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Introduction: The aim of this paper is to analize two demonstrations of the
Novikov-Boone theorem of undecidability of the word problem for groups.

Bokut’s demonstration [4] [5] is based on a rewriting system induced by the
relations of the defining presentation of the Boone group G(T, q). This new
infinite rewriting system is built to be convergent. So, in order to verify if a
word W is equal to the letter q, it will suffice to compute the normal form of the
word W and compare it with q (since q is in normal form). The undecidability
of the word problem for G(T, q) will follow from the undecidability of the word
problem for the special monoid T , which is an encoding of a Turing machine.

Lafont’s demonstration [9] is inspired by Aandreaa and Cohen’s [1]. It also
use rewriting, but the only essential point is the notion of convergent rewriting
system. It uses the undecidability of the halting problem for a particular class
of abstract machines called affine machine. With some property of the free
group F2 it is possible to associate a local isomorphism to every transition of a
machine affine A. By the HNN embedding theorem, the configurations of the
machine live in some group GA where transitions are represented by elements
of GA. In that group the word problem is equivalent to accessibility of a fixed
configuration from any other one.

ce mémoire a été rédigé dans le cadre du ”Curiculum binational de master en
Logique”, financé par l’Université Franco-Italienne (programme Vinci 2009)
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Chapter 1

Some backgrounds

1.1 Group theory

Definition 1 (Transversal set) Let G be a group and H be a subgroup of G
(it will be noted by H ≤ G) we can define a transversal set H⊥ of the cosets of
H simply choosing1 a random element of each coset. Two element g and g′ will
be in the same left coset (right coset) iff g−1g′ ∈ H (iff g′g−1 ∈ H).

Given a subgroup H of G and a set H⊥ of representatives of right cosets we
have a unique decomposition of each element of G:

Proposition 1 For every g ∈ G exist a unique decomposition of g = hv with
h ∈ H and v ∈ H⊥.

Demonstration: Because H induces a partition on G (given by its right cosets)
and g ∈ Hg there exists a unique v ∈ H⊥ such that Hg = Hv. So h = gv−1 is
an element of H and g = hv.

Definition 2 (Subgroup generated by a subset of a group G) If S a sub-
set of a group G, the subgroup generated by S is 〈S〉G = {sε11 . . . sεkk |si ∈ S}. A
subgroup H ≤ G is finitely generated if ∃S ⊆ G, S finite, such that H = 〈S〉G.

Definition 3 If H ≤ G and x ∈ G, the centralizer of x in H is the subgroup of
H consisting of elements which commute with x: CH(x) = {h ∈ H|xh = hx}.

Definition 4 (Local isomorphism) A local isomorphism of G is an isomor-
phism φ : H → H ′ between two subgroups H and H ′ of G. An element
t ∈ G represents φ if ∀x ∈ G, φ(x) = txt−1. A subgroup K φ-invariant if
φ(H ∩K) = φ(H ′ ∩K)

1.2 Monoid presentations

We’ll use the standard notation (Σ|R) for a presentation of a monoid M where
Σ is the alphabet, Σ∗ its set of words (1 will denote the empty word) and

1We need the axiom of choice if [G:H] is not finite.
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R ⊂ Σ∗×Σ∗; in order to view a presentation like a string rewriting system2 the
couple (w,w′) will be also denoted like the reduction rules w → w′. M = 〈Σ|R〉+
means that M is equal to the quotient of Σ∗ by the congruency ↔∗R generated
by R (the smallest equivalence relation containing R and compatible with the
multiplication). A presentation it’s called finite if Σ and R are finite sets. A
group G = 〈Σ|R〉 is given by the same quotient it will automatically imply the
existence for every elements of σ ∈ Σ an single element σ−1 (the inverse of σ)
such that σσ−1 = σ−1σ = 1.

Notation: Given a presentation (Σ|R) and two words v, w ∈ Σ∗, v P w means
that v and w are written with the same letters in the same order and v =M w
means that they are equivalent in the quotient M (if there will not be ambiguity
it will be denoted =).
Example: Z ' 〈b|∅〉 =: F1 has a minimal presentation 〈b〉 := 〈b|∅〉 like a
group and a minimal presentation ({b, b̄}|Rb = {(b̄b, 1), (bb̄, 1)}) like monoid. If
w P bb̄, w′ P b̄b so ww′ P bb̄2b = 1.

Notation: Words of an alphabet Σ will be signed with small and capital letters,
let w1, . . . , wnΣ∗ with W (w1, . . . , wn) wil be denoted a word W ∈ Σ∗ such
that every word is written in therm of w1, . . . , wn i.e. W P W1 . . .Wk with
Wj P wi,∀1 ≤ j ≤ k∃1 ≤ i ≤ n

It’s preferable to continue to distinguish the two equivalences = and ↔∗R
because the first is independent from the choice of the presentation while the
second depends from the rewriting system chosen. If there is not ambiguity (a
unique system is given) or if the systems have the same property booth notation
will be used with the same meaning.

Definition 5 A group is finitely presented if it is a finitely presented monoid.

It’s easy to show that given a finite presentation 〈Σ|R〉 of a group G it’s possible
to get its presentation like monoid by (Σ∪ Σ̄|R∪Rinv) where, if Σ = {σi|i ∈ I},
Σ̄ = {σ̄i|i ∈ I} and Rinv = {(σiσ̄i, 1), (σ̄iσi, 1)|i ∈ I} define the relation that
associate to each σ its inverse σ̄.3

Definition 6 (Reductions) Let u, v ∈ Σ∗ and (r, s) ∈ R, we’ll denote an
elementary reduction with urv →R usv. If it exist a sequence u0, u1 . . . un in
Σ∗ such that ui →R ui+1for all i = 0 . . . n−1 it’s defined a composted reduction
u0 →∗R un (exists a path of reduction from u0 to un in (Σ|R)). A word w is
reduced if there are not word v such that w →R v. If a word u admit an single
reduced word û such that u→∗R û, û is called its normal form.

Definition 7 (Convergent presentation) A presentation (Σ|R) is noethe-
rian if there are not infinite sequence {ui}i∈N such that ui →R ui+1∀i ∈ N. A
presentation is convergent if it have the Church-Rosser propriety (confluence):
for every u, v, v′ such that u→∗R v and u→∗R v′ it exists a unique w such that
v →∗R w and v′ →∗R w.

2see. Appendix A
3All the relation in the form (v′, w′) with v′, w′ ∈ Σ̄∗ will be derivable from R ∪ Rinv

because of ↔R∪Rinv it’s compatible with the product.
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Figure 1.1: An example of the confluence of a word

Definition 8 A subword w of a word v it’s a word (denoted w ∈ sub(v)) such
that v P uwu′ exists u, u′ ∈ Σ∗ (u and u′ can be the empty word). The inter-
section of two subword u and w of a word v is the longest word v′ such that
u P u′v′ and w P v′w′ and u′v′w′ is a subword of v, if v′ P 1 the intersection
is empty. If w is a subword of v we say that v contains w, moreover if v P wu
(v P uw) ∃u ∈ Σ∗, w it’s a prefix (suffix) of v.

Definition 9 (Critical Peak) Given a presentation (Σ|R) a critical peak is a
word w containing two subword v and v′ with non-empty intersection such that v
and v′ are respectively the prefix and the suffix of w (or v = w and v′ ∈ sub(w))
and {(v, u), (v′, u′)} ⊆ R, ∃u, u′. We’ll say that a critical peak w is solvable if
every path of reduction starting from the word w converge to a word w̃.

Definition 10 (Standard presentation of a group) Let G be a group we’ll
define the standard presentation of G the presentation (ΣG|RG) given by ΣG =
{ax| x ∈ G} and RG = {a1 → 1, axay → axy|x, y ∈ G}.

Remark 1 The standard presentation of G is convergent.

Demonstration: The confluence depends of the associativity of the group
operation (i.e. ∀x, y, z ∈ G, x(yz) = (xy)z and so ax(yz) = a(xy)z): we note
that every critical peak is in the following form:

axayaz

axyaz axayz

a(xy)z P ax(yz)

Figure 1.2: A critical peak of the standard presentation of a group G

The termination, instead, is guaranteed by the fact that every reduction reduces
the length of a word by one and so the reduced word are the letters and the
empty word.

w P ax1ax2 . . . axn →∗RG ax1...xn

Definition 11 (Free Product) Let G = 〈ΣG|RG〉+ and H = 〈ΣH |RH〉+ it’s
defined the free product F of G and H (noted by F = G ∗H) the monoid of the
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words generated by the elements of G and H. It’s presentation it’s given by the
disjoint union of the presentation of G and H, so F = 〈ΣG ] ΣH |RG ]RH〉+.
Fn will note the free group on n generators Fn = 〈a1, . . . , an〉 = F11

∗ · · · ∗ F1n

and Fω the free group of ℵ0 generators {αn}n∈N.

Definition 12 (Translation) Let (Σ|R) and (Σ′|R′) two presentations of monoids.
A translation φ̄ : (Σ|R)→ (Σ′|R′) is given by a function φ : Σ→ Σ′∗ such that:

1. ∀w ∈ Σ, φ̄(w) = φ(w)

2. ∀r = (u, v) ∈ R, φ̄(r) = (φ(u), φ(v)) ∈↔∗R′

This translation define a homomorphism φ̂ : 〈Σ|R〉+ → 〈Σ′|R′〉+

Lemma 1 (Lafont embedding lemma) Let (Σ|R) and (Σ′|R′) be two pre-
sentations such that:

• Σ ⊆ Σ′

• (Σ′|R′) is convergent

• R = {(u, v) ∈ R′|u ∈ Σ∗}

then the inclusion φ : Σ ↪→ Σ′ defines a translation φ̄ : (Σ|R)→ (Σ′|R′) and φ̂
is injective.

Demonstration: Let [v]R be the equivalence classes of v with respect to ↔∗R,
it suffice to prove that [v]R = [v]R′ ∩ Σ∗

⊆) Since R ⊆ R′ if w ∈ Σ∗ and w ↔∗R v then w ↔∗R′ v

⊇) Let w ∈ Σ′∗ such that w ↔∗R′ v. Then, since (Σ′|R′) is convergent, there
is u ∈ Σ′∗ such that w →∗R′ u and v →∗R′ u. For every v ∈ Σ∗, applying
a rewriting rule of R′ to v′ we get a word in Σ∗, so that u ∈ Σ. If also
w ∈ Σ∗ then w ↔∗R v.

Since φ̄ is well defined and for every v, w ∈ Σ∗, v ↔∗R′ w iff v ↔∗R, φ̂ is an
injective homomorphism.

Definition 13 (Local convergence) Let T ⊆ Σ∗ and P = (Σ|R) a presen-
tation. P is locally convergent on T or T -convergent iff

• If v, w ∈ T and v →∗R w so it exists a path of reduction with elements in
T

• for all w ∈ Σ∗ if w →R v, w →R v′ and v ∈ T so exists a unique normal
word û ∈ T such that v →R û and v′ →R û.

Definition 14 (Embedding Translation) An embedding translation
φ̄ : (Σ|R)→ P ′ = (Σ′|R′) it’s a translation such that:

• P ′ is locally convergent on φ(Σ∗)

• ∃ a control function4 ψ : Σ′∗ ⇀ Σ∗ compatible with ↔∗R′ such that ∀v ∈
Σ∗, ψ(φ(v))↔∗R v

4it can be a partial function
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Lemma 2 (Extended embedding lemma) If exists a embedding translation

φ̄ : (Σ|R)→ P ′ = (Σ′|R′), so exist an homomorphism φ̂ : 〈Σ|R〉+ ↪→ 〈Σ′|R′〉+

Demonstration: We define φ̂([w]R) = [φ(w)]R′ and ψ̂([v]R′) = [ψ(v)]R. Like
in 1 will be necessary to demonstrate φ̄([v]R) = [φ̄(v)]R′

⊆) since φ̄(R) ⊆↔∗R′ if w ∈ Σ∗ and w ↔∗R v then φ̄(w)↔∗R′ φ̄(v)

⊇) let w ∈ Σ∗ if φ̄(w) ↔∗R′ φ̄(v) then w ↔∗R v. Since (Σ′|R′) is locally
convergent on φ̄(Σ∗), exists unique v̂ ∈ Σ∗ such that φ̄(v) →∗R′ φ̄(v̂)
and w →∗R′ φ̄(v̂). Since ψ is compatible with ↔∗R′ and if z ∈ Σ∗ every
rewriting rule in the path of reduction from a φ̄(z) to φ̄(v̂) is in φ̄(R) (local
convergence), so φ̄(z)↔∗R′ φ̄(v̂) iff z ↔∗R ψφ̄(z)↔∗R ψφ̄(v̂)↔∗R v̂.

Definition 15 (Iso-translation) An iso-translation between two presentation
φ̄ : (Σ|R) → P ′ = (Σ′|R′) is an embedding translation such that P ′ is conver-
gent, φ̄ : Σ↔ Σ′ and φ̄(↔∗R) =↔∗R′

Proposition 2 If exists a iso-translation φ̄ : (Σ|R)→ (Σ′|R′), so M = 〈Σ|R〉+
and M ′ = 〈Σ′|R′〉+ are isomorph.

Demonstration: By 2 M ↪→ M ′. Moreover φ̄(Σ∗) = Σ′∗ is a bijection with
the property φ̄(ww′) = φ̄(w)φ̄(w′), so an isomorphism.

Definition 16 (Lexico-metric order) Given an alphabet Σ equipped with an
order <Σ (α =Σ β means α ≤ β ∧ β ≤ α), v P αi1 · · ·αin and w P αj1 · · ·αjm ,
it’s possible to extend it to a lexicografic order on the word:

v <Σ w ⇔ ∃k∀h < k(αih =Σ αjh ∧ ((k ≤ n ∧ n < m)→ αik <Σ αjk))

and also to lexico-metric order:

v /(Σ,<Σ) w ⇔ n < m or ∃k ≤ n∀h < k(αih =Σ αjh ∧ αik <Σ αjk)

Example: Let Σ = {a, b, c} and with the order a =Σ b <Σ c so abc <Σ bca,
and abc / bca but aabca <Σ bca and bca / aabca.

Theorem 3 It exist an embedding of Fω into F2

Demonstration: Like in [9], showing that the family {bnab−n}n∈Z is free5

in the group F2 = 〈a, b〉, it’s possible to have the embedding translation of
φ̄ : Fω → F2 given by φ(αn) = bnab−n and so the proof by lemma.2.
In order to build a new convergent presentation of

F2 = 〈Σ = {a, ā, b, b̄}|R = {aā→ 1, āa→ 1, bb̄→ 1, b̄b→ 1}〉+

suffices to add for every n > 0 the superfluous generators6 given by the relation:

an = bnab̄n ān = bnāb̄n a−n = b̄nabn ā−n = b̄nābn

The following relation will be derivable for every n ∈ Z (nominally a0 := a):

anān = 1 ānan = 1 ban = an+1b bān = ān+1b b̄an = an−1b̄ b̄ān = ān−1b̄

5i.e. there are not relations between the elements
6them can be viewed like some abbreviation of some word in F2

5



Let Σ2 = {b, b̄} ∪ {an, ān}n∈Z, a presentation of F2 it’s given by 〈Σ2|R2〉 where
R2 consists of the following reduction rules:

anān → 1 ānan → 1 bb̄→ 1 b̄b→ 1

ban → an+1b bān → ān+1b b̄an → an−1b̄ b̄ān → ān−1b̄

Defining the order on Σ2 given by ∀n, an =Σ2 an+1 =Σ2 ān <Σ2 b =Σ2 b̄, is
possible to define a lexico-metric order / on Σ∗2. The rewriting system is so
noetherian since for every reduction w →R2

w′, w′ / w and / it’s a well-order
on Σ∗2. By this order every reduced word will be in the form α1 . . . αnβ

k
i with

αi ∈ {an, ān} and β ∈ {b, b̄} Moreover all the critical picks are solvable:

• For every (γ, γ′) ∈ {(an, ān), (ān, an), (b, b̄), (b̄, b)}

γγ′γ

γ P γ

• For every (αn, α
′
n) ∈ {(an, ān), (ān, an)}

b̄αnα
′
n

αn−11b̄α
′
n

αn+1α
′
n+1b̄

b̄

bαnα
′
n

αn+1bα
′
n

αn+1α
′
n+1b

b

• For (γ, γ′, δ) ∈ {(b, b̄,−1), (b̄, b,+1)}

γγ′αn

γαn+δγ

αnγγ
′

γ

This equivalence it’s provable by the existence of a iso-translation φ̄′ :
(Σ|R) → (Σ2|R2) given by φ̄′(a) = a0, φ̄′(ā) = ā0, φ̄′(β) = β where β = b, b̄.
The control function ψ′ is defined by ψ′(β) = β and ψ′(αn) = bnαbn−1 where
β = b, b̄ and α = aā.

Now it’s easy to show that the function φ : Σω = {αn, ᾱn}n∈Z → Σ∗2 such
that φ(αn) = an and φ(ᾱn) = ān give an embedding translation φ̄ : 〈Σω〉 →
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(Σ2|R2). Since every word in φ(Σω) are in {an, ān}∗n∈N, them are in normal form
in (Σ2|R2) and it’s possible to define ψ : Σ∗2 → Σω inductively on the number
of a and ā Nw in w: if Nw = 0 so ψ(w) is not defined. Else w = B(b, b̄)αw′

α = a or ā, so ψ(w) = anψ(βw′) where n = (#occurence of b in B(b, b̄)) −
(#occurence of b̄ in B(b, b̄)) and Nw′ < Nw.7

ψ(an) = αn, ψ(ān) = ᾱn ψ(b) = ψ(b̄) = 1 that satisfy ∀w ∈ Σω, ψ(φ(w)) =
w. So Fω = 〈Σω〉 ↪→ (Σ2|R2) = 〈a, b〉 = F2.

Lemma 4 ∀p, q ∈ Z, q 6= 0 the family {ap, bq} is free in F2

Demonstration: Because {a, b} is free in F2 and ord(b) = ∞, {a, bq} is free
in F2 (if not it means exists relations between a and b). So {ap, bq} have to be
free because it can be obtained from {a, bq} applying the internal isomorphism
x→ bpxb−p.

1.3 Computability theory

Definition 17 (Minsky machine) A Minsky machine is an abstract machine
M consisting of:

• Labeled unbounded integer-value register: any labeled register can hold a
single non-negative integer

• A list of (labeled) sequential instructions in the form8:

– INC(r, j) = increase r and go to j

– JZDEC(r, j, k) = if r = 0 go to j, else decrease r and go to k

• A state register: which hold the label of the instruction to execute. A
configuration for a 2- register machine M is a triple (s, a, b) where a, b
represent the integers in registers and s a state. The writing s →M s′

(s →∗M s′) denote that M transform a configuration s in a configuration
s′ in one step (a finite number of steps). A state (0, a, b) will denote a
final state.

Theorem 5 (Undecidability of Halt problem for 2-register machine) There
exist a 2-register machine with undecidable Halt problem

Definition 18 (Modular machines) [1] A modular machineMod is defined,
fixed an m ∈ N, by a “set of instruction” (a, b, c, ε) of quadruples where 0 ≤
a, b ≤ m, 0 ≤ c ≤ m2, ε = R,L (at most one quadruple can begin with the same
pair a and b), and an integer 0 < n < m to define input and output function.
A configuration for Mod is a pair (α, β) where α = um+ a, β = vm+ b. If no
quadruple begins with a, b, (α, β) it’s called terminal, else (α, β) →Mod (α′, β′)
where

(α′, β′) =

{
(um2 + c, v) if ε = R
(u, vm2c) if ε = L

7ψ is defined only on {an, ān}-word and ψ(an) = αn and ψ(ān) = ᾱn
8Minsky have formulated different equivalent machine with different form of instructions

[?]
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The computing function of A is the partial function uModgModiMod : N → N
defined by:

iMod : N→ N2 , r → (
∑

bin
i, n+ 1) where r =

∑
bin

i, 0 ≤ bi < n

gMod : N2 → N2 , (α, β)→∗A (α′, β′), (α′, β′) terminal

uMod : N2 → N , (α′, β′)→
k∑
1

bim
i−1 where α =

∑
bim

i, 0 ≤ bi < n

where k = min{i|bi = 0}. It is so possible, with a proper encoding, to utilize it
to simulate a Turing machine9.

Theorem 6 (Undecidability of Halt problem for modular machines) There
exist an affine machine A such that HaltA is undecidable.

Demonstration: Let TS a Turing machine computing an recursively enu-
merable set S. Since is possible to encode its computing by a modular ma-
chine, so it exists a modular machine Mod such that it computes S. Then
HaltMod ' HaltTs is indecidable.

Definition 19 (Affine machine) An affine machine, fixed an m ∈ N, is a
finite set A ⊂ Z×Z∗×Z×Z∗. Every (p, q, p′, q′) ∈ A define an affine transition
p+ qz →A p′ + q′z (z ∈ Z).

Remark 2 Every 2-register machines M can be simulated by an affine ma-
chine: let (s, a, b) a configuration for M, coding it in the integer [s, a, b] =
s+m2a3b, every transition will be in the form:

i+mk → i+ 2mk i+m(2z + 1)→ j +m(2z + 1) i+ 2mz → k +mz

i+mk → i+ 3mk i+m(3z + 1)→ j +m(3z + 1) i+ 3mz → k +mz

i+m(3z + 2)→ j +m(3z + 2)

so if z, z′ are two integer, z ↔∗A z′ so z is the code of a configuration iff z′ is.
Futhermore

(s, a, b)→M (s′, a′, b′) iff (s, a, b)↔∗M (s′, a′, b′) iff [s, a, b]↔∗A [s′, a′, b′]

Theorem 7 (Undecidability of equivalence problem for affine machines)
There exists a machine affine A and an integer m such that the equivalence
problem it’s undecidable.

Demonstration: The equivalence problem ask if, given a z = pm + q ∈ Z,
z ↔∗A m. Let M a 2-register machine with undecidable Halt problem, so the
problem of equivalence will correspond to the Halt problem for M (is possible
to suppose that the final state for M is (0, 0, 0)) since m = [0, 0, 0] and z =
[sz, az, bz] so z ↔∗A m iff (sz, az, bz)↔∗M (0, 0, 0).

9Starting by a Turing machine T on the alphabet {bi}0≤i≤n is possible to associate the
coding of the tape r =

∑
bin

i, at every state of T a quadruple of Mod
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Chapter 2

The
Higman-Neuman-Neuman
Extension Theorem

In order to build groups’ extensions with particular combinatorial propriety, it
will be useful to use the HNN-theorem for the groups.

2.1 HNN extension theorem

Theorem 8 (HNN extension associated with a subgroup) Let G be a group,
∀H < G,∃F > G and b ∈ F such that H = CG(b).

2.1.1 HNN extension theorem demonstration
Part I: A non convergent presentation of F

In order to demonstrate the theorem, we’ll build an “ad hoc” extension F of G
and we’ll show that exist an element b ∈ F such that H = CG(b).

Let F = G∗〈b〉
↔∗C

where↔∗C it’s the smallest equivalence relation containing the set

C = {(bh, hb)|h ∈ H}. The free product G∗〈b〉, given the standard presentation
of G and the minimal presentation of Z like monoid1, G∗〈b〉 = 〈ΣG∪{b, b̄}|RG∪
{(bb̄, 1), (b̄b, 1)}〉, so we have a presentation of F = 〈ΣF = ΣG ∪ {b, b̄}|RF =
RG ∪Rb ∪RH}〉+ where RH = {(βah, ahβ)|h ∈ H,β ∈ {b, b̄}}.

Remark 3 The presentation 〈ΣF |RF 〉 is not convergent.

Demonstration: We just need to observe the critique peak:

• if the critique pick it’s a word of the alphabet of G, it’s soluble because
it’s in the standard presentation of G

1see 1.2 pag. 2
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• if the critique pick it’s a word of the alphabet of 〈b, b̄〉, it is solvable:

bb̄b

b = b

b̄bb̄

b̄ = b̄

• if the critique peak contain only the letters of Σb and ah with h, k ∈ H,
it’s solvable:

bb̄ah

bahb̄

ahbb̄

ah

b̄bah

b̄ahb

ahb̄b

ah

bahak

ahbak

bahak

bahk

b̄ahak

ahb̄ak

b̄ahak

b̄ahk

• all the non-solvable peak are all in the form (β ∈ Σb, h ∈ H, x ∈ G \H) :

βahax

βahx 6= ahβax

2.1.2 HNN extension theorem demonstration
Part II: A convergent presentation of F

Using the Lemma1 is possible to give another presentation of F adding new
superfluous generators and new relation. Let fix an H⊥ with 1 ∈ H⊥, we define
the superfluous generators bv = bav and b′v = b̄av ( Σ⊥ := {bv, b′v|v ∈ H⊥}).2
Using the relation of RF and the fact that, by the Prop.1, is possible to derivate
the following set R⊥ of relations:

∀v ∈ H⊥ b1b
′
v → av b′1bv → av

bvax → ahbw ∃!h ∈ H,w ∈ H⊥ such that vx = hw

b′vax → ahb
′
w ∃!h ∈ H,w ∈ H⊥ such that vx = hw

Proposition 3 The presentation 〈ΣG ∪ Σ⊥|RG ∪R⊥〉 of F ′ is convergent.

Demonstration: Like in 3, a critique peak of the alphabet ΣG or {b1, b′1}
is solvable. The others critique peak are all in the form βvaxay or b1b

′
vax or

b′1bvax. These three kind of critique peak are solvable:

2bv = bav and b′v = b̄av essentially means that bv and b′v are abbreviation respectively for
the words bav and b̄av
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βvaxay

βvaxy akβw′ay

akak′βw′′

ahβw = akk′βw′′

vx = kw′, k ∈ H,w′ ∈ H⊥

v(xy) = hw, h ∈ H,w ∈ H⊥
w′y = k′w′′, k′ ∈ H,w′′ ∈ H⊥

because hw = v(xy) = (vx)y = (kw′)y = k(w′y) = k(k′w′′) = (kk′)w′′ and by
the lemma 1 w = w′′ and h = kk′.

b1b
′
vax

b1ahb
′
w

ahb1b
′
w

avax ahaw

avx = ahw

vx = hw, h ∈ H,w ∈ H⊥

the same for the pick b′1bvax changing b1 with b′1 and b′v with bv.

Remark 4 Every reduced words of this presentation of F ′ are in the form
αβ1 . . . βn with α ∈ ΣG ∪ {1}, n ≥ 0 and βi ∈ Σ⊥ (n 6= 1 ⇒ ∀i, βi 6= b1
and βi 6= b′).

Proposition 4 F ′ = 〈ΣF ′ = ΣG ∪ Σ⊥|RF ′ = RG ∪R⊥〉 ' F .

Demonstration: By Prop.2 , it suffices to show that an iso-translation from
F to F ′ exists. Let φ : ΣF → Σ′F such that φ(ax) = ax, φ(b) = b and φ(b̄) = b′1
we can define φ̄ and so:

• ∀r ∈ R, φ̄(r) ∈↔∗R′

• exists a control function ψ given by ψ(ax) = ax, ψ(bv) = bav and ψ(b′v) =
b̄av

• ↔∗
φ̄(R)

=↔∗R′

so φ̄ will be an iso-translation and F ' F ′.

2.1.3 HNN extension theorem demonstration
Part III: Concluding

It’s easy to prove by prop.2 that F ′ ≥ G and F ′ ≥ 〈b〉 because the functions
idG : ΣG → Σ′∗F and idb : {b, b′ = b̄} → Σ∗F are embedding translation. It’s also
evident for construction that CG(b) ≥ H. To prove the equality it’s sufficient
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to show that only the elements of H commutes with b. Let x = hw with
h ∈ H and w ∈ H⊥, we have b1ax →RF ′ ahbw and so bax = ψ(b1ax) =
ψ(φ(bax)) →RF ψ(ahbw). But ahbw is reduced and so ψ(ahbw) = ahbaw is. So
∀x ∈ G xb = hbw = xb iff x ∈ H(i.e. w = 1) that mean CG(b) = H.

2.2 HNN extention theorem application

Corollary 9 If G is finitely presented and H is finitely generated in G, then
the HNN-extension F of G associated with H is finitely presented.

Demonstration: It just needs to change a little bit the construction of F used
in the demonstration of Th.8. Let u1, . . . un ∈ ΣG such that H = 〈u1, . . . , un〉
since ∀h ∈ H, h = ui1 . . . uim , ∃m > 0 and ij ∈ {1, . . . , n}. F will be pre-
sented by 〈ΣG ∪ {b, b̄}|RG ∪ Rgen〉 where Rgen = {bb̄ → 1, b̄b → 1, bu1 →
u1b, . . . , bun → unb}. By the transitive and operation-compatible closure of
Rgen, ∀h ∈ H the relation (ahb, bah) ∈↔∗Rgen so ↔∗RF⊆↔

∗
RG∪Rgen where

RF := RG ∪ {(hb, bh)|h ∈ H}. Moreover every ui are elements of H so
Rgen ⊆ RF and ↔∗RG∪Rgen⊆↔

∗
RF .

Theorem 10 (HNN extension associated with an local isomorphism)
Let G be a group, ∀φ : H → H ′ local isomrphism, ∃F > G and b ∈ F such that:

1. b represents φ

2. 〈K, b〉F ∩G = K for all K φ-invariant

3. if G is finitly presented and H finitely generated F is finitely presented

Demonstration: Let F = G∗〈b〉
↔∗C

where↔∗C is the smallest equivalence relation

containing the set C = {(bh, φ(h)b)|h ∈ H}. Fixed H⊥, H ′⊥ transversal set
respectively of cosets of H and H ′ (1 ∈ H⊥ and 1 ∈ H ′⊥) is possible to give
the following convergent presentation of F = (Σφ|Rφ) built in the similar way
of 2.1.2 (bu = bau and b′v = b̄av):

Σφ = {ax}x∈G ∪ {bu}u∈H⊥ ∪ {b′v}v∈H′⊥

and the following rewriting rules Rφ
axay → axy a1 → 1 b1b

′
v → av b′1bu = au

bvax → aφ(h)bw ∃!h ∈ H, v,w ∈ H⊥ such that vx = hw

b′vax → aφ(h′)b
′
w ∃!h′ ∈ H ′, v, w ∈ H⊥ such that vx = h′w

Like in Th.8 (Σφ|Rφ) is a convergent presentation and F is an extension of G
and 〈b〉.
1) b represents φ since ∀u ∈ H, b1aub′1 = aφ(u).

2) For every K < G is possible to choose the elements of H⊥ and H ′⊥ such
that for every k ∈ K, k = hv where h ∈ K ∩H and v ∈ K ∩H⊥, under that
conditions if K is φ-invariant if a word is written in the alphabet

Σφ|K = {ak}k∈K ∪ {bu}u∈H⊥∩K ∪ {b′v}v∈H′⊥∩K
so it is a normal form since every K is a subgroup. That means 〈K, b〉F ∩G ⊆ K
and so the equality while K ⊆ 〈K, b〉F ∩G.
3) Follow from Cor.9.
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Theorem 11 (HNN extension associated with several local isomorphism)
Let G be a group, ∀φ1 : H1 → H ′1, . . . , φn : Hn → H ′n local isomorphism,
∃F > G and b ∈ F such that:

1. bi represents φi ∀i

2. 〈K, b1, . . . , bn〉F ∩G = K for all K invariant for all φi

3. if G is finitely presented and all Hi finitely generated F is finitely presented

Demonstration: Induction on the number of local isomorphism n using Th.10
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Chapter 3

Novikow-Boone’s groups

Independently of Higman, Neumann and Neumann’s work oriented to a purely
algebraic and topological application, Novikow in [12] discover the HNN-extension
and approach the subject in a more constructive way. With Boone [6] they
connect it to algorithmic and combinatorial algebra demonstrating the undecid-
ability of the word problem for the groups.

3.1 A Novikov-Boone’s group zoo

Here will be presented some Novikov-Boone’s groups, stating some their prop-
erties that permits to demonstrate the undecidability of word problem.

3.1.1 Novikow group Ap1,p2

Let K a Post system1 [Σa;R] on the alphabet Σa = {a1, . . . , an} and R =
{(Ai, Bi), 1 ≤ i ≤ λ}, Ai, Bi nonempty, is possible to build the Novikow group
Ap1,p2

associated with K on the alphabet Σ consisting of

a1, . . . , an, q1, . . . , qλ, r1, . . . , rλ, l1, . . . , lλ

one of his copy, namely

a+
1 , . . . , a

+
n , q

+
1 , . . . , q

+
λ , r

+
1 , . . . , r

+
λ , l

+
1 , . . . , l

+
λ

and two supporting letters p1, p2 defined by the following relations:

1. qia = aqiqi q+
i q

+
i a

+ = a+q+
i

2. riria = ari r+
i a

+ = a+r+
i r

+
i

3. ali = lia a+l+i = l+i a
+

4. q+
i l

+
i p1liqi = A+

i p1Ai

5. r+
i p1ri = p1

6. rilip2l
+
i r

+
i = Bip2B

+
i

1see. Appendix A
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7. qip2q
+
i = p2

for 1 ≤ i ≤ λ, a ∈ Σa and (as1 , . . . , ask)+ = a+
s1 , . . . , a

+
sk

Proposition 5 (Novikow property) The words p1Xp2X
+ and p1Y p2Y

+ are
conjugate in the group Ap1p2 iff X ∼K Y in the associated Post system K where
X,Y ∈ Σa

3.1.2 Novikow group Ap

Let Σa = {a1, . . . , an} and (Ai, Bi) pairs of nonempty Σa-word for 1 ≤ i ≤ m.

Adµlρ = 〈Σa ∪ {ρ, ρ̃, µ1i, µ̃1i, µ2i, µ̃2i, lai, di}1≤i≤m|R〉

where R is the set of the following relation

1. ρia = aρ2
i ρ̃ia = aρ̃2

i

2. blai = laib

3. aµ1ilai = µ1ia aµ̃1ilai = µ̃1ia

4. alaiµ2i = µ2ia alaiµ̃2i = µ̃2ia

5. µ̃1iρ̃idiµ̃2i = µ̃1iρidiµ̃2iA
−1
i Bi

6. adi = dia

for 1 ≤ i ≤ λ and a, b ∈ Σa.

Ap =
Adµlρ ∗A+

dµlρ ∗ p
↔∗Rp

where A+
dµlρ is an antiisomorphic copy of Adµlρ given by the antiisomorphism 2

x→ x+ and Rp = {EpE+ → p} where E ∈ Adµlρ.

3.1.3 Boone group

Let T = (ΣT = {sd, qe}d∈D,e∈E |RT = {Ai → Bi, }1≤i≤N ) with q1 = q, a monoid
with Ai, Bi special words in the alphabet Σa (i.e. word in the form sqes

′ with
s, s′ words of the alphabet {sd}), the Boone group G(T, q) with corresponding
monoid T is given by the alphabet

Σ = {sd, qe, x, y, li, ri, k, t}d∈D,e∈E, 1≤i≤N

and the following relations:

1. y2sd = sdy xsd = sdx
2

2. sdli = yliysd sdxrix = risd

3. liBiri = Ai

4. lit = tli yt = ty

2an antiisomorphisme φ : G→ G′ is a map such that φ(1G) = 1G′ and φ(xy) = φ(y)φ(x)
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5. rik = kri xk = kx

6. q−1tqk = kq−1tq

Proposition 6 (Boone property) Let S, S′ special words of Σa, than S ↔∗RT
S′ iff ∃V (li, y),W (ri, x) such that S = V (li, y)S′W (ri, x) in G(T, q)

3.1.4 Borisov group

Let Σa = {sj}1≤j≤n and RΠ = {(Fi, Gi), 1 ≤ i ≤ m} a set of pairs of nonempty
words of Σa and P a fixed arbitrary word of Σa. The Borisov group G(Π, P )
can be presented by the alphabet

Σ = Σa ∪ {d, e, c, t, k}

and the following relation

1. dm+1s = sd es = sem+1

2. sc = cs

3. diFie
ic = cdiGie

i

4. ct = tc dt = td

5. ck = kc ek = ke

6. P−1tPk = kP−1tP

for every 1 ≤ i ≤ m, s ∈ Σa. Let Π = (Σa|RΠ) the monoid associated with
G(Π, P ).

Proposition 7 (Borisov property) Let Q be a Σa-word then Q = P in the
associated monoid iff Q−1tQk = kQ−1tQ in G(Π, P ).

3.1.5 Aandrea group

In [5] its presentation is linked with Aandrea’s modular machine instruction
set [1]. It’s presented by an integer m > 0 and a set of triples of integer
M = {(si, ai, bi)}i∈I ∪ {(sj , aj , bj)}j∈J where 0 ≤ ak, bk < m and 0 ≤ ck < m2

for every k ∈ I ∪ J .

G(M) = (ri, lj , x, y, t, r, , k; i ∈ I, j ∈ J |RM )

where, denoting t(α, β) = x−αy−βtxαyβ for α, β ≥ 0, the relation of RM are:

1. xy = yx

2. xmri = rix
m2

ymri = riy

3. t(ai, bi)ri = rit(si, 0)

4. xmlj = ljx ymlj = ljy
m2

5. t(ajbj)lj = ljt(0, sj)

where i ∈ I, j ∈ J .

Proposition 8 For every modular machine Mod, it exists an Aandrea group
G(MMod) associated.
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3.1.6 Valiev group

Differentrly form the previous groups, the Valiev group [14] does not depend on
a monoid, Post system or a Turing or Modular machine, it can interpretate any
recursively enumerable set of natural number. It’ll be presented by the alphabet

Σ = {ai, bi, ci, ti, iijk, d}0≤i≤m, 0<k<i,j<m

and the relations

1. t−1
0 b0t0 = a−1

0 b0a0

2. t−1
i biti = aibici (1 ≤ i ≤ m)

3. tiaj = ajti ticj = cjti (0 ≤ i, j ≤ m)

4. amd = da2
m cmd = dc2m bm−1dam−1bm−1cm−1

5. aid = dai(i 6= m) bdi = dib(i 6= m− 1) cid = dci(i 6= m)

6. bitijk = tijka1bici citijk = tijktkcj tijktk = tktijk
tijkas = astijk(s 6= i) tijkbs = bstijk(s 6= i) tijkcs = cstijk(s 6= j)
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3.2 Group with standard basis

Definition 20 (Group with stable letters) Let Ĝ = 〈Σ̂|R̂〉 be a group, the
group with a system of stable letters {p} and base group Ĝ is defined by

G = 〈Σ = Σ̂ ∪ {p}|R = R̂ ∪ Rp = {Aip→ pBi}i∈I〉

where p /∈ Σ and ∀i ∈ I Ai, Bi ∈ Σ̂∗. A pair of corresponding or twin word will
be in the form

Ap = A±1
i1
, . . . ,A±ik Bp = B±1

i1
, . . . ,B±ik

thus, for ε = ±1, the equality Apεpε = pεBpε where A−1
p = Bp and Bp−1 = Ap.

The extension system of relation of the group G is the system of rule Rp ∪
R−1
p where R−1

p = {B−1
i p−1 → p−1A−1

i such that Aip → pBi ∈ Rp}i∈I . In
that system it’s possible to define the individuality of a letter: since every trans-
formation is in the form

uwv → uw′u with (w P Aip, w
′ P pBi) or (w P B−1

i p, w′ P p−1A−1
i ), u, v ∈ Σ̂∗

the individuality of a letter in u and v and p will be preserved.

Definition 21 (Regular system) A system of stable letters is called regular
if Apε ↔∗R̂ 1⇔ Bpε ↔∗R̂ 1 for any corresponding words Ap,Bp.

Proposition 9 If {p} is a regular system for Ĝ, so G is an HNN-extension of
Ĝ.

Demonstration: See Cor.15

Definition 22 (Insertion/cancellation) An insertion is a transformation in
the form 1→ pp−1 or → p−1p and its inverse it’s called cancellation

Lemma 12 Let WpεU → W1p
εU1 → . . . → Wnp

εUn be a chain of extended
transformations, where the individuality of pε is preserved. Then there exists
twin words Apε and Bpε such that

W = WnApε U = B−1
pε Un

If there are insertion of stable letters in the chain then the words W and U can
be respectively transformed into the words WnApε and B−1

pε Un without applying
such transformations.

Demonstration: Proved by induction on the length n of the chain. For n = 0
is trivial. If a transformation of the chain does not apply on pε than the lemma
is clear, else it is in the form WiAlpUi → WipBlUi + 1 or WiBlp

−1Ui →
Wip

−1AlUi so Wi+1 = WiAipε and Ui+1 = B−1
ipεUi. Moreover in passing from

the words Wi, Ui to Wi+1, Ui+1 there is not insertion of stable letters.

Lemma 13 (The Novikov lemma) Let {p} be a regular system of stable let-
ters and W a word in G satisfying W = 1. Than W can be rewrited in 1 by
a chain of extended transformation, each of them is not an insertion of stable
letters.
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Demonstration: Consider a step of a chain of an extended transformation
W → . . .→ 1 in which there is an insertion of the letter p:

W → . . .→Wi−1 P V V ′ →Wi P V pεp−εV ′ → . . .→ 1

since the letters pε and p−ε should be cancelled during the transformation, there
are two cases:

• the cancellation involves only the this two letters:

W → . . .→Wi P V1p
εp−εV ′1 → . . .→ Vkp

εp−εV ′k → VkV
′
k PWk → . . .→ 1

so by the Lemma 12 there exist twin words A1pε ,A2pεB1pε ,B2pε such that
the words V1, 1, V

′
1 can be transformed into the words VkA1pε ,B

−1
1pεB2pε

and A−1
2pεV

′
k without insertion of stable letters. Since {p} is regular in

G holds B−1
1pεB2pε = 1 iff A1pεA−1

2pε = 1. So Wi can be transformed in
Wk without insertion of stable letters, then is possible to obtain the same
transformation eliminating this insertion of stable letters.

• else the chain is in the form:

W → . . .→Wi P V1p
εV ′1p

−εpεV ′′1 → . . .

. . .→ Vkp
εp−εV ′kp

εV ′′k → VkV
′
kp
εV ′′k PWk → . . .→ 1

by lemma 12 there exists pairs of twin words Aipε ,Bipε , i = 1, 2, 3 such
that the words V1, V

′
1 , 1 and V ′′1 can be transformed respectively in VkA1pε ,

B−1
1pεA2p−ε , B

−1
2p−εV

′
kA3pε and B−1

3pεV
′′
k , hence the word Wi can be trans-

formed into
VkA1pεp

εB−1
1pεA2p−εB

−1
3pεV

′′
k

and applying the transformations in the extended system Wi become

VkA1pεA−1
1pεA2pεA−1

3pεp
εV ′′k

which can be transformed in

VkA2pεA−1
3pεp

εV ′′k P VkB2p−εA−1
3pεp

εV ′′k

and by the insertion of 1 = B−1
2p−εV

′
kA3pε (which doesn’t contain stable

letters)
VkB2p−εA−1

3pεp
εV ′′k → VkB2p−ε1A−1

3pεp
εV ′′k →

→ VkB2p−εB
−1
2p−εV

′
kA3pεA−1

3pεp
εV ′′k →2 VkV

′
kp
εV ′′k PWk

again is possible to decrease the number of insertions in the chain.

the lemma follows by induction on the number of insertion in the chain.

Lemma 14 (The Britton’s lemma) Let {p} be a regular system of stable
letters for the group G over Ĝ and W a word in G such that W = 1 in G. Than
W is a word in Ĝ and W =Ĝ 1 or W includes the subword p−εApε where A ∈ Ĝ
and A =Ĝ Apε .
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Demonstration: By Novikov’s lemma, the word W can be transformed in 1
without insertion of stable letters, so if the chain

W →W1 → . . .→Wn P 1

contain no stable letters then W ∈ Ĝ and W =Ĝ 1. If W contains the letter
p, then it should be cancelled during the transformation. Considering the first
cancellation of a stable letters occurring in the chain

W P V p−εV ′pεV ′′ → . . .→Wk P Vkp
−εpεV ′k → VkV

′
k PWk+1

where V ′ does not contain the stable letters. By lemma 12 there exists a pairs of
twin words Aipε ,Bipε , i = 1, 2 such that the words V, V ′, V ′′ can be transformed
into the words VkA1p−ε ,B

−1
1p−εA2pε and B−1

2pεV
′
k without insertion of stable let-

ters. Hence V ′ ∈ Ĝ since V ′ P B−1
1p−εA2pε P A−11pεA2pε P Apε

Corollary 15 If {p} is a regular system of stable letters of the group G over Ĝ
than Ĝ < G.

Definition 23 A word W of a group with stable letters {p} is called p-reducible
if W includes a subword in the form p−εApε where A ∈ Ĝ and A =Ĝ Apε

With this definition is possible to reformulate the Britton’s lemma: if W =G 1
and W contains stable letters, so for some stable letters W is p-reducible.

Introducted by Bokut’ in [2] a standard basis or standard normal form per-
mits to have a canonical form to write an element of a Novikov-Boone group
given one of its presentation.

3.2.1 The definition of groups with standard normal form

Let’s consider a sequence of HNN-extension G0, Gi, . . . , Gn where G0 is a free
group and the group Gi+1 is obtained adjoining to the group Gi letters {p} and
defining relation

Alp = pBl

where p ∈ {p} it’s called letter of weight i + 1 and Al, Bl ∈ Gi contain exactly
one letter of the highest weight. So in the group Gi+1 an arbitrary relation can
be represented in the form

A′xA′′p = pB′yB′′

where x and y are the letters of highest weight (if the power of these letters
are different from ±1 will be considered its first or last occurrence). For every
relation will be associated four types of prohibited words:

xBxA
′′p x−1Bx−1A′−1p yByB

′′p−1 y−1By−1B′−1p−1

Is so possible to define by induction on i the notion of canonical word : every
reduced word of G0 are in canonical form, an irreducible word

U = U1p
ε1U2p

ε2 . . . Ukp
εkUk+1

in the group Gi+1 where Uj ∈ Ĝ and pj are letters of weight i + 1 k ≥ 0 is
canonical if, for every j:
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• Uj are canonical words in the group Gi

• U doesn’t include subword of an any prohibited types in Gi+1

Is so possible to reduce a word U P U1p
εU2 . . . Un−1p

εUn in canonical C(U) by
the following algorithmic process:

1. reduce every word Uj to canonical form in the group Gi

2. perform all possible cancellation of letters of weight i+ 1

3. eliminate the first occurrence (from the right) of a prohibited word follow-
ing the following role3

xBxA
′′p→ AxA′−1pB x−1Bx−1A′−1p→ BxA

′′pB−1

yByB
′′p−1 → A−1

y B′−1p−1A y−1By−1B′−1p−1 → ByB
′′p−1A−1

where Az and Bz (with z = x or y) are twin words.

4. return to step 1

Definition 24 The group Gi+1 is called group with standard normal form or
group with standard basis if every word U can be reduced to canonical form
C(U) in a finite number of steps4. If that condition it’s satisfy for every i the
group G is a group with standard normal form.

Lemma 16 Let Gi a group with standard normal form then the canonical for
of an arbitrary word of the group Gi+1 is unique iff the following condition are
met:

• p is a system of stable letters

• If the word Upε and V pε are canonical U, V ∈ Gi, p letter of weight i+ 1
and U = VApε then the equality Apε =Gi 1 holds

Lemma 17 Let Gi be a group with standard normal form and {p} a regular
system of stable letters. Suppose that any word Apε 6=Gi 1 with the letter p of
weight i+ 1 is representable as

Apε =Gi V1x1V2x2V3

where x1, x2 are letters of highest weight and the word is x-irriductible for every
letter x of higher weight. If an arbitrary word of the form

x2C(Bx2V3)pε x−1
1 C(Bx−1

1 V −1
1 )pε

is prohibited or includes a prohibited subword (with respect to the letter p) then
the second condition of Lemma 16 are satisfied.

3Every of these role derive by the relation A′AxxBxA′′p = pB′AyyByB′′, where B P
B′yB′′, A P A′xA′′ and

4see ??
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Chapter 4

Undecidibility of the word
problem for the groups

4.1 Novikov-Boone’s demonstration

In [2] Bokut represent the proofs of Novikov-Boone’s theorem proving that
Novikov’s group Ap1p2

and Boone’s groups G(T, q) has standard basis. It make
it easyer (Cap.4.1 or Bokut [3]) to prove that exist a finitely presented group
in which conjugacy problem (Ap1p2)is unsolvable and the word problem for the
group G(T, q) can have any fixed Turing degree of unsolvability.

4.1.1 The Boone group

To introduce the Boone group G(T, q) is needed to extend the concept of stable
letters to system with more than one letter. A set P = {pm} is a system of
stable letters of a group G over Ĝ if the group G can be presented by

G = 〈ΣĜ ∪ {pm}|RĜ ∪ {Aipmi = pniBi|Ai, Bi ∈ Ĝ}〉

The letters involved in the same relation are called contiguous. Completing this
definition with transitivity and reflexivity is obtained a partition of P given by⋃
n∈I{pm}m∈Pn where all the pm ∈ Pn are contiguous to a fixed pn for every

n ∈ I. Since exist A′ni , B
′
ni such that Anipni = pnB

′
ni so by pni = A′−1

ni pnB
′
ni

is possible to eliminate all the pm with m /∈ I and so present the group in the
form

G = 〈ΣĜ ∪ {pm}m∈I |A
′
nl
pn = pnFnl〉

Definition 25 The system P of stable letters is regular if every pm ∈ I are
stable letters. For pni , pnj contiguous is possible to define

Apni ,pnj = A′njApnA
′
ni Bpni ,pnj

= B′njBpnB
′
ni

where A′nj , A
′
ni , B

′
nj and B′ni are words participating in the relation which links

letters pni , pnj to pn. It is also valid the following notational equality

Apεnipεni P Bp−εnj p
−ε
ni
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In the same manner of Chap. 3.2 is possible to define the individuality of
a letter and extended system of transformation to reformulate the lemmas 12,
Britton’s and Novikov’s lemmas. For example the analogous of lemma 12 tell
that, given a chain of extended transformation

Wpεn1
U →W1p

εU1 → . . .→Wkp
ε
nk
Uk

where pεni have the same individuality. Then there exists twin words Apεnipεni
and Bpεni

pεni
such that

W = WnApεnkpεn1
U = B−1

pεn1
pεnk

Un

while Britton lemma tells that given a regular system of stable letters P of a
group G over Ĝ and a word W =G 1 than either W ∈ Ĝ and W =Ĝ 1 or W
includes subword of the form p−εnjApεnipεnj p

ε
ni .

Let’s now build the Boone group like a succession of HNN extension, for every
extension will be given them additional generators and relations, the letters of
maximal weight that will appear in the definition of prohibiten words will be
highlited and there will be explicitated the twin words form.

Definition 26 (Boone group) Let T be a special semigroup, i.e. a semgroup
generated by {sd, qe}d∈D,e∈E and relations Ai = Bi, 1 ≤ i ≤ N where Ai, Bi
special words (Ai, Bi P SqeS

′ where S, S′ are {sd}-words).

• G0 = 〈x, y〉

• G1: {sd|d ∈ D} | yysd = sdy, xsd = sdxx
Asd = V (x, y2) Bsd = V (x2, y)

• G2: {li, ri|1 ≤ i ≤ N} | sdli = yliysd, sdxrix = risd
Ali = V (y−1sd),B = V (ysd),Ari = V (sdx),Bri = V (sdx

−1)

• G3: {qe|e ∈ E} | Ai = liBiri, Ai P A′iqniA
′′
i , Bi P B′iqmiB

′′
i

A′i, A
′′
i , B

′
i, B
′′
i {sb}-words

Aqmiqni = V (A′−1
i liB

′
i),Bqnipmi

= V (A′′i r
−1
i B′′−1

i )

• G4: {t} | lit = tli, yt = ty
At = V (li, y) = Bt

• fixed a q ∈ {qe}, G5: {k} | rik = kri, xk = kx, q−1tqk = kq−1tq
Ak = V (ri, x, q

−1tq) = Bk

Theorem 18 The Boone group G(T, q) = G5 have a standard basis.

Demonstration: Let’s build the set Ci of the words in standard normal form
for every Gi

• C0 is equal to the set of all irreducible words on the alphabet {x, y} (also
negative letters), by definition Ax P Bx P Ay P By P 1

• the set C1 it’s constituited by words in the form

C(W ) = U1sd1U2 . . . UksdkUk+1
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where Ui ∈ C0 and C(W ) does not contain subword in the form

αBαA
′′p α−1Bα−1A′−1p βBβB

′′p−1 β−1Bβ−1B′−1p−1

so, since A = yy,B = y (A′ P 1, A′′ P yB′ P B′′ P 1) or A = x, B = xx
(A′ P A′′ P 1, B′ P x,B′′ P 1), the prohibiten words wil be in the form:

yV (y)A′′sd y−1V (y)A′−1sd yV (y)B′′s−1
d y−1V (y)B′−1s−1

d

xV (x)A′′sd x−1V (x)A′−1sd xV (x)B′′s−1
d x−1V (x)B′−1s−1

d

so them have to contain a subword in the form:

y2sd y−1sd ys−1
d y−2s−1

d

xsd x−1sd xs−1
d x−2sd

so in that simple case is possible to see that in a normal form word in G1

before a positive sd there could be:

1. the word before a positive sd have to terminate with a single occur-
rence of an y

2. the word before a negative sd have to terminate with a single occur-
rence of a negative x

• the set C2 it’s consists of reduced word in the form

U1αi1U2 . . . UkαikUk+1

where Ui ∈ C1, αij ∈ {ri, li|i ≤ i ≤ N} containing no subword in the
form:

sdV (x2, y)lεi s−1
d V (x, y2)yεlεi

sdV (x2, y)xεrεi s−1
d V (x, y2)rε

where V , V xε ,V yε ( whereV = V (x2, y) or V (x, y2)) are reduced, d ∈
D, 1 ≤ i ≤ N . Since a word Al can be in the form ySy−1 with S reduced
word in {sd}, elimination rule could not and the word in the form

sdV (x2, y)lεi s−1
d V (x, y2)yεlεi

are prohibited, lemma 17 is verified for that kind of word (choosing x1 the
first letter of S and x2 the last one), else lemma 16 holds.

• To verify the existence of the standard basis will suffice to use the lemma
16 G3: since a word Aqmqn ,Bqmqn are equal to 1 iff his projection on the
alphabet {li, ri} is equal to 1. It follows that the letters qe are regoular
and as above is possible to apply the lemma 17, so G3 is a gruop with
standard basis.

• In G4 the prohibited word are in the form

yδtε liC(y−1SyV (y))tε l−1
i C(ySy−1V (y))tε

where δ = ±1 and S a reduced {sd}-word. Since every elimination of
prohibited word reduce the number of li or y. The lemma 16 is proved
because if two reduced word Ut, Wt where U = WAt = WV (li, y) than
V (li, y) P 1.
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• Finally a normal form word contains no subword of form

rδi k
ε xδkε tδC(V (li, y)qW (ri, x))kε

where δ = ±1. The presence of W (ri, x) in the last class of prohibited
word is due to the fact that W (ri, x) commute with k and by the fact that,
if Σ is a special word of T such that Σ =T q, then Σ−1tΣk =G5 kΣ−1tΣ

Lemma 19 The word problem for the gour G4 is solvable

Lemma 20 Let S, S′ special word in T then S =T S
′ iff

S =G3 V (li, y)S′W (ri, x)

Lemma 21 The problem for a word U of the group G3 to wqual to a word in
the form V (li, y)SW (ri, x) with S a special word is solvable

Theorem 22 The Turing degree of unsolvability of the word problem for the
group G(T, q) coincides with the Turing degree of the problem to a special word
of T to equal the word q.

Demonstration: By lemma 19 and Theor.18 is possible, for all word W ∈ G,
to calculate its normal form C(W ) P U1kU2k . . . UnkUn+1 in a finite number
of reduction. Since the word problem of G4 is solvable the problem is deduced
determinate if a word Q in G3 is equal or not to a word V (li, y)qW (x, ri). By
lemma 21 is possible to determinate if a word Q is equal to a word in the form
V (li, y)ΣW (x, ri). So lemma 16 the decidability of word problem for G(T, q)
can be reduced to decidability to equivalence problem for the monoid T .

Corollary 23 (Undecidability of word problem for the groups) There ex-
ists a finitely presented gruop with undecidable word problem

Demonstration: By Theo.26 exists a finite presented monoid T with defining
relation given by special words and undecidable word problem, so by Theo.22
the associated Boone group will have undecidable word problem.

4.2 Aandreaa and Cohen’s demonstration

Using the affine machines it’s possible to give a more intuitive demonstration
of the theorem like given in [1] by Cohen Aandrea and in a simplify way by
Lafont in [9]. Here will be used the same notation of Theor.3 : F2 = 〈a, b〉 and
an = bnab−n

Lemma 24 For all p, p′, q, q′, z ∈ Z, q, q′ 6= 0 exist an isomorphism φ : F2 → F2

such that φ(ap+qz) = ap′+q′z

Demonstration: By Lem. 4 〈ap, bq〉 = F2 = 〈ap′ , bq
′〉 so exist an isomorphism

φ such that φ(ap) = ap′ and φ(bq) = bq
′

and so

φ(ap+qz) = φ((bq)zap(b
−q)z) = φ((bq)z)φ(ap)φ((b−q)z) = (bq

′
)zap′(b

−q′)z = ap′+zq′

Notation: Let I ⊂ Z, [P ]F2
is the su bset of F2 generated by the set {az|z ∈ Z}
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Lemma 25 Let p, q ∈ Z, so 〈ap, bq〉 ∩ [Z]F2
= [p+ qZ]F2

Demonstration: Let K = [p + qZ]F2
. Every reduced word w in 〈ap, bq〉 can

be written in the form uv with u ∈ K and v ∈ 〈bq〉, because there are ki ∈ Z
and δi ∈ {−1, 1} such that

w P bk0qaδ1pb
k1qaδ2p · · · aδnpbknq P

P bm0=k0q+δ1pabm1=k1q+(δ2−δ1)pa · · · abmn=knq−δnp P

P am0
am1+m0

· · · aΣji=0mi
· · · aΣn−1

i=0 mi
bΣ

n
i=1mi

Let π : F2 → 〈b〉 the projection of F2 on 〈b〉 (i.e. π(a) = 1, π(b) = b), so
K ⊆ [Z]F2 ⊆ ker(π) and ∀x ∈ 〈ap, bq〉, π(x) = π(uv) = π(u)π(v) = π(v) = v so
[Z]F2

∩ 〈ap, bq〉 ⊆ K. By K ⊆ [Z]F2
and k ⊆ 〈ap, bq〉 follows the equality.

Demonstration: [Undecidability of word problem for the groups] Let m ∈ Z
and A machine affine. It’s possible to associate for every transition of A a local
isomorphism φi. By the Theor.11 is possible to obtain an extension of FA of
F2 with stable letters t1 . . . tn which represents the local isomorphism φ1 . . . φn.
Let P = {z ∈ Z|z ↔∗A m} and H = 〈am, t1, . . . tn〉. By Lemma 24 follow:

• if z →A z′ so az′ = φi(az) = tiazt
−1
i exist an i ∈ {1, . . . , n}

• if z ↔∗A z′ so az′ = φin ◦ . . . ◦ φi1(az) = uazu
−1 exist an u ∈ 〈t1, . . . tn〉

so K ⊆ H because am ∈ K and for every z ↔∗A m, am ↔∗A az and K =
K ∩ [Z]F2

= H ∩ [Z]F2
. Moreover K it’s invariant for every local isomorphism

φi because

〈ap, bq〉 ∩K = 〈ap, bq〉 ∩ [Z]F2
∩K = [p+ qZ]F2

∩ [P ]F2
= [(p+ qZ) ∩ P ]F2

and so (see Theo. 11) K = H ∩ F2.
So is possible to see that exists an extension FA finitely presented of F2 and
u ∈ F such that

azu = uam in FA ⇔ az ∈ H ⇔ az ∈ K = [P ]F2
⇔ z ↔∗A m

Therefore the word problem for group FA is reducible to the Halt problem for
the machine affine A which can be chose with any Turing degree of unsolvability
(see Prop.??).
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Appendix A

Combinatorial system

Rewriting system, Post system, Thue system are different system of substitution
of substrings in strings with the same base concept:

Definition 27 (production) Fixed an alphabet Σ, a rewrite rule, semi-Thue
productionor simply production is an expression

u→ v

if P is a semi-Thue production u→ v, A,B ∈ Σ∗

A→P B

mean that exists A′, A′′, B′, B′′ ∈ Σ∗ such that A = A′uA′′ and B = B′vB′′ A
normal production is a produictin in the form uv → vu′. Two word in u,w ∈ Σ∗.

Definition 28 A combinatorial system consists of an alphabet and a set of pair
of words callad production.

A semi-Thue system or string rewrite system S = (Σ|R) is given by an
alphabet and a finite set of rewriting rule. A Thue system is a semi-Thue system
where for every rewriting role u → v exists its inverse v → u. A Post system
P = [Σ; Φ] is a combinatorial system with a finite set of normal production. Two
word are called equivalent in P ( written u ∼P w ) if there exists a sequence of
normal production which transform u in w.

Proposition 10 Every non deterministic Turing machine can be simulated by
a semi-Thue system

Demonstration: Let Σ the alphabet and Q = {qi} the states of T . Is so
possible to write the tape of the Turing macine as a special word of Σ∪Q where
the letters qi corresponding to the state for turing machine is positionated before
the letter read by the head. Is so possible to code the computing of T as a string
rewriting system ([8]).

Theorem 26 (Post-Markov ([13],[11]) Exists a finite semigroup with unde-
cidable word problem.
More preciselly it exists a monoid finitely presented with rewriting rule expressed
by special words.
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Corollary 27 The following example is given by Ceitin in [7]

Theorem 28 The semigroup 〈a, b, c, d|R〉+ where R are the relations

ac = ca ad = da bd = db ce = eca dc = edb cca = ccae

has unsolvable word problem.
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