
Infinitary cut-elimination via finite approximations1

Matteo Acclavio #Ñ2

University of Southern Denmark, Denmark3

Gianluca Curzi #4

University of Birmingham, UK5

Giulio Guerrieri #Ñ6

Aix Marseille Univ, CNRS, LIS UMR 7020, Marseille, France7

Abstract8

We investigate non-wellfounded proof systems based on parsimonious logic, a weaker variant of linear9

logic where the exponential modality ! is interpreted as a constructor for streams over finite data.10

Logical consistency is maintained at a global level by adapting a standard progressing criterion. We11

present an infinitary version of cut-elimination based on finite approximations, and we prove that,12

in presence of the progressing criterion, it returns well-defined non-wellfounded proofs at its limit.13

Furthermore, we show that cut-elimination preserves the progressing criterion and various regularity14

conditions internalizing degrees of proof-theoretical uniformity. Finally, we provide a denotational15

semantics for our systems based on the relational model.16

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation17

→ Proof theory18

Keywords and phrases cut-elimination, non-wellfounded proofs, parsimonious logic, linear logic,19

proof theory, approximation, sequent calculus, non-uniform proofs20

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.4121

Related Version Arxiv version22

Full Version: https://arxiv.org/abs/2308.0778923

Acknowledgements We would like to thank Anupam Das, Abhishek De, Farzad Jafar-Rahmani,24

Alexis Saurin, Tito (Lê Thành Dung Nguyên), Damiano Mazza and the anonymous reviewers for25

their useful comments and suggestions.26

1 Introduction27

Non-wellfounded proof theory studies proofs as possibly infinite (but finitely branching) trees,28

where logical consistency is maintained via global conditions called progressing (or validity)29

criteria. In this setting, the so-called regular (also called circular) proofs receive a special30

attention, as they admit a finite description in terms of (possibly cyclic) directed graphs.31

This area of proof theory makes its first appearance (in its modern guise) in the modal32

µ-calculus [29, 14]. Since then, it has been extensively investigated from many perspectives33

(see, e.g., [8, 34, 13, 23]), establishing itself as an ideal setting for manipulating least and34

greatest fixed points, and hence for modeling induction and coinduction principles.35

Non-wellfounded proof theory has been applied to constructive fixed point logics i.e.,36

with a computational interpretation based on the Curry-Howard correspondence [35]. A key37

example can be found in the context of linear logic (LL) [21], a logic implementing a finer38

control on resources thanks to the exponential modalities ! and ?. In this framework, the39

most extensively studied fixed point logic is µMALL, defined as the exponential-free fragment40

of LL with least and greatest fixed point operators (respectively, µ and its dual ν) [7, 6].41

In [7] Baelde and Miller have shown that the exponentials can be recovered in µMALL42

by exploiting the fixed points operators, i.e., by defining !A := νX.(1 & A & (X ⊗ X)) and43

?A := µX.(⊥ ⊕ A ⊕ (X ` X)). As these authors notice, the fixed point-based definition of !44

© Acclavio, Curzi, Guerrieri;
licensed under Creative Commons License CC-BY 4.0

32nd EACSL Annual Conference on Computer Science Logic (CSL 2024).
Editors: Aniello Murano and Alexandra Silva; Article No. 41; pp. 41:1–41:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:
matteoacclavio.com
 https://orcid.org/0000-0002-0425-2825
mailto:
 https://orcid.org/0000-0001-8746-1704
mailto: giulio.guerrieri@lis-lab.fr
https://pageperso.lis-lab.fr/~giulio.guerrieri/
 https://orcid.org/0000-0002-0469-4279
https://doi.org/10.4230/LIPIcs.CSL.2024.41
https://arxiv.org/abs/2308.07789
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Infinitary cut-elimination via finite approximations

and ? can be regarded as a more permissive variant of the standard exponentials, since a45

proof of νX.(1 & A & (X ⊗ X)) could be constructed using different proofs of A, whereas in46

LL a proof of !A is constructed uniformly using a single proof of A. This proof-theoretical47

notion of non-uniformity is indeed a central feature of the fixed-point exponentials.48

However, the above encoding is not free of issues. First, as discussed in full detail49

in [16], the encoding of the exponentials does not verify the Seely isomorphisms, syntactically50

expressed by the equivalence !(A & B) ˛ (!A ⊗ !B), an essential property for modeling51

exponentials in LL. Specifically, the fixed-point definition of ! relies on the multiplicative52

connective ⊗, which forces an interpretation of !A based on lists rather than multisets.53

Secondly, as pointed out in [7], there is a neat mismatch between cut-elimination for the54

exponentials of LL and the one for the fixed point exponentials of µMALL. While the first55

problem is related to syntactic deficiencies of the encoding, and does not undermine further56

investigations on fixed point-based definitions of the exponential modalities, the second one57

is more critical. These apparent differences between the two exponentials contribute to58

stressing an important aspect in linear logic modalities, i.e., their non-canonicity [31, 12]1.59

On a parallel research thread, Mazza [25, 26, 27] studied parsimonious logic, a variant60

of linear logic where the exponential modality ! satisfies Milner’s law (i.e., !A ˛ A ⊗ !A)61

and invalidates the implications !A ⊸ !!A (digging) and !A ⊸ !A ⊗ !A (contraction). In62

parsimonious logic, a proof of !A can be interpreted as a stream over (a finite set of) proofs of63

A, i.e., as a greatest fixed point, where the linear implications A ⊗ !A ⊸ !A (co-absorption)64

and !A ⊸ A ⊗ !A (absorption) can be read computationally as the push and pop operations65

on streams. More specifically, a formula !A is introduced by an infinitely branching rule66

that takes a finite set of proofs D1, . . . , Dn of A and a (possibly non-recursive) function67

f : N → {1, . . . , n} as premises, and constructs a proof of !A representing a stream of proofs of68

the form S = (Df(0), Df(1), . . . , Df(n), . . .). Hence, parsimonious logic exponential modalities69

exploit in an essential way the above-mentioned proof-theoretical non-uniformity, which in70

turn deeply interfaces with notions of non-uniformity from computational complexity [27].71

The analysis of parsimonious logic conducted in [26, 27] reveals that fixed point definitions72

of the exponentials are better behaving when digging and contraction are discarded. On the73

other hand, the co-absorption rule cannot be derived in LL, and so it prevents parsimonious74

logic becoming a genuine subsystem of the latter. This led the authors of the present75

paper to introduce parsimonious linear logic, a subsystem of linear logic (in particular,76

co-absorption-free) that nonetheless allows a stream-based interpretation of the exponentials.77

We present two finitary proof systems for parsimonious linear logic: the system nuPLL,78

supporting non-uniform exponentials, and PLL, a fully uniform version. We investigate79

non-wellfounded counterparts of nuPLL and PLL, adapting to our setting the progressing80

criterion to maintain logical consistency. To recover the proof-theoretical behavior of nuPLL81

and PLL, we identify further global conditions on non-wellfounded proofs, that is, some forms82

of regularity to capture the notions of uniformity and non-uniformity. This leads us to two83

main non-wellfounded proof systems: regular parsimonious linear logic (rPLL∞), defined via84

the regularity condition and corresponding to PLL, and weakly regular parsimonious linear85

logic (wrPLL∞), defined via a weak regularity condition and corresponding to nuPLL.86

The major contribution of this paper is the study of continuous cut-elimination in the87

setting of non-wellfounded parsimonious linear logic. We first introduce Scott-domains88

of partially defined non-wellfounded proofs, ordered by an approximation relation. Here,89

undefinedness in proofs is expressed by the use of an axiom introducing an arbitrary sequent;90

1 One can construct LL proof systems with alternative (not equivalent) exponential modalities, see [28].

M. Acclavio, G. Curzi and G. Guerrieri 41:3

this approach is analogous to the one used to define Böhm trees in the λ-calculus: intuitively,91

a non-wellfounded proof is kind of like a Böhm tree that may be described by its finite92

approximations, with the difference that—in the λ-calculus—Böhm trees, and therefore their93

finite approximations, are normal (that is, cut-free) by definition, whereas here proofs need not94

be cut-free and so the approximations too may contain cuts. Then, we define special infinitary95

proof rewriting strategies called maximal and continuous infinitary cut-elimination strategies96

(mc-ices) which compute (Scott-)continuous functions. Productivity in this framework is97

established by showing that, in presence of a good global condition (progressing, regularity or98

weak regularity), these continuous functions return totally defined cut-free non-wellfounded99

proofs and preserve the global condition: progressing (Theorem 33.1), and regularity or weak100

regularity (Theorem 33.2).101

On a technical side, we stress that our methods and results distinguish from previous102

approaches to cut-elimination in a non-wellfounded setting in many respects. First, we103

get rid of many technical notions typically introduced to prove infinitary cut-elimination,104

such as the multicut rule or the fairness conditions (as in, e.g., [20, 6]), as these notions105

are subsumed by a finitary approximation approach to cut-elimination. Furthermore, we106

prove productivity of cut-elimination and preservation of the progressing condition in a more107

direct and constructive way, i.e., without going through auxiliary proof systems and avoiding108

arguments by contradiction (see, e.g., [6]). Finally, we prove for the first time preservation of109

regularity properties under continuous cut-elimination, essentially exploiting methods for110

compressing transfinite rewriting sequences to ω-long ones from [36, 25, 33].111

Finally, we define a denotational semantics for non-wellfounded parsimonious logic based112

on the relational model, with a standard multiset-based interpretation of the exponentials,113

and we show that this semantics is preserved under continuous cut-elimination (Theorem 38).114

We also prove that extending non-wellfounded parsimonious linear logic with digging prevents115

the existence of a cut-elimination result preserving the semantics (Theorem 40). Therefore,116

the impossibility of a stream-based definition of ! that validates digging (and contraction).117

Additional details of the proofs are provided in the extended version of this paper [2].118

2 Preliminary notions119

In this section we recall some basic notions from (non-wellfounded) proof theory, fixing the120

notation that will be adopted in this paper.121

2.1 Derivations and coderivations122

We assume that the reader is familiar with the syntax of sequent calculus, e.g. [37]. Here we123

specify some conventions adopted to simplify the content of this paper.124

We consider (sequent) rules of the form r
Γ

or
Γ1

r
Γ

or
Γ1 Γ2

r
Γ

, and we refer to the125

sequents Γ1 and Γ2 as the premises, and to the sequent Γ as the conclusion of the rule r.126

To avoid technicalities of the sequents-as-lists presentation, we follow [6] and we consider127

sequents as sets of occurrences of formulas from a given set of formulas. In particular, when128

we refer to a formula in a sequent we always consider a specific occurrence of it.129

▶ Definition 1. A (binary, possibly infinite) tree T is a subset of words in {1, 2}∗ that contains130

the empty word ϵ (the root of T) and is ordered-prefix-closed (i.e., if n ∈ {1, 2} and vn ∈ T ,131

then v ∈ T , and if moreover v2 ∈ T , then v1 ∈ T). The elements of T are called nodes and132

their height is the length of the word. A child of v ∈ T is any vn ∈ T with n ∈ {1, 2}. The133

CSL 2024

41:4 Infinitary cut-elimination via finite approximations

ax
A, A⊥

Γ, A A⊥, ∆
cut

Γ, ∆
Γ, A B, ∆

⊗
Γ, ∆, A ⊗ B

Γ, A, B`
Γ, A ` B

1
1

Γ
⊥

Γ, ⊥
Γ, A

f!p
?Γ, !A

Γ
?w

Γ, ?A

Γ, A, ?A
?b

Γ, ?A

Figure 1 Sequent calculus rules of PLL.

prefix order is a partial order ≤T on T defined by: for any v, v′ ∈ T , v ≤T v′ if v′ = vw134

for some w ∈ {1, 2}∗. A maximal element of ≤T is a leaf of T . A branch of T is a set135

B ⊆ T such that ϵ ∈ B and if w ∈ B is not a leaf of T then w has exactly one child in B.136

A coderivation over a set of rules S is a labeling D of a tree T by sequents such that if137

v is a node of T with children v1, . . . , vn (with n ∈ {0, 1, 2}), then there is an occurrence of138

a rule r in S with conclusion the sequent D(v) and premises the sequents D(v1), . . . , D(vn).139

The height of r in D is the height of the node v ∈ T such that D(v) is the conclusion of r.140

The conclusion of D is the sequent D(ϵ). If v is a node of the tree, the sub-coderivation141

of D rooted at v is the coderivation Dv defined by Dv(w) = D(vw).142

A coderivation D is r-free (for a rule r∈S) if it contains no occurrence of r. It is regular143

if it has finitely many distinct sub-coderivations; it is non-wellfounded if it labels an infinite144

tree, and it is a derivation (with size |D| ∈ N) if it labels a finite tree (with |D| nodes).145

Given a set of coderivations X, a sequent Γ is provable in X (noted ⊢X Γ) if there is a146

coderivation in X with conclusion Γ.147

While derivations are usually represented as finite trees, regular coderivations can be148

represented as finite directed (possibly cyclic) graphs: a cycle is created by linking the roots149

of two identical subcoderivations.150

▶ Definition 2. Let D be a coderivation labeling a tree T . A bar (resp. prebar) of D is a151

set V ⊆ T where:152

any branch (resp. infinite branch) of the tree T underlying D contains a node in V;153

any pair of nodes in V are mutually incomparable with respect to the prefix order ≤T .154

The height of a prebar V of D is the minimal height of the nodes of V.155

3 Parsimonious Linear Logic156

In this paper we consider the set of formulas for propositional multiplicative-exponential
linear logic with units (MELL). These are generated by a countable set of propositional
variables A = {X, Y, . . .} using the following grammar:

A, B ::= X | X⊥ | A ⊗ B | A ` B | !A | ?A | 1 | ⊥

A !-formula (resp. ?-formula) is a formula of the form !A (resp. ?A). Linear negation157

(·)⊥ is defined by De Morgan’s laws (A⊥)⊥ = A , (A ⊗ B)⊥ = A⊥ `B⊥ , (!A)⊥ = ?A⊥ , and158

(1)⊥ = ⊥ while linear implication is defined as A ⊸ B := A⊥ ` B.159

▶ Definition 3. Parsimonious linear logic, denoted by PLL, is the set of rules in Figure 1,160

that is, axiom (ax), cut (cut), tensor (⊗), par (`), one (1), bottom (⊥), functorial161

promotion (f!p), weakening (?w), absorption (?b). Rules ax, ⊗, `, 1 and ⊥ are called162

multiplicative, while rules f!p, ?w and ?b are called exponential. We also denote by PLL163

the set of derivations over the rules in PLL.164

▶ Example 4. Figure 2 gives some examples of derivation in PLL. The (distinct) derivations165

0 and 1 prove the same formula N := !(X ⊸ X) ⊸ X ⊸ X. The derivation Dabs proves the166

absorption law !A ⊸ A ⊗ !A; the derivation Dder proves the dereliction law !A ⊸ A.167

M. Acclavio, G. Curzi and G. Guerrieri 41:5

0 1 Dabs Dder

ax
X⊥, X

?w
?(X ⊗ X⊥), X⊥, X`

?(X ⊗ X⊥), X⊥ ` X`
?(X ⊗ X⊥) ` X⊥ ` X

ax
X⊥, X

ax
X⊥, X

⊗
X ⊗ X⊥, X⊥, X

?w
?(X ⊗ X⊥), X ⊗ X⊥, X⊥, X

?b
?(X ⊗ X⊥), X⊥, X`×2

?(X ⊗ X⊥) ` X⊥ ` X

ax
A⊥, A

ax
?A⊥, !A

⊗
A⊥, ?A⊥, A ⊗ !A

?b
?A⊥, A ⊗ !A`

?A⊥ ` (A ⊗ !A)

ax
A⊥, A

?w
A⊥, ?A⊥, A

?b
?A⊥, A`

?A⊥ ` A

Figure 2 Examples of derivations in PLL.

ax
A, A⊥ Γ, A

cut
Γ, A

→cut Γ, A

Γ, A, B`
Γ, A ` B

∆, A⊥ B⊥, Σ
⊗

∆, A⊥ ⊗ B⊥, Σ
cut

Γ, ∆, Σ
→cut

Γ, B, A A⊥, ∆
cut

Γ, ∆, B B⊥, Σ
cut

Γ, ∆, Σ

Γ
⊥

Γ, ⊥
1

1
cut

Γ
→cut Γ

Figure 3 Multiplicative cut-elimination steps in PLL.

The cut-elimination relation →cut in PLL is the union of principal cut-elimination steps168

in Figure 3 (multiplicative) and Figure 4 (exponential) and commutative cut-elimination169

steps in Figure 5. The reflexive-transitive closure of →cut is noted →∗
cut.170

▶ Theorem 5. For every D ∈ PLL, there is a cut-free D′ ∈ PLL such that D →∗
cut D′.171

Sketch of proof. We associate with any derivation D in PLL a derivation D♠ in MELL172

sequent calculus. Thanks to additional commutative cut-elimination steps, we prove that cut-173

elimination in MELL rewrites D♠ to the translation of a derivation in PLL. The termination174

of cut-elimination in PLL follows from strong normalisation of (second-order) MELL [30]. ◀175

Akin to light linear logic [22, 24, 32], the exponential rules of PLL are weaker than those176

in MELL: the usual promotion rule is replaced by f!p (functorial promotion), and the usual177

contraction and dereliction rules by ?b. As a consequence, the digging formula !A ⊸ !!A178

and the contraction formula !A ⊸ !A ⊗ !A are not provable in PLL (unlike the dereliction179

formula, Example 4). This allows us to interpret computationally these weaker exponentials180

in terms of streams, as well as to control the complexity of cut-elimination [26, 27].181

It is easy to show that MELL = PLL + digging: if we add the digging formula as an axiom182

(or equivalently, the digging rule ??d in Figure 13) to the set of rules in Figure 1, then the183

contraction formula becomes provable, and the obtained proof system coincides with MELL.184

4 Non-wellfounded Parsimonious Linear Logic185

In linear logic, a formula !A is interpreted as the availability of A at will. This intuition still186

holds in PLL. Indeed, the Curry-Howard correspondence interprets rule f!p introducing the187

modality ! as an operator taking a derivation D of A and creating a (infinite) stream (D, D, . . . ,188

D, . . .) of copies of the proof D. Each element of the stream is accessed via the cut-elimination189

step f!p vs ?b in Figure 4: rule ?b is interpreted as an operator popping one copy of D out190

of the stream. Pushing these ideas further, Mazza [26] introduced parsimonious logic PL, a191

type system (comprising rules f!p and ?b) characterizing the logspace decidable problems.192

Mazza and Terui then introduced in [27] another type system, nuPL∀ℓ, based on parsi-193

monious logic and capturing the complexity class P/poly (i.e., the problems decidable by194

polynomial size families of Boolean circuits [5]). Their system is endowed with a non-uniform195

version of the functorial promotion, which takes a finite set of proofs D1, . . . , Dn of A and a196

CSL 2024

41:6 Infinitary cut-elimination via finite approximations

Γ, A
f!p

?Γ, !A
A⊥, ∆, B

f!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
f!p

?Γ, ?∆, !B

Γ, A
f!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

?w
?Γ, ∆

Γ, A
f!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut Γ, A

Γ, A
f!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
|Γ|×?b

?Γ, ∆

Figure 4 Exponential cut-elimination steps in PLL.

Γ1, A
r

Γ, A A⊥, ∆
cut

Γ, ∆
→cut

Γ1, A A⊥, ∆
cut

Γ1, ∆
r

Γ, ∆

Γ1, A Γ2
r

Γ, A ∆, A⊥
cut

Γ, ∆
→cut

Γ1, A A⊥, ∆
cut

Γ1, ∆ Γ2
r

Γ, ∆

Figure 5 Commutative cut-elimination steps in PLL, where r ̸= cut.

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A

{
D′

i

A⊥, ∆, B

}
i∈Nib!p

?A⊥, ?∆, !B
cut

?Γ, ?∆, !B

→cut

Di

Γ, A

D′
i

A⊥, ∆, B
cut

Γ, ∆, B

i∈Nib!p

?Γ, ?∆, !B

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

|Γ|×?w
?Γ, ∆

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut
D0

Γ, A

{
Di+1

Γ, A

}
i∈Nib!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
|Γ|×?b

?Γ, ∆

Figure 6 Exponential cut-elimination steps in nuPLL.

(possibly non-recursive) function f : N → {1, . . . , n} as premises, and constructs a proof of !A197

modeling the stream (Df(0), Df(1), . . . , Df(n), . . .). This typing rule is the key tool to encode198

the so-called advices for Turing machines, an essential step to show completeness for P/poly.199

In a similar vein, we can endow PLL with a non-uniform version of f!p called infinitely200

branching promotion (ib!p), which constructs a stream (D0, D1, . . . , Dn, . . .) with finite201

support, i.e., made of finitely many distinct derivations (of the same conclusion):2202

D0

Γ, A

D1

Γ, A · · ·
Dn

Γ, A · · ·
ib!p {Di | i ∈ N} is finite

?Γ, !A
!w

!A
Γ, A ∆, !A

!b
Γ, ∆, !A (1)203

The side condition on ib!p provides a proof theoretic counterpart to the function f : N →204

{1, . . . , n} in nuPL∀ℓ. Clearly, f!p is subsumed by the rule ib!p, as it corresponds to the205

special (uniform) case where Di = Di+1 for all i ∈ N.206

2 Rule ib!p is reminiscent of the ω-rule used in (first-order) Peano arithmetic to derive formulas of the
form ∀xϕ that cannot be proven in a uniform way.

M. Acclavio, G. Curzi and G. Guerrieri 41:7

D := ax
A⊥, A

ax
A⊥, A

...
cut

Γ, A
cut

Γ, A
cut

Γ, A

D? :=

...
?b

A, A, ?A
?b

A, ?A
?b

?A

Figure 7 Two non-wellfounded and non-progressing coderivations in PLL∞.

▶ Definition 6. We define the set of rules nuPLL := {ax, ⊗,`, 1, ⊥, cut, ?b, ?w, ib!p}. We207

also denote by nuPLL the set of derivations over the rules in nuPLL.3208

There are some notable differences between nuPLL and Mazza and Terui’s original system209

nuPL∀ℓ [27]. As opposed to nuPLL, nuPL∀ℓ is formulated as an intuitionistic (type) system.210

Furthermore, to achieve completeness for P/poly, these authors introduced second-order211

quantifiers and the co-absorption (!b) and co-weakening (!w) rules displayed in (1).212

Cut-elimination steps for nuPLL are in Figures 3, 5, and 6. In particular, the step213

ib!p-vs-?b in Figure 6 pops the first premise D0 of ib!p out of the stream (D0, D1, . . . , Dn, . . .).214

4.1 From infinitely branching proofs to non-wellfounded proofs215

In this paper we explore a dual approach to the one of nuPL∀ℓ (and nuPLL): instead of216

considering (wellfounded) derivations with infinite branching, we consider (non-wellfounded)217

coderivations with finite branching. For this purpose, the infinitary rule ib!p of nuPLL is218

replaced by the binary rule below, called conditional promotion (c!p):219

Γ, A ?Γ, !A
c!p

?Γ, !A
(2)220

▶ Definition 7. We define the set of rules PLL∞ := {ax, ⊗,`, 1, ⊥, cut, ?b, ?w, c!p}. We also221

denote by PLL∞ the set of coderivations over the rules in PLL∞.222

In other words, PLL∞ is the set of coderivations generated by the same rules as PLL,223

except that f!p is replaced by c!p. From now on, we will only consider coderivations in PLL∞.224

▶ Example 8. Figure 7 shows two non-wellfounded coderivations in PLL∞: D (resp. D?)225

has an infinite branch of cut (resp. ?b) rules, and is (resp. is not) regular.226

We can embed PLL and nuPLL into PLL∞ via the conclusion-preserving translations227

(·)◦ : PLL → PLL∞ and (·)• : nuPLL → PLL∞ defined in Figure 8 by induction on derivations:228

they map all rules to themselves except f!p and ib!p, which are “unpacked” into non-229

wellfounded coderivations that iterate infinitely many times the rule c!p.230

An infinite chain of c!p rules (Figure 9) is a structure of interest in itself in PLL∞.231

▶ Definition 9. A non-wellfounded box (nwb for short) is a coderivation D ∈ PLL∞
232

with an infinite branch {ϵ, 2, 22, . . . } (the main branch of D) all labeled by c!p rules as233

in Figure 9, where !A in the conclusion is the principal formula of D, and D0, D1, . . . are234

the calls of D. We denote D by c!p(D0,...,Dn,...).235

3 To be rigorous, this requires a slight change in Definition 1: the tree labeled by a derivation in nuPLL
must be over Nω instead of {1, 2}∗, in order to deal with infinitely branching derivations.

CSL 2024

41:8 Infinitary cut-elimination via finite approximations

 D

Γ′
r

Γ

◦

:=
D◦

Γ′
r

Γ

 D1

Γ1

D2

Γ2
t

Γ

◦

:=
D1

◦

Γ1

D2
◦

Γ2
t

Γ

 D

Γ, A
f!p

?Γ, !A

◦

:= D◦

Γ, A

D◦

Γ, A

...
c!p

?Γ, !A
c!p

?Γ, !A
c!p

?Γ, !A

 D

Γ′
r

Γ

•

:=
D•

Γ′
r

Γ

 D1

Γ1

D2

Γ2
t

Γ

•

:=
D1

•

Γ1

D2
•

Γ2
t

Γ

 D0

Γ, A · · ·
Dn

Γ, A · · ·
ib!p

?Γ, !A

•

:= D•
0

Γ, A

D•
n

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
for all r ∈ {`, ⊥, ?w, ?b} and t ∈ {cut, ⊗} (ax and 1 are translated by themselves).

Figure 8 Translations (·)◦ from PLL to PLL∞, and (·)• from nuPLL to PLL∞.

D = c!p(D0,...,Dn,...) =
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
c!p

?Γ, !A

Figure 9 A non-wellfounded box in PLL∞.

Let S = c!p(D0,...,Dn,...) be a nwb. We may write S(i) to denote Di. We say that S236

has finite support (resp. is periodic with period k) if {S(i) | i ∈ N} is finite (resp. if237

S(i) = S(k + i) for any i ∈ N). A coderivation D has finite support (resp. is periodic) if238

any nwb in D has finite support (resp. is periodic).239

▶ Example 10. The only cut-free derivations of the formula N := !(X ⊸ X) ⊸ X ⊸ X are240

of the form n below on the right, for all n ∈ N, up to permutations of the rules ?w, ?b and ⊗241

(the derivations 0 and 1 in Example 4 are special cases of it)242

c!p(i0,...,in,...) =
i0

N

i1

N

in

N

...
c!p

!N
c!p

...
c!p

!N
c!p

!N

n :=

ax
X⊥, X

ax
X⊥, X

⊗
X ⊗ X⊥, X⊥, X

ax
X⊥, X

⊗ ×(n−1)
X ⊗ X⊥, . . . , X ⊗ X⊥, X⊥, X

?w
?(X ⊗ X⊥), X ⊗ X⊥, . . . , X ⊗ X⊥, X⊥, X

?b×n

?(X ⊗ X⊥), X⊥, X`×2
?(X ⊗ X⊥) ` X⊥ ` X

(3)243

Consider the nwb c!p(i0,...,in,...) above on the left, proving the formula !N, where ij ∈ {0, 1}244

for all j ∈ N. Thus c!p(i0,...,in,...) has finite support, as its only calls can be 0 or 1, and it is245

periodic if and only if so is the infinite sequence (i0, . . . , in, . . .) ∈ {0, 1}ω.246

The cut-elimination steps →cut for PLL∞ are in Figures 3, 5, and 10. Computationally,247

they allow the c!p rule to be interpreted as a coinductive definition of a stream of type !A248

from a stream of the same type to which an element of type A is prepended. In particular, the249

cut-elimination step c!p vs ?b accesses the head of a stream: rule ?b acts as a pop operator.250

As a consequence, the nwb in Figure 9 constructs a stream (D0, D1, . . . , Dn, . . .) similarly251

to ib!p but, unlike the latter, all the Di’s may be pairwise distinct. The reader expert in linear252

logic can see a nwb as a box with possibly infinitely many distinct contents (its calls), while253

usual linear logic boxes (and f!p in PLL) provide infinitely many copies of the same content.254

Rules f!p in PLL and ib!p in nuPLL are mapped by (·)◦ and (·)• into nwbs, which are255

non-wellfounded coderivations. Hence, the cut-elimination steps f!p vs f!p in PLL and ib!p vs256

ib!p in nuPLL can only be simulated by infinitely many cut-elimination steps in PLL∞.257

M. Acclavio, G. Curzi and G. Guerrieri 41:9

Γ, A ?Γ, !A
c!p

?Γ, !A
A⊥, ∆, B ?A⊥, ?∆, !B

c!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B

?Γ, !A ?A⊥, ?∆, !B
cut

?Γ, ?∆, !B
c!p

?Γ, ?∆, !B

Γ, A ?Γ, !A
c!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

|Γ|×?w
?Γ, ∆

Γ, A ?Γ, !A
c!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut
Γ, A

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
|Γ|×?b

?Γ, ∆

Figure 10 Exponential cut-elimination steps for coderivations of PLL∞.

ax
A, A⊥

F 1, . . . F
n
, A A⊥, G1, . . . , G

mcut
F 1, . . . , F

n
, G1, . . . , G

m

F 1, . . . F
n
, A , B

`
F 1, . . . , F

n
, A ` B

F 1, . . . F
n
, A B, G1, . . . , G

m⊗
F 1, . . . , F

n
, A ⊗ B, G1, . . . , G

m

1
1

F 1, . . . , F
n⊥

F 1, . . . , F
n
, ⊥

F1, . . . , Fn, A ?F 1, . . . , ?F
n
, !A

c!p
?F 1, . . . , ?F

n
, !A

F 1, . . . , F
n?w

F 1, . . . , F
n
, ?A

F 1, . . . , F
n
, A, ?A

?b
F 1, . . . , F

n
, ?A

Figure 11 PLL∞ rules: edges connect a formula in the conclusion with its parent(s) in a premise.

Note that D ∈ PLL∞ in Figure 7 is not cut-free, and if D →cut D then D = D : thus D 258

cannot reduce to a cut-free coderivation, and so the cut-elimination theorem fails in PLL∞.259

4.2 Consistency via a progressing criterion260

In a non-wellfounded setting such as PLL∞, any sequent is provable. Indeed, the (non-261

wellfounded) coderivation D in Figure 7 shows that any non-empty sequent (in particular,262

any formula) is provable in PLL∞, and the empty sequent is provable in PLL∞ by applying263

the cut rule on the conclusions B and B⊥ (for any formula B) of two derivations D .264

The standard way to recover logical consistency in non-wellfounded proof theory is to265

introduce a global soundness condition on coderivations, called progressing criterion. In266

PLL∞, this criterion relies on tracking occurrences of !-formulas in a coderivation.267

▶ Definition 11. Let D be a coderivation in PLL∞. It is weakly progressing if every infinite268

branch contains infinitely many right premises of c!p-rules.269

An occurrence of a formula in a premise of a rule r is the parent of an occurrence of a270

formula in the conclusion if they are connected according to the edges depicted in Figure 11.271

A !-thread (resp. ?-thread) in D is a maximal sequence (Ai)i∈I of !-formulas (resp. ?-272

formulas) for some downward-closed I ⊆ N such that Ai+1 is the parent of Ai for all i ∈ I. A273

!-thread (Ai)i∈I is progressing if Aj is in the conclusion of a c!p for infinitely many j ∈ I.274

D is progressing if every infinite branch contains a progressing !-thread. We define pPLL∞
275

(resp. wpPLL∞) as the set of progressing (resp. weak-progressing) coderivations in PLL∞.276

▶ Remark 12. Clearly, any progressing coderivation is weakly progressing too, but the277

converse fails (Example 13), therefore pPLL∞ ⊊ wpPLL∞. Moreover, the main branch of any278

nwb contains by definition a progressing !-thread of its principal formula.279

▶ Example 13. Coderivations in Figure 7 are not weakly progressing (hence, not progressing):
the rightmost branch of D , i.e., the branch {ϵ, 2, 22, . . .}, and the unique branch of D? are
infinite and contain no c!p-rules. In contrast, the nwb c!p(i0,...,in,...) in Example 10 is
progressing by Remark 12, since its main branch is the only infinite branch. Below, a regular,
weakly progressing but not progressing coderivation (!X in the conclusion of c!p is a cut

CSL 2024

41:10 Infinitary cut-elimination via finite approximations

formula, so the branch {ϵ, 2, 21, 212, 2121, . . . } is infinite but has no progressing !-thread).

ax
X, X⊥

ax
X, X⊥

...
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥, !X
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥ , !X
c!p

?X⊥ , !X

▶ Lemma 14. Let Γ be a sequent. Then, ⊢PLL Γ if and only if ⊢wpPLL∞ Γ.280

Proof. Given D ∈ PLL, D◦ ∈ PLL∞ preserves the conclusion and is progressing, hence weakly281

progressing (see Remark 12). Conversely, given a weakly progressing coderivation D, we define282

a derivation Df ∈ PLL with the same conclusion by applying, bottom-up, the translation:283

 D

Γ′
r

Γ

f

:=
Df

Γ′
r

Γ

 D1

Γ1

D2

Γ2
r

Γ

f

:=
D1

f

Γ1

D2
f

Γ2
r

Γ

 D

Γ, A

D′

?Γ, !A
c!p

?Γ, !A

f

:=
Df

Γ, A
f!p

?Γ, !A
284

with r ̸= c!p. Note that the derivation Df is well-defined because D is weakly progressing. ◀285

▶ Corollary 15. The empty sequent is not provable in wpPLL∞ (and hence in pPLL∞).286

Proof. If the empty sequent were provable in wpPLL∞, then there would be a cut-free287

derivation D ∈ PLL of the empty sequent by Lemma 14 and Theorem 5, but this is impossible288

since cut is the only rule in PLL that could have the empty sequent in its conclusion. ◀289

4.3 Recovering (weak forms of) regularity290

The progressing criterion cannot capture the finiteness condition of the rule ib!p in the291

derivations in nuPLL. By means of example, consider the nwb below, which is progressing292

but cannot be the image of the rule ib!p via (·)• (see Figure 8) since {Di | i ∈ N} is infinite.293

D0

!N

D1

!N

Dn

!N

...
c!p

!!N
c!p

...
c!p

!!N
c!p

!!N

with Di = c!p(1,...,1︸︷︷︸
i

,0,...) for each i ∈ N. (4)294

295 To identify in pPLL∞ the coderivations corresponding to derivations in nuPLL and in PLL296

via the translations (·)• and (·)◦, respectively, we need additional conditions.297

▶ Definition 16. A coderivation is weakly regular if it has only finitely many distinct298

sub-coderivations whose conclusions are left premises of c!p-rules; it is finitely expandable299

if any branch contains finitely many cut and ?b rules. We denote by wrPLL∞ (resp. rPLL∞)300

the set of weakly regular (resp. regular) and finitely expandable coderivations in pPLL∞.301

▶ Remark 17. Regularity implies weak regularity and the converse fails as shown in Example 18302

below, so rPLL∞ ⊊ wrPLL∞. Given D ∈ PLL∞ progressing and finitely expandable, it is303

regular (resp. weakly regular) if and only if any nwb in D is periodic (resp. has finite support).304

M. Acclavio, G. Curzi and G. Guerrieri 41:11

▶ Example 18. Coderivations D and D? in Figure 7 are not finitely expandable, as their305

infinite branch has infinitely many cut or ?b, but they are weakly regular, since they have no306

c!p rules. The coderivation in (4) is not weakly regular because {Di | i ∈ N} is infinite.307

An example of a weakly regular but not regular coderivation is the nwb c!p(i0,...,in,...) in308

Example 10 when the infinite sequence (ij)j∈N ∈ {0, 1}ω is not periodic: 0 and 1 are the only309

coderivations ending in the left premise of a c!p rule (so the nwb is weakly regular), but there310

are infinitely many distinct coderivations ending in the right premise of a c!p rule (so the311

nwb is not regular). Moreover, that nwb is finitely expandable, as it contains no ?b or cut.312

The sets rPLL∞ and wrPLL∞ are the non-wellfounded counterparts of PLL and nuPLL,313

respectively. Indeed, we have the following correspondence via the translations (·)◦ and (·)•.314

▶ Proposition 19. 1. If D ∈ PLL (resp. D ∈ nuPLL) with conclusion Γ, then D◦ ∈ rPLL∞
315

(resp. D• ∈ wrPLL∞) with conclusion Γ, and every c!p in D◦ (resp. D•) belongs to a nwb.316

2. If D′ ∈ rPLL∞ (resp. D′ ∈ wrPLL∞) and every c!p in D′ belongs to a nwb, then there is317

D ∈ PLL (resp. D ∈ nuPLL) such that D◦ = D′ (resp. D• = D′).318

Progressing and weak progressing coincide in finitely expandable coderivations.319

▶ Lemma 20. Let D ∈ PLL∞ be finitely expandable. If D ∈ wpPLL∞ then any infinite branch320

contains the main branch of a nwb. Moreover, D ∈ pPLL∞ if and only if D ∈ wpPLL∞.321

Proof. Let D ∈ wpPLL∞ be finitely expandable, and let B be an infinite branch in D.322

By finite expandability there is h ∈ N such that B contains no conclusion of a cut or ?b323

with height greater than h. Moreover, by weakly progressing there is an infinite sequence324

h ≤ h0 < h1 < . . . < hn < . . . such that the sequent of B at height hi has shape ?Γi, !Ai. By325

inspecting the rules in Figure 1, each such ?Γi, !Ai can be the conclusion of either a ?w or a326

c!p (with right premise ?Γi, !Ai). So, there is a k large enough such that, for any i ≥ k, only327

the latter case applies (and, in particular, Γi = Γ and Ai = A for some Γ, A). Therefore, hk328

is the root of a nwb. This also shows D ∈ pPLL∞. By Remark 12, pPLL∞ ⊆ wpPLL∞. ◀329

By inspecting the steps in Figures 3, 5, and 10, we prove the following preservations.330

▶ Proposition 21. Cut elimination preserves weak-regularity, regularity and finite expandab-331

ility. Therefore, if D ∈ X with X ∈ {rPLL∞, wrPLL∞} and D →cut D′, then also D′ ∈ X.332

5 Continuous cut-elimination333

Cut-elimination for (finitary) sequent calculi proceeds by introducing a proof rewriting334

strategy that stepwise decreases an appropriate termination ordering (see, e.g, [37]). Typically,335

these proof rewriting strategies consist on pushing upward the topmost cuts via the cut-336

elimination steps in order to eventually eliminate them.337

A somewhat dual approach is investigated in the context of non-wellfounded proofs [6, 20].338

It consists on infinitary proof rewriting strategies that gradually push upward the bottommost339

cuts. In this setting, the progressing condition is essential to guarantee productivity, i.e., that340

such proof rewriting strategies construct strictly increasing approximations of the cut-free341

proof, which can thus be obtained as a (well-defined) limit.342

A major obstacle of this approach arises when the bottommost cut r is below another one343

r′. In this case, no cut-elimination step can be applied to r, so proof rewriting runs into an344

apparent stumbling block. To circumvent this problem, in [6, 20] a special cut-elimination345

step is introduced, which merges r and r′ in a single, generalized cut rule called multicut.346

CSL 2024

41:12 Infinitary cut-elimination via finite approximations

In this section we study a continuous cut-elimination method that does not rely on347

multicut rules, following an alternative idea in which the notion of approximation plays an348

even more central rule, inspired by the topological approaches to infinite trees [9]. To this349

end, we assume the reader familiar with basic definitions on domain-theory (see, e.g., [4]).350

5.1 Approximating coderivations351

We introduce open coderivations to approximate coderivations. They form Scott-domains,352

on top of which we define continuous cut elimination. We also exploit them to decompose a353

finitely expandable and progressing coderivation into a finite approximation beneath nwbs.354

▶ Definition 22. We define the set of rules oPLL∞ := PLL∞ ∪ {hyp}, where hyp := hyp
Γ

for355

any sequent Γ.4 We will also refer to oPLL∞ as the set of coderivations over oPLL∞, which we356

call open coderivations. An open coderivation is normal if no cut-elimination step can be357

applied to it, that is, if one premise of each cut is a hyp. An open derivation is a derivation358

in oPLL∞. We denote by oPLL∞(Γ) the set of open coderivations with conclusion Γ.359

▶ Definition 23. Let D be an open coderivation, V ⊆ {1, 2}∗ be a set of mutually incomparable360

(w.r.t. the prefix order) nodes of D, and {D′
ν}ν∈V be a set of open coderivations where D′

ν361

has the same conclusion as the subderivation Dν of D. We denote by D{D′
ν/ν}ν∈V =362

D(D′
ν1

/ν1, . . . , D′
νn

/νn), the open coderivation obtained by replacing each Dν with D′
ν .363

The pruning of D over V is the open coderivation ⌊D⌋V = D{hyp/ν}ν∈V . If D and D′
364

are two open coderivations, then we say that D is an approximation of D′ (noted D ⪯ D′)365

iff D = ⌊D′⌋V for some V ⊆ {1, 2}∗. An approximation is finite if it is an open derivation.366

We denote by K(D) the set of finite approximations of D.367

Note that D and ⌊D⌋V (and hence D′ if D ⪯ D′) have the same conclusion. Any open368

coderivation D is the supremum of its finite approximations, i.e. D =
⊔

D′∈K(D) D′. Indeed:369

▶ Proposition 24. For any sequent Γ, the poset (oPLL∞(Γ), ⪯) is a Scott-domain with least370

element the open derivation hyp and with maximal elements the coderivations (in PLL∞) with371

conclusion Γ. The compact elements are precisely the open derivations in oPLL∞(Γ).372

Cut-elimination steps essentially do not increase the size of open derivations, hence:373

▶ Lemma 25. →cut over open derivations is strongly normalizing and confluent.374

Progressing and finitely expandable coderivations can be approximated in a canonical way.375

Indeed, by Lemma 20 we have:376

▶ Proposition 26. If D ∈ pPLL∞ is finitely expandable, then there is a prebar V ⊆ {1, 2}∗ of377

D such that each v ∈ V is the root of a nwb in D.378

▶ Definition 27. Let D ∈ pPLL∞ be finitely expandable. The decomposition prebar of D is379

the minimal prebar V of D such that, for all ν ∈ V, Dν is a nwb. We denote with border(D)380

such a bar and we set base(D) := ⌊D⌋border(D).381

Note that, by weak König lemma, in the above definition border(D) is finite and base(D)382

is a finite approximation of D.383

4 Previously introduced notions and definitions on coderivations extend to open coderivations in the
obvious way, e.g. the global conditions of Definitions 11 and 16 and the cut-elimination relation →cut.

M. Acclavio, G. Curzi and G. Guerrieri 41:13

5.2 Domain-theoretic approach to continuous cut-elimination384

In this subsection we define maximal and continuous infinitary cut-elimination strategies385

(mc-ices), special rewriting strategies that stepwise generate ω-chains approximating the cut-386

free version of an open coderivation. In other words, a mc-ices computes a (Scott-)continuous387

function from open coderivations to cut-free open coderivations. Then, we introduce the388

height-by-height mc-ices, a notable example of mc-ices that will be used for our results, and389

we show that any two mc-icess compute the same (Scott-)continuous function.390

In what follows, σ denotes a countable sequence of coderivations, and σ(i) denotes the391

(i + 1)-th coderivation in σ. We denote the length of a sequence σ by ℓ(σ) ≤ ω.392

▶ Definition 28. An infinitary cut elimination strategy (or ices for short) is a family393

σ = {σD}D∈oPLL∞ where, for all D ∈ oPLL∞, σD is a sequence of open coderivations such394

that σD(0) = D and σD(i) →cut σD(i + 1) for all 0 ≤ i < ℓ(σD). Given an ices σ, we define395

the function fσ : oPLL∞(Γ) → oPLL∞(Γ) as fσ(D) :=
⊔ℓ(σD)

i=0 cf(σD(i)) where cf(Di) is the396

greatest cut-free approximation of Di (w.r.t. ⪯). 5. An ices σ is a mc-ices if it is:397

maximal: σD(ℓ(σD)) is normal for any open derivation D (ℓ(σD) < ω by Lemma 25);398

(Scott)-continuous: fσ is Scott-continuous.399

Roughly, a maximal ices is an ices that applies cut-elimination steps to open derivations400

(i.e., finite approximations) until a normal (possibly cut-free) open derivation is reached.401

The following property states that all mc-icess induce the same continuous function, an easy402

consequence of Lemma 25 and continuity.403

▶ Proposition 29. If σ and σ′ are two mc-icess, then fσ = fσ′ .404

Therefore, we define a specific mc-ices we use in our proofs, where cut-elimination steps405

are applied in a deterministic way to the minimal reducible cut-rules.406

▶ Definition 30. The height-by-height ices is defined as σ∞ = {σ∞
D }D∈oPLL∞ where407

σ∞
D (0) = D for each D ∈ oPLL∞, and σ∞

D (i + 1) is the open coderivation obtained by applying408

a cut-elimination step to the leftmost reducible cut-rule with minimal height in σ∞
D (i).409

▶ Proposition 31. The ices σ∞ is a mc-ices.410

Proof. By Lemma 25, any open derivation D normalizes in nD ∈ N steps; so, if D is an open411

derivation, ℓ(σ∞
D) = nD with σ∞

D (nD) normal by definition of σ∞. Hence, σ∞ is maximal.412

Since σ∞
D (i) is defined by applying a finite number of cut-eliminations steps to D, then413

there is D′ ∈ K(D) such that σ∞
D (i) = σ∞

D′(i), and therefore cf(σ∞
D (i)) = cf(σ∞

D′(i)) ⪯ fσ∞(D′)414

for all 0 ≤ i ≤ ℓ(σ∞). Thus fσ∞(D) ⪯
⊔

D′∈K(D) fσ∞(D′). Moreover
⊔

D′∈K(D) fσ∞(D′) ⪯415

fσ∞(D) because σ∞ is monotone by construction. We conclude by showing that fσ∞ is416

continuous. ◀417

In order to prove our results, we introduce the notion of chain of cut-rules, which allows418

us to keep track of the dynamic of cut-elimination steps during infinitary rewriting. Note419

that the definition of cut-chain is the analogue of the multi-cut reduction sequences from [6].420

▶ Definition 32 (Chains). Let σ = {σD}D∈oPLL∞ be an ices. We write ri 7→σ ri+1 if ri+1 is a421

cut-rule in σD(i + 1) produced by applying a cut-elimination step to the cut-rule ri in σD(i).422

A cut-chain in σD is a sequence (ri)i<α of cut rules with α ≤ ℓ(σD), such that ri a rule423

in σD(i), and either ri = ri+1 or ri 7→σ ri+1. We say that a chain starts at r0 and that each424

ri+1 is a descendant of ri.425

5 fσ is well-defined, as (cf(σD(i)))0≤i<ℓ(σD) is an ω-chain in oPLL∞ and so its sup exists by Proposition 24.

CSL 2024

41:14 Infinitary cut-elimination via finite approximations

We conclude this section by providing the sketch of proof for the continuous cut-elimination426

theorem, the main contribution of this paper, establishing a productivity result and showing427

that continuous cut-elimination preserves all global conditions.428

▶ Theorem 33 (Continuous Cut-Elimination).429

1. If D ∈ pPLL∞, then so is fσ∞(D).430

2. If D ∈ wrPLL∞ (resp. D ∈ rPLL∞), then so is fσ∞(D).431

Sketch of the proof.432

1. We have to prove that fσ∞(D) is hyp-free (i.e., productivity) and that any of its infinite433

branches contains a progressing !-thread. To facilitate our argument, leveraging on434

symmetry of the cut rules, we assume w.l.o.g. that !-formulas can only be cut in the435

left-hand premise of a cut-rule.436

We first show that, for any infinite cut-chain (ri)i there is a descendant ri in σ∞
D (i) whose437

right premise is the conclusion of a c!p-rule. Since the cut-chain is infinite and since438

cut-elimination steps preserve progressing condition (Proposition 21), there is a i0 ≥ 0439

such that all descendants of ri0 in (ri)i cut formulas from the same ?-thread along an440

infinite branch B. Moreover, since B has infinitely many c!p rules by progressing condition,441

every cut-rule with a premise in B is eventually reducible, so that there are infinitely442

many i ≥ i0 such that ri 7→σ ri+1. Therefore, if the right-premise of ri did not eventually443

become conclusion of a c!p-rule we could identify an infinite branch of D that has no444

progressing !-thread.445

Now, let B∗ be a branch of fσ∞(D). If B∗ has been obtained from D after finitely many446

cut-elimination steps then it is clearly hyp-free and, if infinite, it has a progressing !-thread447

(Proposition 21). Otherwise, B∗ has been constructed by an infinite cut-chain (ri)i with448

minimal height. By repeatedly applying the above property, we have that there are449

infinitely many ri whose rightmost premise is the conclusion of a c!p-rule r∗, and such450

that ri 7→σ ri+1 is a step permuting r∗ downward (since r∗ it is on the left premise of451

ri, its principal !-formula cannot be a cut-formula of ri by assumption). This means452

that B∗ contains infinitely many c!p rules, and so it is hyp-free. To prove that there is453

a progressing !-thread in B∗ it suffices to show that infinitely many c!p rules of B∗ are454

descendants of the same branch B of D, as the existence of a progressing !-thread of B∗
455

would follow directly from the existence of a (unique) progressing !-thread of B.456

2. Akin to linear logic, we define the depth of a coderivation as the maximal number of457

nested nwbs, and we prove that the depth of (weakly) regular coderivations is always458

finite. Moreover, by Proposition 26, a progressing and finitely expandable coderivation459

D can be decomposed to a nwb-free finite approximation base(D) and a series of nwbs460

whose calls have smaller depth. Using this property we define, by induction on the depth461

of D, a maximal and transfinite ices reducing the calls of the nwbs one by one. The462

proof of preservation of (weak) regularity under cut-elimination for such an ices follows463

by construction since, by Remark 17, if we reduce a nwb with finite support (resp. a464

periodic nwb) via our transfinite ices, then we obtain in the limit a cut-free nwb with465

finite support (resp. a periodic nwb). We then show that this transfinite ices can be466

compressed to a (ω-long) mc-ices using methods studied in [36, 33], and we conclude the467

proof by Item 1 and by the fact that fσ∞(D) is finitely expandable and (weakly) regular468

for such a mc-ices. ◀469

By definition (as the sup of cut-free open coderivations) fσ∞(D) is cut-free. Each item of470

Theorem 33 says in particular that fσ∞(D) is hyp-free, which means that fσ∞(D) is obtained471

by eliminating all the cuts in D. This may not be the case if D does not fulfill any of the472

M. Acclavio, G. Curzi and G. Guerrieri 41:15

t

ax
A, A⊥

|

n

=
{

(x, x) x ∈ JAK
} u

w
v

D′

Γ, A

D′′

∆, A⊥
cut

Γ, ∆

}

�
~

n

=

 (x⃗, y⃗) ∃z ∈ JAK s.t.
(x⃗, z) ∈ JD′Kn−1

and
(z, y⃗) ∈ JD′′Kn−1

u

w
v

D′

Γ
⊥

Γ, ⊥

}

�
~

n

=
{

(x⃗, ∗) x⃗ ∈ JD′Kn−1
} u

w
v

D′

Γ, A, B`
Γ, A ` B

}

�
~

n

=
{

(x⃗, (y, z)) (x⃗, y, z) ∈ JD′Kn−1
}

t

1
1

|

n

= {∗}

u

w
v

D′

Γ, A

D′′

∆, B
⊗

Γ, ∆, A ⊗ B

}

�
~

n

=

 (x⃗, y⃗, (x, y))
(x⃗, x) ∈ JD′Kn−1

and
(y⃗, y) ∈ JD′′Kn−1

t

hyp
Γ

|

n

= ∅

u

w
v

D′

Γ
?w

Γ, ?A

}

�
~

n

=
{

(x⃗, []) x⃗ ∈ JD′Kn−1
} u

w
v

D′

Γ, A, ?A
?b

Γ, ?A

}

�
~

n

=
{

(x⃗, [y] + µ) (x⃗, y, µ) ∈ JD′Kn−1
}

u

w
v

D′

Γ, A

D′′

?Γ, !A
c!p

?Γ, !A

}

�
~

n

=
{

([⃗], [])
}

∪

 ([x1] + µ1, . . . , [xk] + µk, [x] + µ)
(x1, . . . , xk, x) ∈ JD′Kn−1

and
(µ1, . . . , µk, µ) ∈ JD′′Kn−1

Figure 12 Inductive definition of the set JDKn, for n > 0.

global conditions in the hypotheses of Theorem 33: fσ∞(D) is still cut-free but may contain473

some “truncating” hyp that “prevented” eliminating some cut in D, as in the example below.474

▶ Example 34. For any finite approximation D of the (non-weakly progressing, non-finitely475

expandable) open coderivation D , we have fσ∞(D) = hyp, so fσ∞(D) = hyp by continuity.476

6 Relational semantics for non-wellfounded proofs477

Here we define a denotational model for oPLL∞ based on relational semantics, which interprets478

an open coderivation as the union of the interpretations of its finite approximations, as in [17].479

We show that relational semantics is sound for oPLL∞, but not for its extension with digging.480

Relational semantics interprets exponential by finite multisets, denoted by brackets, e.g.,481

[x1, . . . , xn]; + denotes the multiset union, and Mf (X) denotes the set of finite multisets482

over a set X. To correctly define the semantics of a coderivation, we need to see sequents as483

finite sequences of formulas (taking their order into account), which means that we have to484

add an exchange rule to oPLL∞ to swap the order of two consecutive formulas in a sequent.485

▶ Definition 35. We associate with each formula A a set JAK defined as follows:486

JXK := DX J1K := {∗} JA ⊗ BK := JAK × JBK J!AK := Mf (JAK) JA⊥K := JAK487

where DX is an arbitrary set. For a sequent Γ = A1, . . . , An, we set JΓK := JA1 ` · · · ` AnK.488

Given D ∈ PLL ∪ oPLL∞ with conclusion Γ, we set JDK :=
⋃

n≥0JDKn ⊆ JΓK, where489

JDK0 = ∅ and, for all i ∈ N \ {0}, JDKi is defined inductively according to Figure 12.490

▶ Example 36. For the coderivations D and D? in Figure 7, JD K = JD?K = ∅. For the491

derivations 0 and 1 in Figure 2, J0K = {([], (x, x)) | x ∈ DX} and J1K = {([(x, y)], (x, y)) |492

x, y ∈ DX}. For the coderivation c!p(i0,...,in,...) in Example 10 (with ij ∈ {0, 1} for all j ∈ N),493

Jc!p(i0,...,in,...)K = {[]} ∪
{

[xi0 , . . . , xin] ∈ Mf (JNK) | n ∈ N, xij ∈ JijK ∀ 0 ≤ j ≤ n
}

. For the494

derivation n in Example 10 (for any n ∈ N), JnK = {([(x1, x2), . . . , (xn, xn+1)], (x1, xn+1)) |495

x1, . . . , xn+1 ∈ DX}. Note that JnK ∩ JmK = ∅ for all n, m ∈ N such that n ̸= m, and that496

CSL 2024

41:16 Infinitary cut-elimination via finite approximations

Γ, ??A
??d

Γ, ?A

u

w
v

D′

Γ, ??A
??d

Γ, ?A

}

�
~

0

= ∅

u

w
v

D′

Γ, ??A
??d

Γ, ?A

}

�
~

n

=
{(

x⃗,

m∑
i=1

µi

)
(x⃗, [µ1, . . . , µm]) ∈ JD′Kn−1 , m ∈ N

}

Figure 13 The rule ??d and its interpretation in the relational semantics (n > 0).

JnK is stable under permutations of the rules ?w, ?b and ⊗ in n (that is, if D is obtained497

from n by permuting the rules ?w, ?b or ⊗, then JDK = JnK).498

By inspecting the cut-elimination steps and by continuity, we can prove the soundness of499

relational semantics with respect to cut-elimination (Theorem 38), thanks to the fact the500

interpretation of a coderivation is the union the interpretations of its finite approximation.501

▶ Lemma 37. Let D ∈ oPLL∞. Then, JDK = J
⊔

D′∈K(D) D′K =
⋃

D′∈K(D)JD′K.502

▶ Theorem 38 (Soundness). 1. Let D ∈ oPLL∞. If D →cut D′, then JDK = JD′K.503

2. Let D ∈ oPLL∞. If σ is a mc-ices, then JDK = Jfσ(D)K.504

By Theorem 38 and since cut-free coderivations have non-empty semantics, we have:505

▶ Corollary 39. Let D ∈ wpPLL∞. Then JDK ̸= ∅.506

We define the set of rules MELL∞ := PLL∞ ∪ {??d} where the rule ??d (digging) is507

defined in Figure 13. We also denote by MELL∞ the set of coderivations over the rules in508

MELL∞. Relational semantics is naturally extended to MELL∞ as shown in Figure 13.509

The proof system MELL∞ can be seen as a non-wellfounded version of MELL. We show510

that, as opposed to several fragments of PLL∞, in any good fragment of MELL∞ with digging,511

cut-elimination cannot reduce to cut-free coderivations and preserve both the progressing512

condition and relational semantics.513

▶ Theorem 40. Let X ⊆ MELL∞ contain non-wellfounded coderivations with ??d. Let →cut+514

be a cut-elimination relation on X preserving the progressing condition, containing →cut in515

Figures 3, 5, and 10 and reducing every coderivation in X to a cut-free one. Then, →cut+516

does not preserve relational semantics.517

Proof. Consider the coderivations D??d and D̂??d below, where D = c!p(0,1,0,1,...) and, for all518

i ∈ N, Di ∈ {c!p(ki
0,...,ki

n,...) | ki
j ∈ N for all j ∈ N} (n is defined in Example 10 for all n ∈ N).519

D??d :=
D

!N

ax
??N⊥, !!N

??d
?N⊥, !!N

cut
!!N

D̂??d :=
D0

!N

D1

!N

Dn

!N

...
c!p

!!N
c!p

...
c!p

!!N
c!p

!!N

520

Coderivations D̂??d are the only cut-free and progressing ones with conclusion !!N. Indeed, any521

cut-free coderivation of !!N or !N must end with a c!p, and the only cut-free and progressing522

coderivations of N are the derivations of the form n for any n ∈ N, up to permutations of523

the rules ?w, ?b and ⊗ (other cut-free coderivations of N exist, but they have an infinite524

branch containing infinitely many ?b rules and no c!p rules, hence they are not progressing).525

Therefore, for whatever definition of the cut-elimination steps concerning ??d that preserves526

the progressing condition, necessarily D??d will reduce to D̂??d, since D??d is progressing.527

M. Acclavio, G. Curzi and G. Guerrieri 41:17

We show that JD̂??dK ̸⊆ JD??dK. First, it can be easily shown that if, in one of the Di =528

c!p(ki
0,...,ki

n,...) in D̂??d, one of the ki
j is different from 0 or 1, then there is x ∈ JD̂??dK∖ JD??dK529

(this basically follows from the fact that JnK ∩ JmK = ∅ for all n, m ∈ N such that n ̸= m,530

see Example 36). Let us now suppose that in D̂??d, for all i ∈ N, Di = c!p(ki
0,...,ki

n,...) with531

ki
j ∈ {0, 1} for all j ∈ N. Let 0̂ and 1̂ be any element of J0K and J1K, respectively (see532

Example 36). Note that 0̂ ≠ 1̂. It is easy to verify that [[0̂], [0̂]], [[1̂], [1̂]] /∈ JD??dK, since533

[0̂, 0̂], [1̂, 1̂] /∈ JDK (see Example 36). Concerning JD̂??dK, notice that, since k0
0, k1

0, k2
0 ∈ {0, 1},534

either k0
0 = k1

0 or k1
0 = k2

0 or k2
0 = k0

0. In the first case, we have [[k0
0], [k1

0]] ∈ JD̂??dK, in the535

second case we have [[k1
0], [k2

0]] ∈ JD̂??dK, and in the last case we have [[k2
0], [k0

0]] ∈ JD̂??dK. ◀536

7 Conclusion and future work537

For future research, we envisage extending our contributions in many directions. First, our538

notion of finite approximation seems intimately related with that of Taylor expansion from539

differential linear logic (DiLL) [18, 19, 15], where the rule hyp (quite like the rule 0 from DiLL,540

[3]) serves to model approximations of boxes. This connection with Taylor expansions becomes541

even more apparent in Mazza’s original systems for parsimonious logic [26, 27], which comprise542

co-absorption and co-weakening rules typical of DiLL. These considerations deserve further543

investigations. Secondly, building on a series of recent works in Cyclic Implicit Complexity,544

i.e., implicit computational complexity in the setting of circular and non-wellfounded proof545

theory [11, 10], we are currently working on second-order extensions of wrPLL∞ and rPLL∞ to546

characterize the complexity classes P/poly and P (see [1]). These results would reformulate547

in a non-wellfounded setting the characterization of P/poly presented in [27].548

References549

1 Matteo Acclavio, Gianluca Curzi, and Giulio Guerrieri. Non-uniform polynomial time via550

non-wellfounded parsimonious proofs. Unpublished. URL: http://gianlucacurzi.com/551

Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf.552

2 Matteo Acclavio, Gianluca Curzi, and Giulio Guerrieri. Infinitary cut-elimination via finite553

approximations. CoRR, abs/2308.07789, 2023. URL: https://doi.org/10.48550/arXiv.554

2308.07789, arXiv:2308.07789, doi:10.48550/ARXIV.2308.07789.555

3 Matteo Acclavio and Giulio Guerrieri. A deep inference system for differential linear logic.556

In Proceedings Second Joint International Workshop on Linearity & Trends in Linear Logic557

and Applications, Linearity&TLLA@IJCAR-FSCD 2020, volume 353 of EPTCS, pages 26–49,558

2020. doi:10.4204/EPTCS.353.2.559

4 Roberto M. Amadio and Pierre-Louis Curien. Domains and lambda-calculi, volume 46 of560

Cambridge tracts in theoretical computer science. Cambridge University Press, 1998.561

5 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge562

University Press, 2009. doi:10.1017/CBO9780511804090.563

6 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative564

additive case. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual565

Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille,566

France, volume 62 of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl - Leibniz-Zentrum für567

Informatik, 2016. doi:10.4230/LIPIcs.CSL.2016.42.568

7 David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In Nachum569

Dershowitz and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and570

Reasoning, 14th International Conference, LPAR 2007, Yerevan, Armenia, October 15-19,571

2007, Proceedings, volume 4790 of Lecture Notes in Computer Science, pages 92–106. Springer,572

2007. doi:10.1007/978-3-540-75560-9_9.573

CSL 2024

http://gianlucacurzi.com/Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf
http://gianlucacurzi.com/Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf
http://gianlucacurzi.com/Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf
https://doi.org/10.48550/arXiv.2308.07789
https://doi.org/10.48550/arXiv.2308.07789
https://doi.org/10.48550/arXiv.2308.07789
http://arxiv.org/abs/2308.07789
https://doi.org/10.48550/ARXIV.2308.07789
https://doi.org/10.4204/EPTCS.353.2
https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1007/978-3-540-75560-9_9

41:18 Infinitary cut-elimination via finite approximations

8 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.574

Journal of Logic and Computation, 21(6):1177–1216, 2011.575

9 Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Sci-576

ence, 25(2):95–169, 1983. URL: https://www.sciencedirect.com/science/article/pii/577

0304397583900592, doi:https://doi.org/10.1016/0304-3975(83)90059-2.578

10 Gianluca Curzi and Anupam Das. Cyclic implicit complexity. In Proceedings of the 37th579

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, New York, NY,580

USA, 2022. Association for Computing Machinery. doi:10.1145/3531130.3533340.581

11 Gianluca Curzi and Anupam Das. Non-uniform complexity via non-wellfounded proofs.582

In 31st EACSL Annual Conference on Computer Science Logic, CSL 2023, volume 252 of583

LIPIcs, pages 16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:584

10.4230/LIPIcs.CSL.2023.16.585

12 Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Inf. Comput.,586

183(1):123–137, 2003. doi:10.1016/S0890-5401(03)00010-5.587

13 Anupam Das. On the logical strength of confluence and normalisation for cyclic proofs. In 6th588

International Conference on Formal Structures for Computation and Deduction, FSCD 2021,589

volume 195 of LIPIcs, pages 29:1–29:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,590

2021. doi:10.4230/LIPIcs.FSCD.2021.29.591

14 Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear time µ-592

calculus. In International Conference on Foundations of Software Technology and Theoretical593

Computer Science, pages 273–284. Springer, 2006.594

15 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antideriv-595

atives. Math. Struct. Comput. Sci., 28(7):995–1060, 2018. doi:10.1017/S0960129516000372.596

16 Thomas Ehrhard and Farzad Jafar-Rahmani. On the denotational semantics of linear logic597

with least and greatest fixed points of formulas. CoRR, abs/1906.05593, 2019. URL: http:598

//arxiv.org/abs/1906.05593, arXiv:1906.05593.599

17 Thomas Ehrhard, Farzad Jafar-Rahmani, and Alexis Saurin. On relation between totality600

semantic and syntactic validity. In 5th International Workshop on Trends in Linear Lo-601

gic and Applications (TLLA 2021), June 2021. URL: https://hal-lirmm.ccsd.cnrs.fr/602

lirmm-03271408.603

18 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theor. Comput. Sci.,604

364(2):166–195, 2006. doi:10.1016/J.TCS.2006.08.003.605

19 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary606

lambda-terms. Theor. Comput. Sci., 403(2-3):347–372, 2008. doi:10.1016/J.TCS.2008.06.607

001.608

20 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.609

In Computer Science Logic 2013, CSL 2013, volume 23 of LIPIcs, pages 248–262. Schloss610

Dagstuhl - Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.248.611

21 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:612

10.1016/0304-3975(87)90045-4.613

22 Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.614

doi:10.1006/inco.1998.2700.615

23 Denis Kuperberg, Laureline Pinault, and Damien Pous. Cyclic proofs, system T, and the power616

of contraction. Proc. ACM Program. Lang., 5(POPL):1–28, 2021. doi:10.1145/3434282.617

24 Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, 318(1):163–618

180, 2004. Implicit Computational Complexity. doi:10.1016/j.tcs.2003.10.018.619

25 Damiano Mazza. Non-uniform polytime computation in the infinitary affine lambda-calculus. In620

Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata,621

Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,622

Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in Computer623

Science, pages 305–317. Springer, 2014. doi:10.1007/978-3-662-43951-7_26.624

https://www.sciencedirect.com/science/article/pii/0304397583900592
https://www.sciencedirect.com/science/article/pii/0304397583900592
https://www.sciencedirect.com/science/article/pii/0304397583900592
https://doi.org/https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.1145/3531130.3533340
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://doi.org/10.1016/S0890-5401(03)00010-5
https://doi.org/10.4230/LIPIcs.FSCD.2021.29
https://doi.org/10.1017/S0960129516000372
http://arxiv.org/abs/1906.05593
http://arxiv.org/abs/1906.05593
http://arxiv.org/abs/1906.05593
http://arxiv.org/abs/1906.05593
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://doi.org/10.1016/J.TCS.2006.08.003
https://doi.org/10.1016/J.TCS.2008.06.001
https://doi.org/10.1016/J.TCS.2008.06.001
https://doi.org/10.1016/J.TCS.2008.06.001
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1145/3434282
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.1007/978-3-662-43951-7_26

M. Acclavio, G. Curzi and G. Guerrieri 41:19

26 Damiano Mazza. Simple parsimonious types and logarithmic space. In 24th EACSL Annual625

Conference on Computer Science Logic, CSL 2015, volume 41 of LIPIcs, pages 24–40. Schloss626

Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.24.627

27 Damiano Mazza and Kazushige Terui. Parsimonious types and non-uniform computation. In628

Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,629

Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,630

Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer631

Science, pages 350–361. Springer, 2015. doi:10.1007/978-3-662-47666-6_28.632

28 Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponentials.633

In António Porto and Francisco Javier López-Fraguas, editors, Proceedings of the 11th Inter-634

national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,635

pages 129–140. ACM, 2009. doi:10.1145/1599410.1599427.636

29 Damian Niwiński and Igor Walukiewicz. Games for the µ-calculus. Theoretical Computer637

Science, 163(1-2):99–116, 1996. doi:10.1016/0304-3975(95)00136-0.638

30 Michele Pagani and Lorenzo Tortora de Falco. Strong normalization property for second order639

linear logic. Theor. Comput. Sci., 411(2):410–444, jan 2010. doi:10.1016/j.tcs.2009.07.053.640

31 Myriam Quatrini. Sémantique cohérente des exponentielles: de la logique linéaire à la logique641

classique. PhD thesis, Aix-Marseille 2, 1995.642

32 Luca Roversi and Luca Vercelli. Safe recursion on notation into a light logic by levels. In643

Patrick Baillot, editor, Proceedings International Workshop on Developments in Implicit644

Computational complExity, DICE 2010, Paphos, Cyprus, 27-28th March 2010, volume 23 of645

EPTCS, pages 63–77, 2010. doi:10.4204/EPTCS.23.5.646

33 Alexis Saurin. A linear perspective on cut-elimination for non-wellfounded sequent calculi647

with least and greatest fixed points (extended version). working paper or preprint, 2023. URL:648

https://hal.science/hal-04169137.649

34 Alex Simpson. Cyclic arithmetic is equivalent to peano arithmetic. In Javier Esparza and650

Andrzej S. Murawski, editors, Foundations of Software Science and Computation Structures -651

20th International Conference, FOSSACS 2017, Proceedings, volume 10203 of Lecture Notes652

in Computer Science, pages 283–300, 2017. doi:10.1007/978-3-662-54458-7_17.653

35 Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism,654

Volume 149 (Studies in Logic and the Foundations of Mathematics). Elsevier Science Inc.,655

USA, 2006.656

36 Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer science.657

Cambridge University Press, 2003.658

37 A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Tracts in The-659

oretical Computer Science. Cambridge University Press, 2 edition, 2000. doi:10.1017/660

CBO9781139168717.661

CSL 2024

https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://doi.org/10.1007/978-3-662-47666-6_28
https://doi.org/10.1145/1599410.1599427
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1016/j.tcs.2009.07.053
https://doi.org/10.4204/EPTCS.23.5
https://hal.science/hal-04169137
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717

	1 Introduction
	2 Preliminary notions
	2.1 Derivations and coderivations

	3 Parsimonious Linear Logic
	4 Non-wellfounded Parsimonious Linear Logic
	4.1 From infinitely branching proofs to non-wellfounded proofs
	4.2 Consistency via a progressing criterion
	4.3 Recovering (weak forms of) regularity

	5 Continuous cut-elimination
	5.1 Approximating coderivations
	5.2 Domain-theoretic approach to continuous cut-elimination

	6 Relational semantics for non-wellfounded proofs
	7 Conclusion and future work

