Proofzilla: IXTEXpackage
for graphical proof theory

Matteo Acclavio

CURRENT VERSION: 0.1.10(unofficial release)

“I have never considered drawing as an exercise of particular dexterity, rather
as principally a means of expressing intimate feelings and describing states of
mind, but a means deliberately simplified so as to give simplicity and spontaneity
to the expression which should speak without clumsiness, directly to the mind of
the spectator.”

[Henri Matisse]

“Yabadabbadoozay, baba! Bootzilla’s here!”
[Bootsy Collins]

To use this IXTEX package: \usepackage{proofzilla}. The package is
available at https://matteoacclavio.com/Archive/Tools/proofzilla.styl
This package uses the packages tikz, txfonts, stmaryrd, and cmll.
The package is under development, for any request /feedback/complain
write me!

Contents
|1 Symbols and colors| 2 | |3 Combinatorial proofs| 4
. 4 Interaction nets| 6
2
4.1 Gates, inputs and outputs|. 6
RI Verticed 2 4.1.1 Inputs and outputs| 7
02 EBEdges 3 E2Wired 7

https://matteoacclavio.com/Archive/Tools/proofzilla.sty

4.2.1 Labels on wires . . 8 4.3 Linear Logic Proof Structures| 10
4.2.2 Orienting wires|. . . 8 4.3.1 Jumps|. 10

123 Axiomsand Cutd . 9 E32 Boxed 10

All the commands for drawing work using tikz functions remembering position
and overlay. The commands for vertices and gates create an occurrence of a
tikz node, and assign it a nodecode which identify its occurrence, allowing to
refer to it. You can also draw edges between two vertices in the text like this
edge e here o

SN—

1 Symbols and colors

The package provide the following symbols:

\1ltens =® \lpar =% \lwith =& \lplus=@&
\lone =1 \1bot L \ltop =T \lzero=20
\oc = \wn =7 \lbox =0 \ldia =9¢
\1limp =—o \lseq =< \lcoseq=» \lunit=o
\pzRpointing = & \pzLpointing = &

(1)

The package provide the following colors:

l - pzred = cographcolor
l - pzblue = linkcolor
B - pzpink = skewcolor
il - pzbrickred
il - pzgreen

2 Graphs

To represent graphs, use the environment array to have a virtual grid to place
vertices on/in it.

2.1 Vertices

The package provides two commands to define two types of vertices as nodes in
tikz:

e \pzvertex{<name>}{<label>}{<options>} defines the command
\v<name>{<occurencelId>}
for fixed-labelled <label> vertices/nodes.
e \pzemptyvertex{<name>}{<options>} defines the command
\v<name>{<occurenceId>}{<label>}

for vertices witch label <label> can be specified.

Each occurrence of both commands generates a vertex/node with associated
nodecode <name><occurenceId>. Use <options> to provides additional op-
tions as in the tikz command \node [<options>].

Some examples:

\pzvertex{name}{label}{} \vnamel = [abel
\pzvertex{square}{sq}t{draw,circle} \vsquarel = @
\pzemptyvertex{module}{draw} \vmodulel{foo} = m

The labels of graph vertices are defined in $math$ environment.

The package provides a command \v<letter> for each <letter> of the
alphabet (capital and small), together with the command \vn<letter> for the
negation of that letter, e.g., for the letter A there are the commands \vA and
\vnA producing the vertices A and A.

[[TODO: All vertices for the special sybols + bullet]]

Moreover the special empty verteices \vmod and \evmod are defined providing
a shortcut to define vertices with flexible content with or without border like
(\vmod1{this}) and this (\vemod1{this}).

2.2 Edges

The package provides a command to define edges styles.
\defedgetype{<name>}{<draw options>}{<to options>}

To understand the options, think that the edges of that type are drawn in tikz
using

\draw[<draw options>] (<source>) to [<to options>] (<target>)

Each call of \defedgetype defines the following commands:

e \<name>edge{<source>}{<target>} draws an edge of type <name> from
node with nodecode <source> to node with nodecode <target>;

e <name>edges{<list>} draws an edge of type <name> for each pair or
triple of the list <1ist> with elements in the form sourcel/targetl or
sourcel/targetl/bendvaluel from each source each target with the cor-
responding bend left value;

e \multi<name>edges{<list1>}{<1ist2>} draws an edge of type <name>
from each node in <1ist1> to each node in <list2>.

e \spec<name>edge{<source>}{<target>}{<to options>} draws an edge
of type <name> from from node with nodecode <source> to node with
nodecode <target> with additional to [<to options>] options ... Just
because some time you need a special edge.

\begin{array}{ccc} \val & o
\vmod1{\begin{array}{cc}\vbil&\vci\\\vdl\end{array}} a4 S
&\vf1\\[1em] \vgl &\vhl & \vil \end{array} \ N

\testedges{al/modl,mod1/£f1,bl/cl,gl/al,i1/h1,il1/mod1} 8 h i

Moreover, \defedgetype also define the following commands for edges with
a <label> marked in the midway of the edge

e \<name>ledge{<source>}{<target>}{<label>} draws an edge of type
<name> from node with nodecode <source> to node with nodecode
<target> with a label <label> (midway node).

e \<name>ledges{<list>} draws a labelled edge of type <name> for each
tripe in the list <list> in the form {source/target/label,...};

e \<name>sameledges{<list>}{<label>} draws a labelled edge of type
<name> for each pair in the list <1ist> in the form {source/target, .. .};
all with the same label <label>;

e \spec<name>ledge{<source>}{<target>}{<label>}{<to options>} draws
a labelled edge of type <name> from from node with nodecode <source>
to node with nodecode <target> with additional to [<to options>]
options and label <label>.

a—Ilabel—b

3 Combinatorial proofs

The package provides the definition of logic negation \cneg<arg> as \bar<arg>
if not already defined.

The following commands for vertices are pre-defined using \pzvertex: atomic
variables, i.e. are lowercase alphabetic letters \va#1...\vz#1, with their nega-
tion \vna#1...\vnz#1 and the following oned!|

\vlone#1 =1 \vlbot#l =1 \vlitop#l=T \vlzero#l=20
\voc#l =! \vwn#l =7 \vlibox#l=0O \vlidia#l =9
\vjump#1l = o

Their nodecode is given by removing the letter v from the command name,
e.g., the nodecode of the vertex \vlbot7 is 1bot7.

INote that redefining commands in Equation will change labels accordingly.

The following standard

D for dirgraph = e—>e
DR for directed-red = o——e
A for arena = e— e
N for non-commutative = e~rse
S for skew-fibration = o >e
ds for double-S = o >e

The command \cutshade<south-west><north-east> draws

edge types for combinatorial proofs are provided:

G or graph = e °
R orred = e .
L or link = e----- °
B or blue =
dB or double-B =

a shaded (in

grey) rectangle with south-west corner the vertex <south-west> and north-

east corner the vertex <north-east>. The
vertex with no labels and with nodecode

command \vhid#1 is provided for a
hid#1. It can be used in case there

are no vertices in the corners of the desired cutshade.

\begin{array}{ccccccccecck
\vbl & &\vb0&& \val&
& & &&

& \va0 \\
&Z\va3g &&\va2 \\ \\

((\vb5 &\limp &\vb4)&\limp &\va7 &)\limp(&\vad &\land &\vab&)

\end{array}

\Aedges{b1/b0,b0/al}
\multiAedges{al,a3}{a0,a2}
\Sedges{b1/b5,b0/b4,al/a7,a3/a7,a0/ad,a2/ab}
\bentlinkedges{a2/a3/20,a1/a0/20,b1/b0/20}

Figure 1: An intuitionistic

\begin{array}{cccccccc}
&\val&&\vnal&&\va2&&\vna2\\
\voc1&&\vwni&&\voc2&&\vwn2\\ \\
&\va3&&\vna3&&\vad&&\vnad\\
\voc3&&\vwn3&&\vocd&&\vund\\
\end{array}

\Bedges{al/nal,a2/na2}
\dBedges{oc1/wnl,wn2/0c2}
\multiRedges{nal,wni}{a2,oc2}
\Nedges{ocl/al,wnl/nal,oc2/a2,wn2/na2}
\Sedges{al/a3,nal/na3,a2/a2,na2/na4}
\Sedges{oc1/0c3,wnl/wn3,0c2/0c4,wn2/wnd}
\multiRedges{wn3,na3}{oc4,as}
\Nedges{oc3/a3,wn3/na3,oc4/as,wnd/nad}
\cutshade{wn3}{a4}

S
X

\

T

S
X
v

s

—

N
(b= |b)|=]d)y—=(]alAlal)
The corresponding combinatorial proof
showing the underlying grid of the array

combinatorial proof

a a

LN

v Y

g T i e

The corresponding combinatorial proof

a 5d Za 5d
= 27 = 27
L' L' L'
a a—+—=a a
A ¥ F.A ¥ T
17 72 17 77

The corresponding combinatorial proof
showing the underlying grid of the array

Figure 2: A combinatorial proof with cuts

4 Interaction nets

As for graphs, use the environment array to have a virtual grid to place gates

on/in it.

4.1 Gates, inputs and outputs

The package provides a command to define proof structures gates:

\newgate{<name>}{<label>}{<options>}

Each command provides the following commands to draw gates (where <label>=

X):
command nodecode node representation
\G<name>{<occId>} | G<name><occld> C
\uG<name>{<occId>} | uG<name><occld> A
\1G<name>{<occId>} | IG<name><occld> <]
\rG<name>{<occId>} | rG<name><occld> I>

By default \gatestriangletrue and gates have isosceles triangle shape
with the following additional anchors:

(2)

By setting \gatestrianglefalse you have gates with trapezium shape and
the following additional anchors:

It is possible to have gates with rounded corner using \gatecornersroundtrue.

\gatecornersroundfalse \gatecornersroundtrue
\gatestriangletrue \gatestrianglefalse

) 4

Every time the shape and corner setting are changed the command \setgatesshape
must be used to update the node style.

4.1.1 Inputs and outputs

The package also provides commands to define input/outputs or floating labels

\psnode [{<optional-label>}]{<occurrenceId>}
\psanode [{<optional-label>}]{<occurrenceId>}
\pslnode{<label>}{<occurrenceId>}
\pshang{<occurrenceId>}

which respectively produce nodes with nodecodes node<optional-label><occurrenceld>,
node<optional-label><occurrenceld>, node<occurrenceld>, and hang<occurrenceId>.
To remember the commands: a stands for anonym and [stands for labelled.

command nodecode | node representation
\psnode [a]2 nodea?2 a

\psnode 1 nodel

\pslnode a 2 nodea?2 a
\psanode [a] 2 node2 a
\psanode 3 node3

\pshang 1 hangl .

Nodes generated by these commands have standard rectangle anchors plus
I (north) and O (south) and C (center).
The following commands for gates provided:

\GDup#1 = X \Gdup#1

A 4
\GEr#1 = @ \Ger#1 .
\uGDup#1 = AON \uGdup#1 = A

4.2 Wires

The package provides a command to draw a wires:

e \pswire{<source>}{<target>}{<looseness>} draws a single (unlabelled)
wire from an input to an output;

e \pslwire{<source>}{<target>}{<looseness>}{<label>} draws a sin-
gle labelled wire;

e \pswires{<list>} draws wires from a list {element, ...} of with ele-
ments of form source/target or source/target/label;

e \psbentwires{<list>} draws wires with specified looseness for a list
with elements of either forms

source/target/looseness or source/target/label/looseness

If only the nodecode of a gate is given, then the wire come out/in from its
center anchor. Use the anchors in Equation to specify where the wire is
attached, e.g., G<name><occurrence>.<anchor>.

Wires comes in and out of a gate at an angle of respectively 90 and -90
degree (\topdownps). If proof structures are represented horizontally (from left
to right), you can change these angle to respectively 180 and 0 degree using the
command \lefttorightps.

4.2.1 Labels on wires

Wires labels are in $math$ environment. By default \pswiresdecfalse, that
is, wires are unlabelled. It is possible to reveal/hide wires label respectively
using \pswiresdectrue and \pswiresdecfalse.

\pswiresdecfalse | \pswiresdectrue

label

4.2.2 Orienting wires

By default proof structure wires are non-oriented. Use the commands \psdirectedwires
and \psundirectedwires to respectively enable and disable wires orientation.

\psundirectedwires | \psdirectedwires

Additional commands to draw wires arrow tip in a specific position are
provided.

e \psowire{<source>}{<target>}{<looseness>}{<tipAt>} draws a wire
from <source> to <target> with a given <looseness> and arrow tip in
position <tipAt>;

e \psowires{<1list>} draws wires from a list {element, ...} of with ele-
ments of form source/target/looseness/tip-position.

tipAt=.2 | tipAt=.5 | tipAt=.8

These commands do not support wire labels.

4.2.3 Axioms and Cuts

The package provides the following commands to draw for axioms:

e \psaxiom{<targeti1>}{<target2>}{<looseness>}{<occurrence>} draws
a wire from the gate with nodecode <target1> to node with node-
code <target2> with looseness value <looseness>. Moreover the com-
mand define a new node in the midway of this path with nodecode
ax<occurrence>.

e \psaxioms{<1list>} draws an axiom for each pair targetl/target2 or
triple target1/target2/label in the list <list>;

e \psbentaxioms{<list>} draws an axiom with given looseness for each
triple targetl/target2/loseness or quadruple targetl/target2/loseness/oc
in the list <1list>;

Similar commands are defined for cuts.

\pscut{<target1>}{<target2>}{<looseness>}
\pscuts{<list>}
\psbentcuts{<list>}

By default proof structures are represented in interaction nets syntax, that is,
axioms and cuts are wires. It is possible to enable the explicit representations of
axioms using \interactionnetaxtrue and cuts using \interactionnetcuttrue.

\interactionnetaxtrue \interactionnetaxfalse
\interactionnetcuttrue | \interactionnetcutfalse

h D4

The labels for axiom and cut gates are respectively ax and cut. It is possible
change these labels using \changeaxsymbol<newsymbol> and \changecursymbol<newsymbol>.

4.3 Linear Logic Proof Structures

The following commands for gates for standard connectives are provided:

\Gtens#1 N \Gpar#l = \Gwith#1 N \Gplus#1 =
\GwnD#1 = \GwnW#1 = ; \GwnC#1 =W \Gwnwn#1l = 'w
\GocD#1 : \GocW#1 W \GocC#1 =W \Gococ#1

\Gone#1 = @ \Gbot#1 @ \Gtop#1 = @ \Gzero#l = @

\uGtens#1= \uGpar#1= \uGwith#1= \uGplus#1=

\uGwnD#1 = \qunW#l:A \uGwnC#1 =A \qunwn#l:
\uGocD#1 YON \uGocW#1= AN \uGocC#1 AN \uGococ#1=

Plus the following ! and ? generic gates
\Goc#1 = \/ \Gwn#1 = \/ \uGoc#1 = AN \uGwn#1 = AN

4.3.1 Jumps

The package provides the following command to draw jump edges (similar to
the ones for axioms/cuts):

e \psjump{<targeti>}{<target2>}{<looseness>} draws a jump edge be-
tween <targetl> and <target2> with given <looseness>;

e \psjumps{<1list>} draws a jump edge for each pair in the <list> of the
form {tagetl/target2,..}

e \psbentjumps{<list>} draws a jump edge for each triple in the <list>
of the form {tagetl/target2/looseness, ..}

For example \Gone1\qquad\Gbot1\psjump{Gonel.I}{Gbotl.I}{} gives @ @
It is possible to change the style of jumps wires using the command

\changejumpstyle{<tikz options>}

4.3.2 Boxes

Linear logic boxes are defined by positioning two vertices \boxYin{<boxId>}
and \boxYang{<boxId>} and then calling the command

\psBox [<orientation>]{<boxId>}{<principalanchor>}{<1list>}

which draws a box as follows:

e it draws a rectangle with corner \boxYin{<boxId>} and \boxYang{<boxId>};

10

e it place an !-gate with nodecode box<boxId>main at the anchor <principalanchor>
of the rectangle. If <orientation> is not given or if it is D, the gate points
downwards, if it is U the gate points upwards.

e for each element in <list>=anchorl,anchor?, ..., it draws an auxiliary
port, that is a psnode, on the anchor <anchor>. Each auxiliary port has
nodecode \box<boxId>aux<indexInList> where <indexInList> is the
position of the <anchor> of the auxiliary port in the list <1ist>. The 157
element in the list has index 1.

\begin{array}{ccccc}

\bOXYiIll\\ ? — 7
&\pslnode al&\mbox{box content}&\\[.5em] L . box content
&&&\boxYang1\\ [1em] /

\pslnode bl &&\pslnode cl\end{array}

\psBox{1}{-60}{~155,60,120} /5<

\pswires{nodeal/boxlauxl,boxlauxl/nodecl} b ¢
\psbentwires{boximain.0/nodebl/ .63}

Acknowledgements

Thanks to Lutz Straflbourger to have shared his macros for vertices and edges
from which the package has evolved to the current shape.

11

Version history

0.1
0.1.1
0.1.2

0.1.3

0.14
0.1.5
0.1.6

0.1.7
0.1.8
0.1.9
0.1.10

First online version;
changed proof structure gates shape and boxes;

added the possibility to refer to axioms for the jumps, added < and »
symbols;

boxes auxiliary ports nodecodes are now the index in the list instead of
the anchor in the list.

gates can have rounded corners and triangular or trapezium shape.
removed tikzlibrary snakes.

added pgf preliminary commands to prevent problem in nesting tikz fig-
ures. Removed \vertexcode.

new green!
changed the vertices anchor. Now no problems with nested modules.
removed redundant edges styles.

added symbols.

12

	Symbols and colors
	Graphs
	Vertices
	Edges

	Combinatorial proofs
	Interaction nets
	Gates, inputs and outputs
	Inputs and outputs

	Wires
	Labels on wires
	Orienting wires
	Axioms and Cuts

	Linear Logic Proof Structures
	Jumps
	Boxes

