Canonicity of Proofs in Constructive Modal Logic

Matteo Acclavio SDU*~
 University of
 Southern Denmark

VILLUM FONDEN
"X-IDF: Explainable Internet Data Flows"
Tableaux 2023 19/09/2023

Joint work with

Davide Catta	and	Federico Olimpieri
University of Naples Federico II		University of Leeds

Previously...

$$
\begin{aligned}
& \text { Propositional Modal Formulas } \\
& A, B::=a|A \supset B| A \wedge B|\square A| \diamond A \mid 1
\end{aligned}
$$

Constructive Modal Logic (CK)

$$
=
$$

Intuitionistic propositional logic (LI)

$$
+
$$

Nec rule: if F is provable, then $\square F$ is provable

$$
+
$$

$$
\mathrm{k}_{1}: \square(A \supset B) \supset(\square A \supset \square B) \quad \mathrm{k}_{2}: \square(A \supset B) \supset(\diamond A \supset \diamond B)
$$

$$
\begin{gathered}
\overline{a \vdash a} \mathrm{AX} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset^{\mathrm{R}} \frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \supset B \vdash C} \supset^{\mathrm{L}} \\
\quad \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge^{\mathrm{R}}
\end{gathered} \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} \wedge^{\mathrm{L}}
$$

Lambda calculus for (constructive) modal logic:

- Pfenning [1995,2001]
- Bellin, De Paiva and Ritter [2001]
- Kakutani [2007]
- Kavvos [2017]

$$
M, N:=x|\lambda x \cdot M|(M N) \mid \text { Let } x_{1}, \ldots x_{n} \text { be } N_{1}, \ldots, N_{n} \text { in } M
$$

Lambda calculus for (constructive) modal logic:

- Pfenning [1995,2001]
- Bellin, De Paiva and Ritter [2001]
- Kakutani [2007]
- Kavvos [2017]

$$
\begin{gathered}
M, N:=x|\lambda x \cdot M|(M N) \mid M\left[N_{1}, \ldots, N_{n} / x_{1}, \ldots x_{n}\right]_{■} \\
M\left[\vec{P}, R[\vec{N} / \vec{z}]_{■}, \vec{Q} / \vec{x}, y, \vec{w}\right]_{\square} \leadsto_{\beta} M\{N / x\} \\
\leadsto_{\beta} M\{R / y\}[\vec{P}, \vec{N}, \vec{Q} / \vec{x}, \vec{z}, \vec{w}]_{■}
\end{gathered}
$$

Note: no η-expansion of the $\cdot[\cdot / \cdot]_{\text {■ }}$

What about semantics*?

What about semantics*?
*not those semantics

What about denotational semantics?

What about denotational semantics?

Definition (Denotational semantics)

$$
\begin{array}{cccc}
\llbracket-\rrbracket: & \{\text { Proofs }\} & \rightarrow & \text { \{ Denotations }\} \\
\mathfrak{D} & \rightarrow & \llbracket \mathfrak{D} \rrbracket
\end{array}
$$

such that if $\mathfrak{D} \leadsto_{\text {cut }}^{*} \mathfrak{D}^{\prime} \quad$ then $\llbracket \mathfrak{D} \rrbracket=\llbracket \mathfrak{D}^{\prime} \rrbracket$

What about denotational semantics?

Definition (Denotational semantics)

$$
\begin{array}{cccc}
\llbracket-\rrbracket: & \{\text { Proofs }\} & \rightarrow & \text { \{吕enotations }\} \\
\mathfrak{D} & \rightarrow & \llbracket \mathfrak{D} \rrbracket
\end{array}
$$

such that if $\mathfrak{D} \leadsto{ }_{\text {cut }}^{*} \mathfrak{D}^{\prime} \quad$ then $\llbracket \mathfrak{D} \rrbracket=\llbracket \mathfrak{D}^{\prime} \rrbracket$

Denotational semantics for constructive modal logic(s) [Bellin, De Paiva and Ritter, 2001]

Idea: $\quad \frac{\{\lambda \text {-terms }\}}{\beta \text {-reduction }}\left(\right.$ which is tha same of $\left.\frac{\{\text { Proofs }\}}{\text { cut-elimination }}\right)$

What about denotational semantics?

Definition (Denotational semantics)

$$
\begin{array}{cccc}
\llbracket-\rrbracket: & \{\text { Proofs }\} & \rightarrow & \text { \{吕enotations }\} \\
\mathfrak{D} & \rightarrow & \llbracket \mathfrak{D} \rrbracket
\end{array}
$$

such that if $\mathfrak{D} \leadsto{ }_{\text {cut }}^{*} \mathfrak{D}^{\prime} \quad$ then $\llbracket \mathfrak{D} \rrbracket=\llbracket \mathfrak{D}^{\prime} \rrbracket$

Denotational semantics for constructive modal logic(s) [Bellin, De Paiva and Ritter, 2001]

Idea: $\quad \frac{\{\lambda \text {-terms }\}}{\beta \text {-reduction }}\left(\right.$ which is tha same of $\left.\frac{\{\text { Proofs }\}}{\text { cut-elimination }}\right)$

Is it possible to have a concrete model?
[i.e., denotations are not equivalence classes]

What about denotational semantics?

Definition (Denotational semantics)

$$
\begin{array}{cccc}
\llbracket-\rrbracket: & \{\text { Proofs }\} & \rightarrow & \text { \{ Denotations }\} \\
\mathfrak{D} & \rightarrow & \llbracket \mathfrak{D} \rrbracket
\end{array}
$$

such that if $\mathfrak{D} \leadsto{ }_{\text {cut }}^{*} \mathfrak{D}^{\prime} \quad$ then $\llbracket \mathfrak{D} \rrbracket=\llbracket \mathfrak{D}^{\prime} \rrbracket$

Denotational semantics for constructive modal logic(s) [Bellin, De Paiva and Ritter, 2001]

Idea: $\quad \frac{\{\lambda \text {-terms }\}}{\beta \text {-reduction }}\left(\right.$ which is tha same of $\left.\frac{\{\text { Proofs }\}}{\text { cut-elimination }}\right)$

Is it possible to have a concrete model?
[i.e., denotations are not equivalence classes]
What about game semantics (à la Blass, Abramsky, Hyland)?

- AiML 2022 [A \& L. Straßburger]: Combinatorial Proofs for Constructive Modal Logic
- AiML 2022 [A \& L. Straßburger]: Combinatorial Proofs for Constructive Modal Logic
- TABLEAUX 2021 [A. \& D. Catta \& L. Straßburger]: Games Semantics for Constructive Modal Logic

Even previously...

A very minimal fragment of intuitionistic Logic

$$
A, B::=1|a| A \supset B
$$

Sequent Calulus

$$
\overline{a \vdash a} \mathrm{AX} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset^{\mathrm{R}} \frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \supset B \vdash C} \supset^{\llcorner }-1 \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} \mathrm{C} \frac{\Gamma \vdash B}{\Gamma, A \vdash B} \mathrm{~W}
$$

Theorem

One-to-one correspondence between $\beta \eta$-normal λ-terms and WISs.

$$
\begin{array}{c|c}
\text { Terms } \\
t:=\star|x| \lambda x . t \mid(t) u
\end{array} \left\lvert\, \begin{gathered}
\text { Reductions } \\
(\lambda x . t) u \rightsquigarrow_{\beta} t\{u / x\} \quad t \rightsquigarrow_{\eta} \lambda x . t(x)
\end{gathered}\right.
$$

Theorem (Denotational Semantics)

WISs provide a full complete denotational semantics for intuitionistic logic.

- If \mathcal{S} is a WIS, then there is π s.t. $\mathcal{S}=\llbracket \pi \rrbracket$
- $\pi_{1} \leadsto \hat{\pi}$ \& $\pi_{2} \Longleftrightarrow \llbracket \pi_{1} \rrbracket=\llbracket \pi_{2} \rrbracket$

Previously...
 I mean the first "Previously", not "Previously the even previously"

$$
\equiv_{\diamond \mathrm{w}}:=\left(\equiv_{\mathrm{WIS}} \cup \equiv_{\square \mathrm{c}}\right)
$$

- TABLEAUX 2023 [A. \& D. Catta \& F. Olimpieri]: Canonicity of Proofs in Constructive Modal Logic

Very fast overview of the results

Constructive Modal Logic CK (the \square-fragment)

Formulas/Types: $\quad A, B::=a|A \supset B| \square A$

Terms: $\quad M, N:=x|\lambda x \cdot M|(M N) \mid M[\vec{N} / \vec{x}]$.

$$
\frac{}{a \vdash a} \mathrm{AX} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset^{\mathrm{R}} \frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \supset B \vdash C} \supset^{L} \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} \mathrm{C} \frac{\Gamma \vdash B}{\Gamma, A \vdash B} \mathrm{~W} \frac{\Gamma \vdash A}{\square \Gamma \vdash \square A} \mathrm{~K}^{\square}
$$

Idea: we need additional reductions (and fix the system accordingly):

Ground Steps:

$$
\begin{aligned}
& (\lambda x . M) N \nsim \beta_{1} M\{N / x\} \\
& M\left[\vec{P}, R[\vec{N} / \vec{z}]_{\square}, \vec{Q} / \vec{x}, y, \vec{w}\right]_{\bullet} w_{\beta_{2}} M\{R / y\}[\vec{P}, \vec{N}, \vec{Q} / \vec{x}, \vec{z}, \vec{w}]_{\square} \\
& M \rightsquigarrow \eta_{1} \lambda x . M x \quad \text { if } \Gamma \vdash M: A \rightarrow B, x \notin \mathrm{FV}(M) \text { and } M \notin \Lambda^{\lambda} \\
& M \rightsquigarrow_{\eta_{2}} x[M / x]_{\text {■ }} \quad \text { if } \Gamma+M: \square A, x \notin \mathrm{FV}(M) \text { and } M \notin \Lambda^{\text {• }} \\
& M[\vec{P}, N, \vec{Q} / \vec{x}, y, \vec{z}], \rightsquigarrow_{\kappa_{1}} M[\vec{P}, \vec{Q} / \vec{x}, \vec{z}] . \\
& M\left[\vec{P}, N, N, \vec{Q} / \vec{x}, y_{1}, y_{2}, \vec{z}\right]_{\curvearrowleft} \leadsto_{\kappa_{2}} M\left\{v, v / y_{1}, y_{2}\right\}[\vec{P}, N, \vec{Q} / \vec{x}, v, \vec{z}] .
\end{aligned}
$$

Reduction Steps in Contexts:

$\frac{M \rightsquigarrow_{\beta_{i}} N}{\mathbf{C}[M] \leadsto \rightsquigarrow_{\beta} \mathbf{C}[N]} i \in\{1,2\} \quad \frac{M \rightsquigarrow_{\kappa_{i}} N}{\mathbf{C}[M] \rightsquigarrow_{\kappa} \mathbf{C}[N]} i \in\{1,2\}$
with $\quad \mathbf{C}[0] \in \mathrm{CwH}$
$\frac{M \leadsto \eta_{\eta_{1}} N}{\mathbf{E}[M] \leadsto \overbrace{\eta} \mathbf{E}[N]}$
$\mathbf{E}[\circ] \in \mathrm{CwH}_{\eta_{1}}$
and

$$
\begin{gathered}
M \leadsto \rightsquigarrow_{\eta_{2}} N \\
\mathbf{D}[M] \rightsquigarrow \mapsto_{\eta} \mathbf{D}[N] \\
\mathbf{D}[\circ] \in \mathrm{CwH}_{\eta_{2}}
\end{gathered}
$$

Results:

- The reduction relation $\left(\rightsquigarrow_{\beta} \cup \rightsquigarrow_{\eta} \cup \rightsquigarrow_{\kappa}\right)$ is confluent;
- Inductive definition of $\beta \eta \kappa$-normal forms;
- A focused-like (sound and complete) typing system for $\beta \eta \kappa$-normal terms CK F;
- A one-to-one correspondence between $\beta \eta \kappa$-normal terms and derivations in CK^{F};
- A one-to-one correspondence between derivations in CK F and CK-WISs;

Theorem

There is a one-to-one correspondence between $\beta \eta \kappa$-normal terms and CK-WISs.

Related works/Works in Progress:

- Combinatorial Proofs and Game Semantics for CS4 (and normalization)
- Extend results on λ-calculus for $C K$ (include \diamond and \wedge)
- Re-study categorical semantics (!)

Thanks

Thanks

Questions?

