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Prehistory of 2-dimensional syntaxes

Example (Pitagora’s Theorem)

In a right triangle, the square of the hypotenuse (the side opposite the
right angle) is equal to the sum of the squares of the other two sides.

c2 = a2 + b2

Proof:

(a+ b)2 = a2 + b2 + 4(
1

2
ab)
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Prehistory of 2-dimensional syntaxes

Example (Pitagora’s Theorem)

In a right triangle, the square of the hypotenuse (the side opposite the
right angle) is equal to the sum of the squares of the other two sides.

c2 = a2 + b2

Proof [Euclide]:

ˆACE =
ˆACE + ˆBCE = ˆACB + ˆCAK = ˆBCK;

AC = CK and CB = CE;

⇒
4

BCK =
4

ACE;

A(
4

BCK) = 1
2
A(

�
ACKH);

A(
4

ACE) = 1
2
A(

�
CELM);

⇒ A(
�

ACKH) = A(
�

CELM)

. . . Symilarly for the rectangle
�
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Prehistory of 2-dimensional syntaxes

Euler and the seven bridges of Königsberg (1736)

The foundation of graph theory.

B . . . but graphs are 3-dimensiontal objects.
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Prehistory of 2-dimensional syntaxes

Feynman diagrams (1948)

Representation of interaction between subatomic particles.

Intertwining operators between positive-energy represetations of the
Poincaré group
(morphisms of the symmetric monoidal category of positive-energy
represetations of the Poincaré group).
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Prehistory of 2-dimensional syntaxes

Penrose diagrams: spin networks (1971)

Interwiners operators between irreducible representations of a compact Lie
group.
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Prehistory of 2-dimensional syntaxes

. . . back to logic

Girard’s proof nets (1987)

Lafont’s interaction nets (1990)
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String diagrams

Joyal-Street’s string diagrams

André Joyal and Ross Street, The geometry of tensor calculus, 1991.
Albert Burroni, Higher dimensional word problem with application to
equational logic, 1993.

In general, a string diagram φ : Γ⇒ ∆ is a morphism with inputs
Γ = Γ1, . . . ,Γn and outputs ∆ = ∆1, . . . ,∆k and it is represented as
follows:

Γ

φ

∆
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String diagrams

String diagrams (or simply diagrams) are a way of notating natural
transformations and functors. The idea behind is to represent a functor

C F→ D as

·FC D

and a sequential composition C F→ D G→ E as

· ·F GC D E
.
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String diagrams

Expanding these representations into 2-dimensional ones, the notation for
the previous functor and sequential composition are the following:

F

C D
and

F G

C D E

A natural transformation φ between two functon F,G : C → D will be
represented as follow

F

C φ D
G

.
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String diagrams

For example, the natural transformation of functor composition

◦ : C F→ D G→ E ⇒ C G◦F→ E

is represented as follows:

F G

D
C ◦ E

G◦F
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String diagrams

Back to our definition:
String diagrams (with no colors on backgrounds) are a 2-dimensional
syntax for morphisms in monoidal categories
(here the comma denotes the product and � the neutral object).

Γ

φ

∆
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String diagrams

Diagrams may be composed in two different ways:

parallel composition:
Γ Γ′

φ ψ

∆ ∆′

(partial) sequential composition which corresponds to usual
composition of maps:

Γ︷︸︸︷
φ

ψ︸︷︷︸
∆′
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String diagrams

These compositions are associative with unit(s) respectivelly empty
diagram id0 : � ⇒ � and idΓ : Γ⇒ Γ for each Γ ∈ Σ∗. The identity
diagrams idΓ are pictured as follows:

Γ

Γ

Our two compositions satisfy the interchange rule:

φ

ψ
= φ ψ =

ψ

φ
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Linear logic sintaxes for proofs
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Actually, in linear logic we have two syntaxes to represent proofs:

Sequent calculus formalism was introduced by Genzen in 1933 for
classical logic: a proof is represented by means of a sequence (tree) of
inference rules over sequents.

Proof nets was introduced by Girard in 1987 for MLL sequent
calculus: a proof is represented by means of a graph with vertexes
connectives and edges formulas.
The extension of this formalism to other fragments of LL requires
additional syntactical expedients as jumps and boxes.

In this talk we will focus on multiplicative linear logic with units.
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Linear logic sintaxes for proofs: sequent calculus
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Linear logic sequent calculus

Identity or Axiom Cut
Structural Rules

Ax
` A,A⊥ ` Σ, A ` Γ, A⊥

Cut` Σ,Γ

Par Tensor
Multiplicative
Rules

` Σ, A,B `` Σ, A`B

` Σ, A ` B,Γ ⊗
` Σ, (A⊗B),Γ

Bottom 1
Constants

` Σ ⊥` Σ,⊥
1` 1

We also consider the usually omitted exchange rule:

` A1, . . . , Ak
σ ∈ Sk` Aσ(1), . . . , Aσ(k)
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Cut elimination

Theorem (Cut-elimination)

If ` Γ is derivable in MLLu , then it is derivable without Cut inference rule.

Proof.

The proof of theorem follows the termination of the following
cut-elimination procedure.
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Cut elimination

Definition (Cut-elimination procedure)

The cut-elimination procedure is the relation →Cut generated by the
following (oriented) relations called cut-elimination steps:

...
` Γ, A

Ax
` A⊥, A

Cut` Γ, A
→Cut

...
` Γ, A

Ax
` A,A⊥

...
` Γ, A

Cut` Γ, A
→Cut

...
` Γ, A

...
` Γ, A

...
` B,∆ ⊗` Γ,∆, A⊗B

...

` B⊥, A⊥,Σ `
` B⊥ `A⊥,Σ

Cut` Γ,∆,Σ
→Cut

...
` Γ, A

...
` B,∆

...

` B⊥, A⊥,Σ
Cut

` ∆, A⊥,Σ
Cut` Γ,∆,Σ

...

` B⊥, A⊥,Σ `
` B⊥ `A⊥,Σ

...
` Γ, A

...
` B,∆ ⊗` Γ,∆, A⊗B

Cut` Γ,∆,Σ
→Cut

...

` B⊥, A⊥,Σ

...
` B,∆

Cut
` ∆, A⊥,Σ

...
` Γ, A

Cut` Γ,∆,Σ

...
` Γ ⊥` Γ,⊥ 1` 1

Cut` Γ
→Cut

...
` Γ

1` 1

...
` Γ ⊥` Γ,⊥

Cut` Γ
→Cut

...
` Γ
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Cut elimination

Some occurrences of Cut rule can not be directly removed by the
cut-elimination procedure.

Definition (Commutative cut)

An occurrence of a Cut rule is a commutative cut if one of its active
formula is not the principal.

In order to remove such occurrences, there are two options:

Define some additional transformations over derivation;

Define an equivalence over derivations.
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Standard proof equivalence

Definition

We define the standard equivalence over MLLu derivations (denoted by
∼) as the equivalence derivations generated by the following equivalences
for all A,B,C,D ∈ FM``u , Γ,∆,Σ ∈ F∗M``u

:

...
` Γ,∆,Σ �1` �1(Γ),∆,Σ �2` �1(Γ),�2(∆),Σ

∼

...
` Γ,∆,Σ �2` Γ,�2(∆),Σ �1` �1(Γ),�2(∆),Σ

...
` ∆, A

...
` B,Γ,Σ �1` ∆,�1(A,B),Γ,Σ �2` ∆,�1(A,B),�2(Γ),Σ

∼

...
` ∆, A

...
` B,Γ,Σ �2` ∆, B,�2(Γ),Σ �1` ∆,�1(A,B),�2(Γ),Σ

...
` Γ, A,Σ

...
` B,∆ �1` Γ,�1(A,B),∆,Σ �2` �2(Γ),�1(A,B),∆,Σ

∼

...
` Γ, A,Σ �2` �2(Γ), A,Σ

...
` B,∆ �1` �2(Γ),�1(A,B),∆,Σ
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Standard proof equivalence

...
` Γ, A

...
` Σ, B,C �1` Γ,Σ,�1(A,B), C

...
` ∆, D �2` Γ,Σ,∆,�1(A,B), (C �2 D)

∼

...
` Γ, A

...
` Σ, B,C

...
` ∆, D �2` Σ,∆, B,�2(C,D) �1` Γ,Σ,∆,�1(A,B),�2(C,D)

...
` Γ, A,C

...
` Σ, B �1` Γ,Σ,�1(A,B), C

...
` ∆, D �2` Γ,Σ,∆,�1(A,B), (C �2 D)

∼

...
` Γ, A,C

...
` ∆, D �2` Γ,∆, A,�2(C,D)

...
` Σ, B �1` Γ,Σ,∆,�1(A,B), (C �2 D)

...
` Σ, C

...
` Γ, A

...
` ∆, D,B �1` Γ,∆, D,�1(A,B) �2` Γ,Σ,∆,�1(A,B),�2(C,D)

∼

...
` Γ, A

...
` Σ, C

...
` ∆, D,B �2` Σ,∆, B,�2(C,D) �1` Γ,Σ,∆,�1(A,B),�2(C,D)
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Linear logic sintaxes for proofs: proof nets

Matteo Acclavio (Université de Caen) Proof diagrams 25 / 63



Interaction nets

Definition (Interaction net)

An interaction net is given by:

a finite set of free ports X;

a finite set of cells C;

a label l(c) for each c ∈ C (which defines the number of its active
and non-active ports);

a finite set of wires W ;

a set ∂(w) of 0 or 2 ports for each w ∈W .
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Proof structures

Set of cells types for MLL proof structures:

⊗ ` Ax Cut

⊗ `

Set of cells types for MLLu proof structures:

⊗ ` Ax Cut ⊥ 1

⊗ `
Plus an extra edge from each ⊥-cell to a cell Ax or 1.

For example:

⊗ `
` ⊗

⊗
⊗

⊗
⊗

`
`
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Proof nets

Remark

Proof nets represent equivalence classes of proofs.

In MLL two derivations D and D′ are equivalent if and only if their
associate proof nets are the same (graph isomorphic).

In MLLu two derivations D and D′ are equivalent if and only if their
associate proof nets are equivalent modulo jump re-assignations (graph
isomorphism + graph rewriting).
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Proof nets

Definition (Proof net)

A proof net is a sequentializable proof structure, i.e. a proof structure
which represents a derivation.

In order to recognize a sequentializable proof structure, we have some
proof net correctness criteria:

Girard (empires);

Danos-Regnier (switching);

Guerrini (parsing).

Each proof net correctness criteria verify the correct application of
inference rules verifying arities by means of topological properties of the
associated labeled graph.

Matteo Acclavio (Université de Caen) Proof diagrams 29 / 63



String diagram rewriting and Polygraphs
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Polygraphs

We present a diagram rewriting system (SΣ,RΣ) by means of a
3-polygraph Σ = (Σ0,Σ1,Σ2,Σ3):

Set String diagrams Monoidal category
Σ0 Background labels

Σ1 String labels Objects

Σ2 The signature SΣ (gate types) Morphisms

Σ3 The set of rewriting rules RΣ Functors

We denote 〈Σ〉 monoidal category with objects the words over the alphabet
Σ1 and with morphisms the equivalence classes of diagrams generated by
the signature Σ2 modulo the equivalence relation generated by Σ3.
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Polygraphs

We label string by formulas, that is Σ1 = {Formulas}. Sequents are
parallel compositions of strings, that are identities.

Γ

Γ
= ` Γ

Gates are correspond to inference rules.

Rewriting rules corresponds to identities on derivations or cut-elimination.

B We need some morphisms in order to manage sequents since we use to
consider sequents as multisets:

` A,B = ` B,A
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Control polygraphs for MLLu
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Control polygraph for MLLu

Definition

The control polygraph of multiplicative linear logic with units Ũ is given by
the following sets of cells:

Ũ0 = { � };
Ũ1 = FM``u ∪ {L = , R = };
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Control polygraph for MLLu

Ũ2 =

AxA : � ⇒ L,A,A⊥, R =
A

AA⊥

1 : � ⇒ L, 1, R = 1

⊥ : � ⇒ ⊥ = ⊥

`A,B : A,B ⇒ A`B =

A B

`
A`B

⊗A,B : A,R,L,B ⇒ A⊗B =

A B

⊗
A⊗B

CutA : A,R,L,A⊥ ⇒ � = A A⊥

A,B : A,B ⇒ B,A =
A B

B A


A,B∈FM``u
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Control polygraph for MLLu

Ũ3 = M̃Twist ∪ ŨTwist where:

M̃Twist is given by the following twisting relations:

A B

A B

*4 A B ,

A B C

C B A

*4

A B C

C B A

,

A B C

`

C A`B

*4

A B C

`
C A`B

,

A B C

`

B`C A

*4

A B C

`
B`C A

;

together with one rule representing the involution A⊥⊥ = A:

A

A⊥ A

*4
A⊥

A⊥ A

ŨTwist is given by the following twisting relations:

A

A ⊥

*4
A

A ⊥
,

A

⊥ A

*4
A

⊥ A

.
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Control polygraph for MLLu

Theorem (Termination of Ũ)

The polygraph Ũ is terminating.

Proposition (Ũ non-confluence)

The polygraph Ũ is not confluent.

Proof.

In Ũ the following critical pair is not confluent:

⊗ ⊗ *4jt ⊗
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Control polygraph for MLLu

Theorem (Controlled proof diagram correspondence in Ũ)

`MLLu Γ⇔ ∃φ ∈ Ũ such that φ : � ⇒ L,Γ, R.

Definition (Representation)

We say that a proof diagram φ ∈ U with φ : � ⇒ L,Γ, R represents a
derivation d(Γ) if it can be sequentialized into the derivation d(Γ).
We say that a derivation d(Γ) is represented by φ or that φ is a
diagrammatic representation of d(Γ) if φ can be sequentialized into the
derivation d(Γ).
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Equivalences over MLLu derivations
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Equivalences over MLLu derivations

We denote Nd(Γ) the proof net representing the derivation d(Γ), we
denote ∼N the equivalence relation over derivations induced by proof
nets syntax. It is defined as follows:

d′(Γ) ∼N d′′(Γ) iff Nd′(Γ) = Nd′′(Γ).

In other words, d′(Γ) ∼N d′′(Γ) if and only if they can be represented
by the same proof net (i.e. iff Nd′(Γ) and Nd′′(Γ) are isomorph labeled
graphs).
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Equivalences over MLLu derivations

We denote 'D the equivalence relation over derivations induced by
proof diagram syntax. It is defined as follows:

d′(Γ) 'D d′′(Γ) iff ∃φ ∈ Ũ such that φd′(Γ) = φ = φd′′(Γ).

We denote ∼D̃ the equivalence relation over derivations induced by

〈Ũ〉. It is defined as follows:

d′(Γ) ∼D̃ d′′(Γ) iff ∃φd′(Γ), φd′′(Γ) ∈ Ũ s.t. [φd′(Γ)]Ũ = [φd′′(Γ)]Ũ.
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Equivalences over MLLu derivations

We have the following inclusions:

∼N(∼ since ⊥ permutations changing jump assignations are not
captured by the proof net syntactical equivalence;

∼D̃(∼ since binary rules permutation which changes branching order
are not captured by the proof diagrams equivalence.

...
` Γ,∆,Σ �1` �1(Γ),∆,Σ �2` �1(Γ),�2(∆),Σ

∼

...
` Γ,∆,Σ �2` Γ,�2(∆),Σ �1` �1(Γ),�2(∆),Σ

...
` ∆, A

...
` B,Γ,Σ �1` ∆,�1(A,B),Γ,Σ �2` ∆,�1(A,B),�2(Γ),Σ

∼

...
` ∆, A

...
` B,Γ,Σ �2` ∆, B,�2(Γ),Σ �1` ∆,�1(A,B),�2(Γ),Σ

...
` Γ, A,Σ

...
` B,∆ �1` Γ,�1(A,B),∆,Σ �2` �2(Γ),�1(A,B),∆,Σ

∼

...
` Γ, A,Σ �2` �2(Γ), A,Σ

...
` B,∆ �1` �2(Γ),�1(A,B),∆,Σ

...
` Γ, A

...
` Σ, B,C �1` Γ,Σ,�1(A,B), C

...
` ∆, D �2` Γ,Σ,∆,�1(A,B), (C �2 D)

∼

...
` Γ, A

...
` Σ, B, C

...
` ∆, D �2` Σ,∆, B,�2(C,D) �1` Γ,Σ,∆,�1(A,B),�2(C,D)

...
` Γ, A,C

...
` Σ, B �1` Γ,Σ,�1(A,B), C

...
` ∆, D �2` Γ,Σ,∆,�1(A,B), (C �2 D)

∼

...
` Γ, A,C

...
` ∆, D �2` Γ,∆, A,�2(C,D)

...
` Σ, B �1` Γ,Σ,∆,�1(A,B), (C �2 D)

...
` Σ, C

...
` Γ, A

...
` ∆, D,B �1` Γ,∆, D,�1(A,B) �2` Γ,Σ,∆,�1(A,B),�2(C,D)

∼

...
` Γ, A

...
` Σ, C

...
` ∆, D,B �2` Σ,∆, B,�2(C,D) �1` Γ,Σ,∆,�1(A,B),�2(C,D)
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Equivalences over MLLu derivations

The equivalence 'D does not capture the case of permutation in which
binary rules have different branching order:


1 2 3

A B C D

⊗

⊗

 6=


1 3 2

A B D C

⊗

⊗


while the corresponding represented proof are ∼-equivalent:

1
...

` A,B

2
...
` C ⊗` A,B ⊗ C

3
...
` D ⊗` A⊗D,B ⊗ C

∼

1
...

` A,B

3
...
` D ⊗` A⊗D,B

2
...
` C ⊗` A⊗D,B ⊗D
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Equivalences over MLLu derivations

Proposition

The equivalence relation ∼D̃ is equivalent to 'D.

For example:

...
` A,D,B,C `` A,D,B ` C

σ` B ` C,A,D `` B ` C,A`D

=

...
` A,D,B,C `` B ` C,A,D `` B ` C,A`D

∼

...
` A,D,B,C `` A`D,B,C `` B ` C,A`D =

...
` A,D,B,C

σ` B,C,A,D `` B,C,A`D `` B ` C,A`D

↓ ↓
φ

A D B C

`

`
B`CA`D

jt Ũ3 *4

φ

A D B C

` `
B`CA`D
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Future works

Extend the works on “Rewriting modulo symmetric monoidal
structures” in order to internalize wire crossings;

Use proof diagrams in order to study proof equivalence complexity of
different sequent calculi (MELL, CyLL, MALL, modal logics, LK);

Study 2-dimensional representations of non-commutative logics proof
nets;

. . .
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Conclusions

The use of 2-dimensional syntax is suitable to express a notion of
non-consequentiality without requiring a notion of contemporaneity;

This notion plays an important role in any definition of proof
equivalence compatible with cut elimination, especially in case of
reversible inference rules;

More in general, this notion is becoming prominent (and in some
cases essential) in the formalization of many different science fields.
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“We have taken the word, the sentence, logic and number as the foundation
stones of our civilisation, forcing our brains to use limiting modes of expression

which we assume are the only correct ones.”

[Tony Buzan, The mind map book, 1993]

Thank you for the attention

Questions?
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The polygraph of MLLu proof diagrams
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The polygraph of MLLu proof diagrams and proof diagram semantics

Definition (Polygraph of diagrammatic MLLu proof diagrams)

The polygraph of diagrammatic MLLu proof nets is the polygraph
obtained extended the polygraph U with the following cells:

U0 = Ũ0;

U1 = Ũ1;

U2 = Ũ2 ∪Big =

BW,W =
W W ′

W ′ W


W,W ′∈(FM``u∪{L,R})∗

;
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The polygraph of MLLu proof diagrams

U3 = Ũ3 ∪ UBig where UBig is made of the following 3-cells:
B-introduction:

φ φ1 φ2

α

N

β

Γ α ∆ β Σ


�
φ φ1 φ2

N

β

α

Γ α ∆ β Σ

ψ1 ψ2 ψ

α

N

β

Σ β ∆ α Γ


�
ψ1 ψ2 ψ

N

α

β

Σ β ∆ α Γ

Matteo Acclavio (Université de Caen) Proof diagrams 52 / 63



The polygraph of MLLu proof diagrams

where φ and ψ are of the form

φ

Γ Γ′ A
=

φ′

N ′

Γ Γ′′ B A

and

ψ

A Γ′ Γ
=

ψ′

N ′

A B Γ′′ Γ
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The polygraph of MLLu proof diagrams

The untangle relations: for any x ∈ Ũ2

W x W ′ ∆

∆ W W ′

*4
W W ′ ∆

∆ W x W ′

,
∆ W x W ′

W W ′ ∆

*4
∆ Γ Γ′

W x W ′ ∆

.

Proposition

If φ ∈ U is a proof diagram φ : � ⇒ L,Γ, R containing a B-gate, then
there is a rewriting sequence made by untangle relations of the form

φ ψ

W2 W1

∗ *4
ψ φ

W2 W1
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The polygraph of MLLu proof diagrams

B-introduction rules are applied on configurations of the form

Γ Γ′ A B ∆ C Σ

N

α

N ′

β

α(N,B) ∆ β(N ′,C) Σ

or

Σ C ∆ B A Γ′ Γ

N

α

N ′

β

Σ β(C,N ′) ∆ α(B,N)

where α, β are splitting gates, that are gates of type ⊗ or Cut.
For example, consider the two following configurations with A active
formula of α:

Γ1 ΓB Γ2 ΓA
. . .

... . .
.

` Γ, Γ′A , B

...
` C,∆

β(B,C)
` Γ,∆, Γ′A , β(B,C)

` Γ′,∆′, A , β(B,C)

...
` D,Σ

α(A,D)
` Γ′,∆′, β(B,C), α( A ,D),Σ

or

...
` Σ, D

...
` ∆, C

ΓA Γ1 ΓB Γ2

. . .
... . .

.

` Γ, Γ′A , B
β(C,B)

` ∆, β(B,C), Γ′A ,Γ

` β(B,C), A ,Γ′,∆′
α(D,A)

` Σ, β(B,C), α(D, A ),Γ′∆′
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The polygraph of MLLu proof diagrams

Theorem (Termination of U)

The polygraph U is terminating.

In particular, if φ ∈ U is irreducible, then φ ∈ Ũ.

Even if the polygraph U is not confluent, the rewriting concerning only
B-gates elimination is:

Proposition

The order of the Ax and 1 gates (derivation tree leafs) is the same for
every U3-equivalent irreducible diagram in U.
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A denotational semantics for MLLu
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A denotational semantics for MLLu

We define the following equivalence relation:

d′(Γ) ∼D d′′(Γ) iff ∃φd′(Γ), φd′′(Γ) ∈ Ũ s.t. [φd′(Γ)]U = [φd′′(Γ)]U.

Theorem

Two derivations are equivalent modulo ∼ if and only if they are
represented by two equivalent proof diagrams with respect of 〈U〉. That is:

d(Γ) ∼ d′(Γ)⇔ d(Γ) ∼D d′(Γ)

Thus the following function is well defined:

[−]U : {MLLu proofs (mod ∼)} → { morphisms in 〈U〉}

d(Γ) → [φd(Γ)]U
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A denotational semantics for MLLu

Definition (Polygraph of MLLu semantics)

The polygraph of multiplicative linear logic semantics SMLLu is given by U
enriched with the set of 3-cells SCutMLLu

= MCut ∪ UCut:

MCut is made of the following 3-cells:

A

A

*4 A

A B Γ B⊥A⊥

⊗
`

Γ

*4

A B Γ B⊥A⊥

Γ

A

A

*4 A

A B Γ B⊥ A⊥

⊗
`

Γ

*4

A B Γ B⊥ A⊥

Γ

UCut is made of the following 3-cells:

*4 *4
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A denotational semantics for MLLu

Theorem (Termination in SMLLu )

The polygraph SMLLu is terminating.

Consequently, we have a cut-elimination Theorem for the set of
sequentializable proof diagrams in SMLLu .

Theorem (Cut-elimination)

An irreducible proof diagram φ ∈ SMLLu which represent a derivation
contains no Cut-gates.

Matteo Acclavio (Université de Caen) Proof diagrams 60 / 63



A denotational semantics for MLLu

Theorem (Multiplicative linear logic correspondence)

`MLLu Γ⇔ ∃φ ∈ SMLLu such that φ : � ⇒ L,Γ, R.

We define the following function associating to any MLLu derivation d(Γ)
a morphism of the category 〈SMLLu 〉 as follows:

Definition (Denotational semantics of proof diagrams)

[−]D : {MLLu derivations} → { morphisms in 〈SMLLu 〉}

d(Γ) → [d(Γ)]D = [φd(Γ)]SMLLu

where φd(Γ) is an arbitrary representation of d(Γ).
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A denotational semantics for MLLu

Theorem (Proof diagram semantics)

[−]D is a denotational semantics for MLLu sequent calculus.

Proof.

We define the following equivalence relation ≈D over MLLu derivations:

d′(Γ) ≈D d′′(Γ) iff [d′(Γ)]D = [d′′(Γ)]D

We have the following properties:

1 if d(Γ)→Cut d̂(Γ), then d(Γ) ≈D d̂(Γ);

2 ≈D is non-degenerated, i.e. one can find a formula with at least two
non-equivalent proofs;

3 ≈D is a congruence;
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A denotational semantics for MLLu

We remark that [−]D is coherent with the involutivity of negation. In fact,
the invariance of diagram inputs and outputs with respect to rewriting
impose the equivalence A⊥⊥ = A:

AxA =

A

AA⊥

*4
A⊥

AA⊥
*4

A⊥⊥

AA⊥
= AxA⊥⊥

Similarly, De Morgan’s laws follow by the definition of Cut-gates. By
means of example, consider the equivalence of A`B = (B⊥ ⊗A⊥)⊥:

φ B⊥⊗A⊥

`
A`B

(A⊥⊗B⊥)⊥

*4

φ

`
(A⊥⊗B⊥)⊥
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