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What is this presentation about?

▶ This talk:
cyclic proof systems for FP and FELEMENTARY

non-wellfounded proof system for FP/poly

▶ Some motivations:

new topic, not much about complexity-theoretic aspects of circular reasoning;

circular proofs subsume several recursion schemes;

hard to tame complexity: study conditions that identify computational and
complexity-theoretic notions (uniformity, totality, safety) within cyclic proofs.

.
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Implicit computational complexity (ICC)

▶ Implicit computational complexity (ICC) = characterise complexity classes by
means of languages/calculi without explicit reference to machine models or
external resource bounds.

▶ Originates in the 90’s with the Bellantoni and Cook’s paper on safe recursion.

▶ Pervasive notion of stratification: data are organized into strata (Bellantoni’s
safe recursion [Bellantoni and Cook 92], Leivant’s predicative/ramified/tiered
recursion [Leivant 95]).
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Safe recursion on notation

▶ Function algebra B characterising FP [Bellantoni and Cook 92].

▶ Two successors: s0x = 2x and s1x = 2x + 1.

▶ Function arguments partitioned into normal and safe:

f (x1, . . . , xn ; y1, . . . , ym)

▶ Safe recursion on notation:

f (0, x⃗ ; y⃗) = g(x⃗ ; y⃗)
f (s0x , x⃗ ; y⃗) = h0(x , x⃗ ; y⃗ , f (x , x⃗ ; y⃗))
f (s1x , x⃗ ; y⃗) = h1(x , x⃗ ; y⃗ , f (x , x⃗ ; y⃗))

Idea. Recursive calls only in the safe zone:
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Non-wellfounded proofs

▶ Inductive vs non-wellfounded proofs:

ax . . . ax

rules

Γ ⇒ A

vs
. . .

. . . . . .

rules

Γ′ ⇒ A′ . . .

rules

Γ ⇒ A

▶ Non-wellfounded proofs to reason about µ-calculus (e.g. [Dax, Hofmann and
Lange 06], [Niwinski and Walukiewicz 96] ), (co)induction (e.g. [Brotherston
and Simpson 11]), Kleene algebra (e.g. [Das and Pous 17, 18]), linear logic
(e.g. [Baelde, Doumane and Saurin 16]), continuous cut-elimination
(e.g. [Mints 75] and [Fortier and Santocanale 13]).
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▶ Problem. Any formula is derivable!

...
⇒ A

id
A ⇒ A

cut
⇒ A

id
A ⇒ A

cut
⇒ A

▶ Progressiveness condition = global condition to guarantee consistency.
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Cyclic proofs

▶ Cyclic proofs = regular non-wellfounded proofs

▶ Regular tree = only finitely many distinct subtrees

▶ Cyclic proofs admit a finite, “circular” presentation.

. . .

. . . . . .

D

∆ ⇒ B
r

Γ ⇒ A . . .

D

∆ ⇒ B
r

Γ ⇒ A
.
.
.

→

. . . r
Γ⇒ A . . .

D

∆ ⇒ B
r

Γ⇒ A
.
.
.
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Cyclic proofs as programs

▶ Only one formula N corresponding to N

▶ Inference rules correspond to algorithmic instructions

▶ A cyclic proof

D

N, . . . , N︸ ︷︷ ︸
n

⇒ N

corresponds to a programs computing a number-theoretic function

fD : N × . . . × N︸ ︷︷ ︸
n

→ N
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An example: primitive recursion

▶ Example: the following primitive recursive definition of f

f (0, y⃗) = g(y⃗)

f (x + 1, y⃗) = h(x , y⃗ , f (x , y⃗))

can be represented by

Dg

N⃗ ⇒ N

cond
N, N⃗ ⇒ N

Dh

N, N⃗ ⇒ N
cut

N, N⃗ ⇒ N
cond

N, N⃗ ⇒ N
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Cyclic proofs as polytime programs

▶ The characterisation of FP is achieved in two steps:

introduce modalities □N vs N reflecting safe/normal distinction of parameters

add global proof-theoretic conditions that induce polytime termination

▶ Example: safe recursion [Bellantoni&Cook, 1992]

Dg

N⃗ ⇒ N

cond
□N, N⃗ ⇒ N

Dh

N, N⃗ ⇒ N
cut

□N, N⃗ ⇒ N
cond

□N, N⃗ ⇒ N
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Characterising the polynomial time (FP)

▶ Cyclic proof system CB = non-wellfounded proofs that satisfy the following
global proof-theoretic conditions:

Regularity → uniformity, computability

Progressiveness → totality, termination

Safety → maintain globally the safe/normal distinction

Left-leaning → prevent nested recursion (source of exponential blow up)

▶ Theorem [Curzi&Das, 2022(a)]:
the functions representable in CB are exactly those in FP.

the functions representable in CB without the left-leaning condition are
exactly those in FELEMENTARY.
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Non-uniform polynomial time (FP/poly)

▶ FP/poly = class of functions computable in non-uniform polynomial time by
a Turing machine

▶ Theorem: f ∈ FP/poly iff there are polynomial size circuits computing f .

▶ FP(R) = class of functions computable in polynomial time by a Turing
machine “querying bits of real numbers”

▶ Theorem [Folklore]: FP/poly = FP(R).
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Non-wellfounded proofs as non-uniform polytime programs

▶ Cyclic proofs = regular non-wellfounded proofs

▶ Regular tree = only finitely many distinct subtrees

regularity ≈ computability

▶ Idea: relaxing regularity to represent real numbers and characterise FP(R)

weak regularity ≈ computability + query on bits of real numbers
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Weak regularity
▶ Example: representing a real number r = (r(0), r(1), . . . , r(n), . . .) with

non-wellfounded proofs.

Dr :=
r(0)

⇒ N

r(1)

⇒ N

r(n)

⇒ N

...
cond

□N ⇒ N
cond

...
cond

□N ⇒ N
cond

□N ⇒ N

▶ Weakly regular proof = only finitely many distinct subproofs containing
certain inference rules.

▶ Idea: at some point any infinite branch either “loops” or it contains the root
of some Dr.
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Characterising FP/poly

▶ Non-wellfounded proof system nuB = weakly regular version of CB.

▶ Theorem [Curzi&Das, 2022(b)]: The functions representable in nuB are
exactly those in FP/poly.

▶ Idea of the proof:
We show that nuB = CB(R), where

CB(R) := CB +
{

r
□N ⇒ N

}
r∈R

From CB = FP we infer FP(R) = CB(R).

We conclude nuB = CB(R) = FP(R) = FP/poly.

14 / 14



Characterising FP/poly

▶ Non-wellfounded proof system nuB = weakly regular version of CB.

▶ Theorem [Curzi&Das, 2022(b)]: The functions representable in nuB are
exactly those in FP/poly.

▶ Idea of the proof:
We show that nuB = CB(R), where

CB(R) := CB +
{

r
□N ⇒ N

}
r∈R

From CB = FP we infer FP(R) = CB(R).

We conclude nuB = CB(R) = FP(R) = FP/poly.

14 / 14



Thank you!
Questions?
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Non-uniform complexity classes
▶ FP = class of functions computable in polynomial time on a Turing machine.

▶ FP/poly is an extension of FP that intuitively has access to a ‘small’ amount
of advice, determined only by the length of the input.

▶ FP/poly = class of functions f (x⃗) for which there exists some strings
αn⃗ ∈ {0, 1}∗ and a function f ′(x , x⃗) ∈ FP with:

|αn⃗| is polynomial in n⃗.

f (x⃗) = f ′(α|⃗x|, x⃗).

▶ Note, in particular, that FP/poly admits undecidable problems. E.g. the
function f (x) = 1 just if |x | is the code of a halting Turing machine (and 0
otherwise) is in FP/poly. Indeed, the point of the class FP/poly is to rather
characterise a more non-uniform notion of computation.

▶ Theorem: f (x⃗) ∈ FP/poly iff there are poly-size circuits computing f (x⃗).
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▶ The class FP(R) consists of just the functions computable in polynomial time
by a Turing machine with access to oracles from:

R := {f (x) : N → {0, 1} | |x | = |y | =⇒ f (x) = f (y)}

▶ Note that the notation R is suggestive here, since its elements are essentially
maps from lengths/positions to Booleans, and so may be identified with
Boolean streams.

▶ Theorem [Folklore]: FP/poly = FP(R).
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Rules for the non-wellfounded proof system nuB

id
N ⇒ N

Γ ⇒ N Γ, N ⇒ B
cutN Γ ⇒ B

Γ ⇒ □N □N, Γ ⇒ B
cut□ Γ ⇒ B

Γ ⇒ B
wN Γ, N ⇒ B

Γ ⇒ B
w□

□N, Γ ⇒ B
Γ, A, B, Γ′ ⇒ C

e
Γ, B, A, Γ′ ⇒ C

Γ, N ⇒ A
□l

□N, Γ ⇒ A
□Γ ⇒ N

□r
□Γ ⇒ □N

0
⇒ N

1
⇒ N

Γ ⇒ A
s0

Γ ⇒ A
Γ ⇒ A

s1
Γ ⇒ A

Γ ⇒ N □N, Γ, N ⇒ N □N, Γ, N ⇒ N
srec

□N, Γ ⇒ N

Γ ⇒ N Γ, N ⇒ N Γ, N ⇒ N
condN Γ, N ⇒ N

Γ ⇒ N □N, Γ ⇒ N □N, Γ ⇒ N
cond□

□N, Γ ⇒ N

Γ ⇒ N Γ, N ⇒ N
|cond|N Γ, N ⇒ N

Γ ⇒ N □N, Γ ⇒ N
|cond|□

□N, Γ ⇒ N
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Semantics of non-wellfounded proofs for nuB
i ∈ {0, 1}

i
⇒ N

fD(; ) := i

si N ⇒ N
fD(; x) := si x

D0

Γ ⇒ N
D1

Γ, N ⇒ A
cut

Γ ⇒ A

fD(x⃗ ; y⃗) := fD1 (x⃗ ; y⃗ , fD0 (x⃗ ; y⃗))

D0

Γ ⇒ □N
D1

□N, Γ ⇒ A
cut□ Γ ⇒ A

fD(x⃗ ; y⃗) := fD1 (fD0 (x⃗ ; y⃗), x⃗ ; y⃗)

D0

Γ ⇒ N
D1

□N, Γ, ⇒ N
D2

□N, Γ ⇒ N
cond□ □N, Γ ⇒ N

fD(0, x⃗ ; y⃗) := fD0 (x⃗ ; y⃗)
fD(s0x , x⃗ ; y⃗) := fD1 (x , x⃗ ; y⃗)
fD(s1x , x⃗ ; y⃗) := fD2 (x , x⃗ ; y⃗)

D0

Γ ⇒ N
D2

□N, Γ ⇒ N
|cond|□ □N, Γ ⇒ N

fD(0, x⃗ ; y⃗) := fD0 (x⃗ ; y⃗)
fD(si x , x⃗ ; y⃗) := fD2 (x , x⃗ ; y⃗)
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Progressiveness

▶ Example. A cyclic proof D representing a partial function:

s0 N ⇒ N
cutN

□N, N ⇒ N
cutN

□N, N ⇒ N

fD(x ; y) := fD(x ; s0y)

▶ Progressive proof = every infinite branch contains a □-thread with infinitely
many principal formulas of the rule cond□.

▶ Progressiveness ∼ totality
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Safety condition

▶ Example. Modalities are not enough to enforce stratification in our setting.
E.g. cyclic progressing proof D for primitive recursion (on notation):

D0

Γ ⇒ N
□N, Γ ⇒ N

D1

□N, Γ,□N ⇒ N
cut□

□N, Γ ⇒ N
□N, Γ ⇒ N

D2

□N, Γ,□N ⇒ N
cut□

□N, Γ ⇒ N
cond□

□N, Γ ⇒ N

fD(0, x⃗ ; ) = fD0 (x⃗ ; )
fD(six , x⃗ ; ) = fD1 (x , x⃗ , f (x , x⃗); )

▶ Safe proof = any infinite branch crosses finitely many cut□ rules.
▶ Safety condition rules out non-safe recursion schemes.
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Safety condition induces a simpler □-thread structure

. . . □N, . . . ,□N, N⃗ ⊢ N . .
.

□N, . . . ,□N, N⃗ ⊢ N
...

Γ ⇒ B
w□ □N, Γ ⇒ B

Γ, N ⇒ A
□l □N, Γ ⇒ A

Γ ⇒ □N □N, Γ ⇒ B
cut□ Γ ⇒ B

Γ ⇒ N □N, Γ ⇒ N □N, Γ ⇒ N
cond□ □N, Γ ⇒ N
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Left-leaning condition

▶ Safety condition is not enough! We can express nested safe recursion.

▶ Example. A cyclic progressing safe proof for the exponential function
exp(x)(y) = 22|x| · y :

s0 N ⇒ N

cond□ □N, N ⇒ N
cond□ □N, N ⇒ N

cutN □N, N ⇒ N

cond□ □N, N ⇒ N
cond□ □N, N ⇒ N

cutN □N, N ⇒ N
cond□ □N, N ⇒ N

exp(0; y) = s0y
exp(si x ; y) = exp(x ; exp(x ; y))

▶ Left-leaning proof = any branch goes right at a cutN rule only finitely often.

8 / 10



Hofmann’s type system SLR [Hofmann 97]

▶ Two function spaces: □A → B (modal) and A ⊸ B (linear).

▶ Safe linear recursion operator (with A □-free):

recA : □N → (□N → A⊸A)︸ ︷︷ ︸ → A → A

x h g

where f (x) = recA(x , h, g) means:

f (0) = g
f (s0x) = h(x , f (x))
f (s1x) = h(x , f (x))

▶ terms t : (□N)n → Nm ⊸N represent exactly the functions in FP.
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Nesting and higher-order recursion

▶ Nested recursion in SLR if higher-order types are not handled linearly:

A = N → N
g = s0 : A
h = λx : □N.λu : N → N.λy : N.u(uy) : □N → A → A → A

exp(x ; y) = recA(x , h, g)(y)

▶ Takeaway. Type n cyclic proofs can represent type n+1 recursion [Das 21].

▶ Left-leaning is a linearity condition: it prevents duplication of recursive calls,
and hence their nesting.
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