictions in terms construction due to the presence
of control strings.

Box management

Some of rules involving the gates representing boxes imply the duplication
and the erasing of a whole subdiagram representing the content of a box. Of
course, as we have done with the introduction of B-gates for the elimination
of crossing splits, we can extend our polygraph in order to decompose these
“big steps” into “small steps” achieving a local rewriting. In order to manage
also resources duplication and erasing, we should need the introduction of the
gates (for the duplication) and X (for the erasing) together with some
rewriting rules such as

x

X X

*4 X X and x *4 σ

x x

where σ ∈ S2n with

σ(i) =
{
i if i odd
n+ i if i even

in order to make these gates behave as we wish. Of course, the shapes targets
of some ECut 3-cells should be redefined. In particular, in rewriting some
intermediate steps are present during the duplication or erasing of a box,
giving some diagrams corresponding (not directly) to no proof in linear logic
sequent calculus.

Question 6. What does it represent a proof diagrams where these gates
occurs?

Moreover, the presence of these gates for resources management require a
definition of a new correctness criterion for proof diagrams .

Question 7. Can we define a (linear) correctness criterion on these diagrams?

On untangle sequences

Of course the premises of B-introduction rules require the verification of wide
irreducible subdiagrams in order to be applied. On the other hand we note
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that any of these premise admit an ∼Tw-equivalent subdiagram of the form

Γ D A B ∆ C Σ

α

β

and

Σ C ∆ B A D Γ

α

β

.

Question 8. Is it possible to give a rewriting system equivalent to E with
more smaller or non-irreducible premises for B-introduction rules similarly to
the the ones listed above?



Appendix A

Linear Logic backgrounds

Jean-Yves Girard’s linear Logic [28] is a substructural logic which refines clas-
sical logic by introducing exponentials, thus permitting to control applications
of weakening and contraction.

In the present thesis we focus on the multipicative exponential fragment
of linear logic’s sequent calculus with constants (MELL). We first recall the
standard inference rules:

Identity or Axiom Cut
Structural Rules

Ax
` A,A⊥ ` Σ, A ` Γ, A⊥

Cut` Σ,Γ

Tensor Par
Multiplicative
Rules

` Σ, A ` B,Γ ⊗
` Σ, (A⊗B),Γ

` Σ, A,B `` Σ, A`B

Weakening Contraction
Exponential
Rules

` Σ ?W` Σ, ?A
` Σ, ?A, ?A

?C` Σ, ?A

Dereliction Of course / Bang

` Σ, A
?D` Σ, ?A

` ?Σ, A
!P` ?Σ, !A

We also consider the usually omitted exchange rule:

` A1, . . . , Ak σ ∈ Sk` Aσ(1), . . . , Aσ(k)

125
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We recall that the sequent calculus for the multiplicative fragment of of
linear logic (MLL) is composed only of the inference rules Ax,Cut,⊗,`. In or-
der to represent multiplicative constants, we need to add to MLL the inference
rules of ⊥ and 1, thus respectively obtaining the multiplicative fragment with
constants MLLu and the multiplicative exponential fragment with constants
MELL.

Bottom 1
Constants

` Σ ⊥` Σ,⊥
1` 1

Remark A.0.1 (On Negation). We assume that negation is involutive, i.e.
A⊥⊥ = A and that the De-Morgan laws apply with respect to ` and ⊗, i.e.
(A♥B)⊥ = B⊥♥⊥A⊥ for any formulas A,B where ♥ = ` and ♥⊥ = ⊗
or vice versa ♥ = ⊗ and ♥⊥ = `. Moreover 1⊥ = ⊥, (!A)⊥ = ?A⊥ and
(?A)⊥ = !A⊥.

Remark A.0.2 (On Rules). In this model we interpret all inference rules as
operations with specific arities over the set of sequents: Ax and 1 are 0-ary,
`, ⊥, ?W, ?C, ?D and !P are unary while ⊗ and Cut are binary.

Notation. We indicate with FM``, FM``u , FMe`` the set of formulas respec-
tively in MLL, MLLu and MELL.

Cut Elimination

As in classical sequent calculus, also linear logic has a cut-elimination theorem:

Theorem A.0.3. If a sequent ` Γ is provable in MELL so there is a prove
of Γ without Cut rule.

Proof. In order to prove the theorem, we give a procedure to eliminate Cut
rules form derivation without proving its termination.

We say that (an occurrence of) a formula is active in a rule if it is present
in the premise of the rule but not in the conclusion, and principal whether it
is active in the preceding rule of the derivation.

We distinguish three cases in the cut-elimination proof, depending whether
the two active formulas occurring in the Cut rule are principal or not:

• If both formulas active in the cut are not principal, it will be possible
to simply switch the position of the Cut rule in the derivation tree;

• If at least one of the formulas active in the Cut is not principal, it will be
possible to switch the position of the Cut (also call cummutative cut):

– In the case of binary rules:



127

...
` Σ, A

...
` Σ′, C,B �

` Σ,Σ′, C, (A�B)

...
` Γ, C⊥

Cut` Σ,Σ′, (A�B)


�

...
` Σ, A

...
` Σ′, C,B

...
` Γ, C⊥

Cut` Σ′,Γ, B �
` Σ,Σ′,Γ, (A�B)

where

A�B =
{
A⊗B if � = ⊗
∅ if � = Cut

.

In fact, we never consider the case of � = Cut but we note it in
order to have an example of what an untangle procedure does (see
Section 3.4).

– In case of unary rules:

...
` Σ, C �
` �(Σ), C

...
` Γ, C⊥

Cut` �(Σ),Γ


�

...
` Σ, C

...
` Γ, C⊥

Cut` Σ �
` �(Σ)

where

�(Σ) =



Σ,⊥ if � = ⊥
Σ′, A`B if � = ` and Σ = Σ′, A,B
Σ, ?A if � = ?W
Σ′, ?A if � = ?C and Σ = Σ′, ?A, ?A
Σ′, ?A if � = ?D and Σ = Σ′, ?A

.
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• If both formulas active in the occurrence of Cut are principal, the Cut is
eliminated as follows (we need to consider all the possible combinations
of rules):

– ⊗ vs `
...

` Σ, A

...
` B,Σ′ ⊗

` Σ, A⊗B,Σ′

...
` Γ, A⊥, B⊥ `
` Γ, A⊥ `B⊥

Cut` Σ,Γ,Σ′


�

...
` Σ, A

...
` B,Σ′

...
` Γ, A⊥, B⊥

Cut
` Γ, A⊥,Σ′

Cut` Σ,Γ,Σ′

– ⊥ vs 1

11

...
` Γ ⊥` Γ,⊥

Cut` Γ


�

...
` Γ

– ?W vs !P

...
` Σ ?W` Σ, ?A

...
` ?Γ, A⊥

!P
` ?Γ, !A⊥

Cut` Σ, ?Γ


�
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...
` Σ ?W... ?W` Σ, ?Γ

– ?D vs !P

...
` Σ, A

?D` Σ, ?A

...
` ?Γ, A⊥

!P
` ?Γ, !A⊥

Cut` Σ, ?Γ


�

...
` Σ, A

...
` ?Γ, A⊥

Cut` Σ, ?Γ

– ?C vs !P

...
` Σ, ?A, ?A

?C` Σ, ?A

...
` ?Γ, A⊥

!P
` ?Γ, !A⊥

Cut` Σ, ?Γ


�

...
` Σ, ?A, ?A

...
` ?Γ, A⊥

!P
` ?Γ, !A⊥

Cut` Σ, ?Γ, ?A

...
` ?Γ, A⊥

!P
` ?Γ, !A⊥

Cut` Σ, ?Γ, ?Γ
?C... ?C` Σ, ?Γ

– !P vs !P
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...
` ?Σ, ?B,A

!P` ?Σ, ?B, !A

...
` ?Γ, B⊥

!P
` ?Γ, !B⊥

Cut` ?Σ, ?Γ, !A


�

...
` ?Σ, ?B,A

...
` ?Γ, B⊥

!P
` ?Γ, !B⊥

Cut` ?Σ, ?Γ, A
!P` ?Σ, ?Γ, !A

The proof of termination of this procedure is given in [28] giving a weight
to any occurrence of Cut inference rules in a derivation. The termination
order for this reduction is given by the sum of these weight. In fact, each
cut-elimination step reduces the weight of Cuts in a derivation.

Proof equivalence

In linear logic we consider the equivalence over proof generated by the follow-
ing relations over derivations in sequent calculus:

• If �1,�2 ∈ {⊗, Cut}:

...
` Γ, A

...
` Σ, B, C

�1
` Γ,Σ, (A�1 B), C

...
` ∆, D

�2
` Γ,Σ,∆, (A�1 B), (C �2 D)

∼

...
` Γ, A

...
` Σ, B, C

...
` ∆, D

�2
` Σ,∆, B, (C �2 D)

�1
` Γ,Σ,∆, (A�1 B), (C �2 D)

• If �1 ∈ {⊗, Cut}, �2 ∈ {`,⊥, ?W, ?C, ?D, !P}:

...
` Γ, A

...
` B,∆ �1` Γ, (A�1 B),∆ �2` Γ, (A�1 B),�2(∆)

∼

...
` Γ, A

...
` B,∆ �2` Γ, B,�2(∆) �1` Γ, (A�1 B),�2(∆)
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where

�2(∆) =



∆,⊥ if �2 = ⊥
∆′, A`B if �2 = ` and ∆ = ∆′, A,B
∆, ?A if �2 = ?W
∆′, ?A if �1 = ?C and ∆ = ∆′, ?A, ?A
∆′, ?A if �2 = ?D and ∆ = ∆′, A
?∆′, !A if �2 = ?D and ∆ = ?∆′, A

.

• If �1,�2 ∈ {`,⊥, ?W, ?C, ?D}:

...
` Γ,∆ �1` �1(Γ),∆ �2` �1(Γ),�2(∆)

∼

...
` Γ,∆ �2` Γ,�2(∆) �1` �1(Γ),�2(∆)

where

�1(Γ) =



Γ,⊥ if �1 = ⊥
Γ′, A`B if �1 = ` and Γ = Γ′, A,B
Γ, ?A if �1 = ?W
Γ′, ?A if �1 = ?C and Γ = Γ′, ?A, ?A
Γ′, ?A if �1 = ?D and Γ = Γ′, A
?Γ′, !A if �2 = ?D and Γ = ?Γ′, A

.

and

�2(∆) =



∆,⊥ if �2 = ⊥
∆′, A`B if �2 = ` and ∆ = ∆′, A,B
∆, ?A if �2 = ?W
∆′, ?A if �1 = ?C and ∆ = ∆′, ?A, ?A
∆′, ?A if �2 = ?D and ∆ = ∆′, A
?∆′, !A if �2 = ?D and ∆ = ?∆′, A

.

• If � = ?W or ?C:

...
` ?Γ, A �
` �(?Γ), A

!P` �(?Γ), !A
∼

...
` ?Γ, A

!P` ?Γ, !A �1` �(?Γ), !A
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where

�(?Γ) =
{

?Γ, ?A if � = ?W
?Γ′, ?A if � = ?C and Γ = Γ′, ?A, ?A .

• The monoidal structure concerning ?C and ?W:

...
` Γ, ?A, ?A, ?A

?C` Γ, ?C(?A, ?A), ?A
?C` Γ, ?A

∼

...
` Γ, ?A, ?A, ?A

?C` Γ, ?A, ?C(?A, ?A)
?C` Γ, ?A

...
` Γ, ?A

?W` Γ, ?A, ?A
?C` Γ, ?A

∼

...
` Γ, ?A

?W` Γ, ?A, ?A
?C` Γ, ?A

We note that, in addition to the omission of the exchange rules, we consider
that permutation over derivation tree’s branching has no effect and so, we have
to consider all the symmetric variants of the above relations. For instance, for
the first relation we need to consider as well the following variant (which is
the one discussed in Section 3.4):

...
` Γ, A,B

...
` Γ′, C

�1
` Γ,Γ′, (B �1 C), A

...
` Γ′′, D

�2
` Γ,Γ′,Γ′′, (A�1 D), (B �2 C)

∼

...
` Γ, A,B

...
` Γ′′, D

�2
` Γ,Γ′, (A�1 D), B

...
` Γ′, C

�1
` Γ,Γ′,Γ′′, (A�1 D), (B �2 C)

Proof nets

Proof nets were introduced by J.-Y.Girard in [29] in order to represents proof
of multiplicative linear logic [28]. Any proof net represents an equivalence class
of logical derivations. In order to give proof nets graphical representation we
need to define a larger class of diagrams called proof structurs.

Definition A.0.4 (MLL proof structure). AMLL proof structure is a graph
N with labeling on vertices and edges satisfying the following rules:

• if a vertex v is labeled by Ax, so deg(v) = 2 and the two edges are
labeled by X and X⊥;

• if a vertex v is labeled by ⊗, so deg(v) = 3 and the three edges are
labeled by X and Y and X ⊗ Y ;
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• if a vertex v is labeled by `, so deg(v) = 3 and the three edges are
labeled by X and Y and X ` Y ;

• if a vertex v is labeled by Cut so deg(v) = 2, the two edges are labeled
by X and X⊥;

• if a vertex v is labeled by X so it is a leaf (this is deg(v) = 1) and the
edge is labeled by X;

where X,Y are MLL formuas.

Interaction nets [50] are born as generalization of Girard’s linear logic’s
proof structures. They are given by graph labeled by a set S of symbols each
one with an arity n ≥ 0.

Definition A.0.5 (Interaction net). An interaction net is given by:

• a finite set of free ports X;

• a finite set of cells C;

• a label l(c) for each c ∈ C (which defines the number of its active and
non-active ports);

• a finite set of wires W ;

• a set ∂(w) of 0 or 2 ports for each w ∈W .

where a port is either an element of X or a pair (c, i) with c ∈ C and i ranking
from 0 to the arity of `(c). A wiring is a net without cells and cyclic wires.

The basic intuition is that an interaction net is a graphs with labeled
vertices of degree ≥ 0: some vertices (called cells) are labeled by a set of
simbols and they have always a principal port and n (equal to the arity of the
symbol in labeling) auxiliary ports, while free ports are always leaves. The
edges are called wires and connects the two ports (free ports, auxiliary ports
and principal ports) of ∂(w) 6= ∅. Moreover we assume the existence of wires
(when ∂(w) = ∅) connectin no ports called cyclic wires.

If α is a symbol of arity n, an α-cell can be viewed as a net with n+ 1 free
ports. In general every subset of N ′ ⊆ C∪X can be seen as a net 〈N ′〉: it will
be the graph vith vertex N ′ ∪X ′ where X ′ is a set of free ports in one-to-one
correspondence with the set of ports δ(N) = {v ∈ C ∪X \N ′ such that ∃w ∈
W,∂(w) ∩ N ′ 6= ∅ and v ∈ ∂(w)} . Fixed a finite alphabet S of symobls
α1, . . . , αm with respective arities n1, . . . , nm an interaction rule is a a graph
rewriting rules in the form

α β → ν
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with α, β ∈ S, α and β have respectively ni and nj free ports and ν is a
net with ni + nj free ports.

Interaction rules are performed on a net substituting its subnets N ′ of two
cells such that 〈N ′〉 is a premise of an interaction rule.

Definition A.0.6. An interaction system is a set of interaction rules which
can be applied without any ambiguity: if a rule is given for αi, αj , than no
other one is given for αi, αj (or for αj , αi).

In particular an interaction system over an alphabet of m symbols is nec-
essarily finite with at most m(m+1)

2 rules.

Proposition A.0.7 (Local confluence). If a net µ reduces in one step to ν
and ν ′ with ν 6= ν ′, then ν and ν ′ reduce in one step to a common net ξ.

Proof. Since interaction rules are applied only on cells connected through their
principal ports, the two rules act on two disjoint parts of the net so they can
be applied independently.

Definition A.0.8 (MELLc proof structure). A MLLc proof structure is an
interaction net over the alphabet {Ax,⊗,`, Cut,⊥, 1,⊥}, with respectively
2, 3, 3, 2, 1 and 1 ports.

Here we do not recall boxes definition for MELLc proof nets, since many
variant of them are present in literature (for examples see [72], [22], [64]). In
order to give an intuition of these structure, we define the additional symbols
?W, ?C, ?D and !P (with respectively 1, 3, 2 and 2 ports) in the alphabet and
we associate to any cell of type !P its box, this is a subset of net’s cells.

Definition A.0.9 (Proof net). A proof net is a correct proof structure.

Following Girard’s original correction criterion for MLL proof nets [28]
and its extention to MLLc [29], Danos and Regnier [17], have introduced a
method which ensures correctness by means of graph acyclicity after swichings
assignation on ⊗ cells. Then, Guerrini reformulated the correction criterion
by means of graph contractability [31]. For correctness in MELL we remind
Tortora de Falco thesis as well [84].

The main idea for correctness in MLL is to give some operation over the
graph of a proof net in order to verify that binary rules (Cut and ⊗) are
well-typed, .e. that is their premises come from two different branching of the
associate derivation tree. Following the same idea, the jumps assignations in
Girard’s correctness criterion aim to verify if a ⊥ cell is attached to a correct
branch of the derivation tree. Therefor, boxes in exponentials isolate a sub-net
of a proof net in order to verify the correct application of a promotion rule,
i.e. if the sequent in the context is of of type ?Γ.



Appendix B

Refinement of Kelly theorem
for SMC

In this section we give the complete construction of the 4-cells corresponding
to the Kelly and weak-Kelly critical peaks of the rewriting system F.

In this construction, we assume the following 4-cells, corresponding to
symmetric monoidal categories axioms, to be defined:

*4

�(

6F

!-

1=

*4

�&

:I

�&

�&

8G

8H

*4

�$

:I
.
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Moreover assume to be defined also the 4-cells which borders a solution
of a trivial or strongly trivial critical peak. We denote all these 4-cells with
the same symbol

⊙
. This choice is justified by the fact that the commutative

diagrams corresponding to their border are interpreted by trivial diagrams in
the categorical interpretation of the rewriting system.

Every time we build a new 4-cell for a solution of a critical peak φ we
denote it by φ .

Proposition B.0.1 (Refinement of Kelly’s lemma for symmetric monodal
category).
For all Kelly-peaks and weak-Kelly-peaks, a 4-cell can be defined from set of
4-cells {

, , ,
}

plus the set of 4-cells with border a solution of a trivial or strongly-trivial
critical peak (we note them with the symbol

⊙
).

Proof. We now give a list of possible ways to define the 4-cells solution of these
critical peaks. These 4-cells are implicitly defined by given a decomposition
of another 4-cell.

In order to reduce the size of pictures, we note φ the 4-cell which border
the given solution of a critical peak represented by its source φ.

• : decomposing

=


�

*4

�
T


�

-7

=

 -

*4 *4 *4

:I
7F

where T is
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�� ��


�

=

y� �'

=

*4 jt jt

=
cn

;

• : decomposing

=T’

�

*4

�
�

-7

=

 -

*4 *4 *4

:I
7F

where T’ is

��
��


�

=

x� �%

=

=
0;

*4 *4 jt

;
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• : decomposing

��

=

�$

*4

w�
◦

=

��

=

ku

x�
-7
CO

;

• : decomposing ◦

⊙


�

=

�&

*4

t�

��
�

*4


�

T”
EO

=
:I

jt

KU

=

8H

where T” = ◦
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• : decomposing ◦

⊙


�

=

�&

*4

t�

��
�

*4


�

9H

=
:I

jt

KU

=

8H

;

• : decomposing

*4

⊙

�

⊙
�% s�


�

*4 /;

*4

Vf

;
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• : decomposing

*4


�

⊙
�% y�


�

*4

,6

�

7F◦

*4

Xg

;

• : decomposing

*4


�

⊙
�% y�


�

*4

,6

�

7F◦

*4

lv

;
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• : decomposing

*4

= �(


�


�

*4


�


�

jt

*4

*4
3A

JT JT

jt

;

• : decomposing

�%

*4 *4


�

*4

9H
;

• : decomposing ◦

*4


� 
�

;I

)3

*4 *4

*4

⊙⊙ JT

ep

Tc

;
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• : decomposing ◦

⊙

�

*4

y� ��

◦


�


�

*4


�

*4


� x�

oy

*4 jt
7F

*4 *4

Xg

;

• : decomposing
(

∗
)
◦

��


�

=

�)

�&

*4


�

*4 *4


�

*4 *4 jt

*4

8G

=
0<

*4

=
8G 8G JT

;
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• : decomposing ◦

��

�%

*4


�

y�

⊙
=

*4


�

�

*4 *4 *4

*4

;J

*4

JT

;
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• : decomposing
(

∗
)
◦

=

�$

*4

�$

*4

γ vs α


�

S

�

JT

=

��

*4

=


� 
� 
�

�$
�

*4 *4

=

�$ 
�

JT
:I

JT


�

*4

JT Ud

R^

*4

=

=

:I
4B

◦ γ vs α

*4

JT

=

R`

where γ vs α = and S = ◦ ;
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• : decomposing ◦

*4

⊙

�

�$

*4


� 
�

*4
9H
*4 jt

2?

⊙

*4

LV

⊙

Yh

JT

;

• : decomposing
(

∗
)
◦

*4

=

��
�

*4


�

.9

*4

=

�)

*4


�

*4


�

gq

Ve

*4 *4

JT

*4

JT

.





Appendix C

On factors and confluences

In this section we present some rewriting systems in order to give some ex-
amples of rewriting systems with factors, irreducible factors and their relative
homotopical properties.

We recall the definition of the following polygraphs:

• The polygraph of permutations:

S =



S0 = {�}
S1 = {}
S2 = { }

S3 =
{

*4 , *4
}

.

S has no 0-factor, it has 1-factor but no irreducible 1-factor and it has
irreducible 2-factor and 3-factor. The polygraph is confluent with a finite
number of critical pairs;

• The polygraph of permutations with restrictions:

S• =



S•0 = {�}
S•1 = {}

S•2 = { , }

S•3 =
{

*4 , *4
}

.

S•S has irreducible 0-factor, 1-factor and 2-factor and 3-factor. The
polygraph is not confluent and has an infinite number of critical pairs;

• The polygraph of monoidal categories:

M =



M0 = {�}
M1 = {}

M2 = { , }

M3 =
{

*4 , *4 , *4
}

.
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M has no 0-factor. It has 1-factor but no irreducible 1-factor. It has
no 2-factor. The polygraph is confluent with a finite number of critical
pairs.

• The polygraph of symmetric monoidal categories

F =



F0 = {�}
F1 = {}

F2 = { , , }

F3 =



*4 , *4 , *4 ,

*4 , *4

*4 , *4

*4 , *4 ,

*4

*4 , *4 ,





.

F has no 0-factor. It has 1-factor but no irreducible 1-factor. It has
irreducible 2-factor and 3-factor. The polygraph is confluent with a
finite number of critical pairs.

• The polygraph of paths with loops:

C` =



C`0 = {�}
C`1 = {}

C`2 = { , , }

C`3 =



*4 , *4 ,

*4 , *4 ,

*4 , *4 , *4 ,

*4 , *4 ,

*4 , *4 ,



;



.

C` has irreductible 0-factor, 1-factor but not irreducible 1-factor. It has
irreducible 2-factor and 3-factor. The polygraph is not confluent and
has an infinite number of critical pairs.
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• The polygraph of paths without loops: we add to the polygraph C` the
following 3-cell: *4 id0 .
Here, C has 0-factor and 1-factor but not irreducible 0-factor nor 1-factor.
It has irreducible 2-factor and 3-factor. The polygraph is confluent with
a finite number of critical pairs;

• The polygraph used by Yves Guiraud and Philippe Malbos in [35] in
order to show a finite polygraph with infinite derivation type:

G =



G0 = {�}
G1 = {}

G2 = { , , }

G3 =


*4 , *4 ,

*4 , *4




.

G has irreducible 0-factor and 1-factor. It has irreducible 2-factor and
3-factor. The polygraph is confluent with an infinite number of critical
pairs.
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