Proof diagrams: another parallel syntax for proof theory

Matteo Acclavio

Laboratoire de Mathématiques Nicolas Oresme

22/06/2017 Bologna
(1) History and prehistory of 2-dimensional syntaxes

- Geometry intuitions
- The syntax for quantum mechanics
- String Diagrams for category theory
(2) Backgrounds I: Linear logic sintaxes for proofs
- Linear logic sequent calculus
- Linear logic proof nets
(3) Backgrounds III: String diagram rewriting and Polygraphs
(4) Proof diagrams I
- Control polygraph for $M L L_{u}$
(5) Equivalences over $M L L_{u}$ derivations
(6) Conclusions and future works

Prehistory of 2-dimensional syntaxes

Example (Pitagora's Theorem)

In a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

$$
c^{2}=a^{2}+b^{2}
$$

Proof:

Prehistory of 2-dimensional syntaxes

Example (Pitagora's Theorem)

In a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

$$
c^{2}=a^{2}+b^{2}
$$

Proof:

Prehistory of 2-dimensional syntaxes

Example (Pitagora's Theorem)

In a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

$$
c^{2}=a^{2}+b^{2}
$$

Proof:

$$
(a+b)^{2}=a^{2}+b^{2}+4\left(\frac{1}{2} a b\right)
$$

Prehistory of 2-dimensional syntaxes

Example (Pitagora's Theorem)

In a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

$$
c^{2}=a^{2}+b^{2}
$$

Proof [Euclide]:

- $A \hat{C} E=$

$$
A \hat{C} E+B \hat{C} E=A \hat{C} B+C \hat{A} K=B \hat{C} K
$$

- $A C=C K$ and $C B=C E$;
$\Rightarrow B \stackrel{\triangle}{C} K=A \stackrel{\triangle}{C} E$;
- $A(B \stackrel{\Delta}{C} K)=\frac{1}{2} A(A C K H)$;
- $A(A \stackrel{\triangle}{C} E)=\frac{1}{2} A(C \stackrel{\square}{E L M})$;
$\Rightarrow A(A C K H)=A(C E \stackrel{\square}{\square} M)$

Prehistory of 2-dimensional syntaxes

Euler and the seven bridges of Königsberg (1736)

The foundation of graph theory.

(a) Königsberg in 1736

(b) Euler's graphical representation

Prehistory of 2-dimensional syntaxes

Euler and the seven bridges of Königsberg (1736)

The foundation of graph theory.

(a) Königsberg in 1736

(b) Euler's graphical representation
... but graphs are 3-dimensiontal objects.

Prehistory of 2-dimensional syntaxes

Feynman diagrams (1948)

Representation of interaction between subatomic particles.

Feynman diagrams (1948)

Representation of interaction between subatomic particles.

Intertwining operators between positive-energy represetations of the Poincaré group (morphisms of the symmetric monoidal category of positive-energy represetations of the Poincaré group).

Prehistory of 2-dimensional syntaxes

Penrose diagrams: spin networks (1971)

Interwiners operators between irreducible representations of a compact Lie group.

Prehistory of 2-dimensional syntaxes

... back to logic

Girard's proof nets (1987)

Prehistory of 2-dimensional syntaxes

... back to logic

Girard's proof nets (1987)

Lafont's interaction nets (1990)

Joyal-Street's string diagrams

André Joyal and Ross Street, The geometry of tensor calculus, 1991. Albert Burroni, Higher dimensional word problem with application to equational logic, 1993.

In general, a string diagram $\phi: \Gamma \Rightarrow \Delta$ is a morphism with inputs $\Gamma=\Gamma_{1}, \ldots, \Gamma_{n}$ and outputs $\Delta=\Delta_{1}, \ldots, \Delta_{k}$ and it is represented as follows:

String diagrams (or simply diagrams) are a way of notating natural transformations and functors. The idea behind is to represent a functor $\mathcal{C} \xrightarrow{F} \mathcal{D}$ as

String diagrams (or simply diagrams) are a way of notating natural transformations and functors. The idea behind is to represent a functor $\mathcal{C} \xrightarrow{F} \mathcal{D}$ as

and a sequential composition $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ as

String diagrams

Expanding these representations into 2-dimensional ones, the notation for the previous functor and sequential composition are the following:

$$
\left.\mathcal{C}\right|^{F} \quad \text { and }\left.\left.\quad \mathcal{C}\right|^{F} \mathcal{D}\right|^{G} \mathcal{E}
$$

String diagrams

Expanding these representations into 2-dimensional ones, the notation for the previous functor and sequential composition are the following:

$$
\left.\mathcal{C}\right|^{F} \mathcal{D} \quad \text { and }\left.\left.\quad \mathcal{C}\right|^{F} \mathcal{D}\right|^{G} \mathcal{E}
$$

A natural transformation ϕ between two functon $F, G: \mathcal{C} \rightarrow \mathcal{D}$ will be represented as follow

$$
\mathcal{C}{\underset{G}{\dot{\phi}} \underset{G}{F} \mathcal{D} .}^{\text {. }}
$$

String diagrams

For example, the natural transformation of functor composition

$$
\circ: \mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E} \Rightarrow \mathcal{C} \xrightarrow{G \circ F} \mathcal{E}
$$

is represented as follows:

Back to our definition:

String diagrams (with no colors on backgrounds) are a 2-dimensional syntax for morphisms in monoidal categories (here the comma denotes the product and \square the neutral object).

String diagrams

Diagrams may be composed in two different ways:

String diagrams

Diagrams may be composed in two different ways:

- parallel composition:

String diagrams

Diagrams may be composed in two different ways:

- parallel composition:

$$
\begin{array}{cc}
\Gamma & \Gamma^{\prime} \\
& \begin{array}{c}
\cdots \\
\hline \phi \\
\hline \phi \\
\hline \cdots
\end{array} \\
\hline \cdots \\
\cdots & \cdots \\
\hline \cdots & \Delta^{\prime}
\end{array}
$$

- (partial) sequential composition which corresponds to usual composition of maps:

String diagrams

These compositions are associative with unit(s) respectivelly empty diagram $\mathbf{i d}_{0}: \square \Rightarrow \square$ and $\mathbf{i d}_{\Gamma}: \Gamma \Rightarrow \Gamma$ for each $\Gamma \in \Sigma^{*}$. The identity diagrams $i d_{\Gamma}$ are pictured as follows:

$$
\begin{gathered}
\Gamma \\
|\cdots| \\
\Gamma
\end{gathered}
$$

String diagrams

These compositions are associative with unit(s) respectivelly empty diagram $\mathbf{i d}_{0}: \square \Rightarrow \square$ and $\mathbf{i d}_{\Gamma}: \Gamma \Rightarrow \Gamma$ for each $\Gamma \in \Sigma^{*}$. The identity diagrams $i d_{\Gamma}$ are pictured as follows:

$$
\underset{\stackrel{\Gamma}{\Gamma}}{\stackrel{\cdots}{\Gamma}}
$$

Our two compositions satisfy the interchange rule:

Linear logic sintaxes for proofs

Actually, in linear logic we have two syntaxes to represent proofs:

- Sequent calculus formalism was introduced by Genzen in 1933 for classical logic: a proof is represented by means of a sequence (tree) of inference rules over sequents.
- Proof nets was introduced by Girard in 1987 for MLL sequent calculus: a proof is represented by means of a graph with vertexes connectives and edges formulas.
The extension of this formalism to other fragments of $L L$ requires additional syntactical expedients as jumps and boxes.

In this talk we will focus on multiplicative linear logic with units.

Linear logic sintaxes for proofs: sequent calculus

Linear logic sequent calculus

Structural Rules	Identity or Axiom	Cut
	$\overline{\vdash A, A^{\perp}} A x$	$\frac{\vdash \Sigma, A \quad \vdash \Gamma, A^{\perp}}{\vdash \Sigma, \Gamma} C u t$
Multiplicative Rules	Par	Tensor
	$\frac{\vdash \Sigma, A, B}{\vdash \Sigma, A \ngtr B}$	$\frac{\vdash \Sigma, A \quad \vdash B, \Gamma}{\vdash \Sigma,(A \otimes B), \Gamma} \otimes$
Constants	Bottom$\frac{\vdash \Sigma}{\vdash \Sigma, \perp} \perp$	$1 \begin{array}{ll} \\ & \\ & \frac{\vdash 1}{} 1\end{array}$

We also consider the usually omitted exchange rule:

$$
\frac{\vdash A_{1}, \ldots, A_{k}}{\vdash A_{\sigma(1)}, \ldots, A_{\sigma(k)}} \sigma \in S_{k}
$$

Cut elimination

Theorem (Cut-elimination)
If $\vdash \Gamma$ is derivable in $M L L_{u}$, then it is derivable without Cut inference rule.

Proof.
The proof of theorem follows the termination of the following cut-elimination procedure.

Cut elimination

Definition (Cut-elimination procedure)

The cut-elimination procedure is the relation $\rightarrow_{C u t}$ generated by the following (oriented) relations called cut-elimination steps:

Some occurrences of $C u t$ rule can not be directly removed by the cut-elimination procedure.

Definition (Commutative cut)

An occurrence of a $C u t$ rule is a commutative cut if one of its active formula is not the principal.

In order to remove such occurrences, there are two options:

- Define some additional transformations over derivation;
- Define an equivalence over derivations.

Definition

We define the standard equivalence over $M L L_{u}$ derivations (denoted by \sim) as the equivalence derivations generated by the following equivalences for all $A, B, C, D \in \mathfrak{F}_{\text {Mथ⺝ }_{u}}, \Gamma, \Delta, \Sigma \in \mathfrak{F}_{M \ell \ell_{u}}^{*}$:

$$
\frac{\frac{\vdash \Gamma, \Delta, \Sigma}{\vdash \odot_{1}(\Gamma), \Delta, \Sigma} \odot_{1}}{\vdash \odot_{1}(\Gamma), \odot_{2}(\Delta), \Sigma} \odot_{2}
$$

$$
\sim \frac{\frac{\vdash \Gamma, \Delta, \Sigma}{\vdash \Gamma, \odot_{2}(\Delta), \Sigma} \odot_{2}}{\vdash \odot_{1}(\Gamma), \odot_{2}(\Delta), \Sigma} \odot_{1}
$$

$$
\frac{\frac{\vdash \Delta, A \quad \vdash B, \Gamma, \Sigma}{\vdash \Delta, \odot_{1}(A, B), \Gamma, \Sigma} \odot_{1}}{\vdash \Delta, \odot_{1}(A, B), \odot_{2}(\Gamma), \Sigma} \odot_{2}
$$

$$
\frac{\frac{\vdash \Gamma, A, \Sigma \quad \vdash B, \Delta}{\vdash \Gamma, \odot_{1}(A, B), \Delta, \Sigma} \odot_{1}}{\vdash \odot_{2}(\Gamma), \odot_{1}(A, B), \Delta, \Sigma} \odot_{2}
$$

$$
\begin{gathered}
\vdots \\
\frac{\vdash \Delta, A \quad \frac{\vdash B, \Gamma, \Sigma}{\vdash \Delta, B, \odot_{2}(\Gamma), \Sigma}}{\vdash \Delta, \odot_{1}(A, B), \odot_{2}(\Gamma), \Sigma} \odot_{2} \\
\vdots \\
\frac{\vdash \Gamma, A, \Sigma}{\vdash \odot_{2}(\Gamma), A, \Sigma} \odot_{2} \vdash \odot_{2}(\Gamma), \odot_{1}(A, B), \Delta, \Sigma
\end{gathered}
$$

Standard proof equivalence

$$
\begin{aligned}
& \begin{array}{ccc}
\vdots & \vdash \Gamma, A \quad \vdash \Delta, D, B \\
\vdash \Sigma, C & \frac{\vdash \Gamma, \Delta, D, \odot_{1}(A, B)}{\vdash \Gamma, \Sigma, \Delta, \odot_{1}(A, B), \odot_{2}(C, D)} \odot_{2}
\end{array} \sim \quad \frac{\vdots}{\vdash \Gamma, A} \frac{\vdash \Sigma, C \quad \vdash \Delta, D, B}{\vdash \Gamma, \Sigma, \Delta, \odot_{1}(A, B), \odot_{2}(C, D)} \odot_{1}
\end{aligned}
$$

Linear logic sintaxes for proofs: proof nets

Definition (Interaction net)
An interaction net is given by:

- a finite set of free ports X;
- a finite set of cells C;
- a label $l(c)$ for each $c \in C$ (which defines the number of its active and non-active ports);
- a finite set of wires W;
- a set $\partial(w)$ of 0 or 2 ports for each $w \in W$.

Proof structures

Set of cells types for $M L L$ proof structures:

Proof structures

Set of cells types for $M L L$ proof structures:

Set of cells types for $M L L_{u}$ proof structures:

Plus an extra edge from each \perp-cell to a cell $A x$ or 1 .

Proof structures

Set of cells types for $M L L$ proof structures:

Set of cells types for $M L L_{u}$ proof structures:

Plus an extra edge from each \perp-cell to a cell $A x$ or 1 .

For example:

Proof nets

Remark
Proof nets represent equivalence classes of proofs.

Proof nets

Remark

Proof nets represent equivalence classes of proofs.

In $M L L$ two derivations D and D^{\prime} are equivalent if and only if their associate proof nets are the same (graph isomorphic).

In $M L L_{u}$ two derivations D and D^{\prime} are equivalent if and only if their associate proof nets are equivalent modulo jump re-assignations (graph isomorphism + graph rewriting).

Proof nets

Definition (Proof net)

A proof net is a sequentializable proof structure, i.e. a proof structure which represents a derivation.

In order to recognize a sequentializable proof structure, we have some proof net correctness criteria:

- Girard (empires);
- Danos-Regnier (switching);
- Guerrini (parsing).

Each proof net correctness criteria verify the correct application of inference rules verifying arities by means of topological properties of the associated labeled graph.

String diagram rewriting and Polygraphs

We present a diagram rewriting system $\left(\mathcal{S}_{\Sigma}, \mathcal{R}_{\Sigma}\right)$ by means of a 3 -polygraph $\Sigma=\left(\Sigma_{0}, \Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)$:

Set	String diagrams	Monoidal category
Σ_{0}	Background labels	
Σ_{1}	String labels	Objects
Σ_{2}	The signature \mathcal{S}_{Σ} (gate types)	Morphisms
Σ_{3}	The set of rewriting rules \mathcal{R}_{Σ}	Functors

We denote $\langle\Sigma\rangle$ monoidal category with objects the words over the alphabet Σ_{1} and with morphisms the equivalence classes of diagrams generated by the signature Σ_{2} modulo the equivalence relation generated by Σ_{3}.

Polygraphs

We label string by formulas, that is $\Sigma_{1}=\{$ Formulas $\}$. Sequents are parallel compositions of strings, that are identities.

$$
\begin{gathered}
\Gamma \\
|\cdots| \\
\Gamma
\end{gathered}=\vdash \Gamma
$$

Polygraphs

We label string by formulas, that is $\Sigma_{1}=\{$ Formulas $\}$. Sequents are parallel compositions of strings, that are identities.

$$
\underset{\Gamma}{\Gamma} \quad=\quad \vdash \Gamma
$$

Gates are correspond to inference rules.

Polygraphs

We label string by formulas, that is $\Sigma_{1}=\{$ Formulas $\}$. Sequents are parallel compositions of strings, that are identities.

$$
\underset{\Gamma}{\Gamma}=\quad \vdash \Gamma
$$

Gates are correspond to inference rules.
Rewriting rules corresponds to identities on derivations or cut-elimination.

Polygraphs

We label string by formulas, that is $\Sigma_{1}=\{$ Formulas $\}$. Sequents are parallel compositions of strings, that are identities.

$$
\underset{\Gamma}{\Gamma} \quad=\quad \vdash \Gamma
$$

Gates are correspond to inference rules.
Rewriting rules corresponds to identities on derivations or cut-elimination.
\triangle We need some morphisms in order to manage sequents since we use to consider sequents as multisets:

$$
\vdash A, B \quad=\quad \vdash B, A
$$

Control polygraphs for $M L L_{u}$

Control polygraph for $M L L_{u}$

Definition

The control polygraph of multiplicative linear logic with units $\tilde{\mathfrak{U}}$ is given by the following sets of cells:

- $\tilde{\mathfrak{U}}_{0}=\{\square\} ;$
- $\tilde{\mathfrak{U}}_{1}=\mathfrak{F}_{M \ell \ell_{u}} \cup\{L=\mathbf{d}, R=\boldsymbol{p}\}$;

Control polygraph for $M L L_{u}$

- $\tilde{\mathfrak{U}}_{2}=$

Control polygraph for $M L L_{u}$

- $\tilde{\mathfrak{U}}_{3}=\tilde{\mathfrak{M}}_{\text {Twist }} \cup \tilde{\mathfrak{U}}_{\text {Twist }}$ where:
- $\tilde{\mathfrak{M}}_{\text {Twist }}$ is given by the following twisting relations:

together with one rule representing the involution $A^{\perp \perp}=A$:

- $\tilde{\mathfrak{U}}_{\text {Twist }}$ is given by the following twisting relations:

Control polygraph for $M L L_{u}$

Theorem (Termination of $\tilde{\mathfrak{U}}$)
The polygraph $\tilde{\mathfrak{U}}$ is terminating.

Proposition ($\tilde{\mathfrak{U}}$ non-confluence)
The polygraph $\tilde{\mathfrak{U}}$ is not confluent.
Proof.
In $\tilde{\mathfrak{U}}$ the following critical pair is not confluent:

Control polygraph for $M L L_{u}$

Theorem (Controlled proof diagram correspondence in $\tilde{\mathfrak{U}}$)

$$
\vdash_{M L L_{u}} \Gamma \Leftrightarrow \exists \phi \in \tilde{\mathfrak{U}} \text { such that } \phi: \square \Rightarrow L, \Gamma, R .
$$

Definition (Representation)
We say that a proof diagram $\phi \in \mathfrak{U}$ with $\phi: \square \Rightarrow L, \Gamma, R$ represents a derivation $d(\Gamma)$ if it can be sequentialized into the derivation $d(\Gamma)$. We say that a derivation $d(\Gamma)$ is represented by ϕ or that ϕ is a diagrammatic representation of $d(\Gamma)$ if ϕ can be sequentialized into the derivation $d(\Gamma)$.

Equivalences over $M L L_{u}$ derivations

Equivalences over $M L L_{u}$ derivations

- We denote $N_{d(\Gamma)}$ the proof net representing the derivation $d(\Gamma)$, we denote \sim_{N} the equivalence relation over derivations induced by proof nets syntax. It is defined as follows:

$$
d^{\prime}(\Gamma) \sim_{N} d^{\prime \prime}(\Gamma) \text { iff } N_{d^{\prime}(\Gamma)}=N_{d^{\prime \prime}(\Gamma)}
$$

In other words, $d^{\prime}(\Gamma) \sim_{N} d^{\prime \prime}(\Gamma)$ if and only if they can be represented by the same proof net (i.e. iff $N_{d^{\prime}(\Gamma)}$ and $N_{d^{\prime \prime}(\Gamma)}$ are isomorph labeled graphs).

Equivalences over $M L L_{u}$ derivations

- We denote \simeq_{D} the equivalence relation over derivations induced by proof diagram syntax. It is defined as follows:

$$
d^{\prime}(\Gamma) \simeq{ }_{D} d^{\prime \prime}(\Gamma) \text { iff } \exists \phi \in \tilde{\mathfrak{U}} \text { such that } \phi_{d^{\prime}(\Gamma)}=\phi=\phi_{d^{\prime \prime}(\Gamma)}
$$

- We denote $\sim_{\tilde{D}}$ the equivalence relation over derivations induced by $\langle\tilde{\mathfrak{U}}\rangle$. It is defined as follows:

$$
d^{\prime}(\Gamma) \sim_{\tilde{D}} d^{\prime \prime}(\Gamma) \text { iff } \exists \phi_{d^{\prime}(\Gamma)}, \phi_{d^{\prime \prime}(\Gamma)} \in \tilde{\mathfrak{U}} \text { s.t. }\left[\phi_{d^{\prime}(\Gamma)}\right] \tilde{\mathfrak{U}}=\left[\phi_{d^{\prime \prime}(\Gamma)}\right] \tilde{\mathfrak{U}}
$$

Equivalences over $M L L_{u}$ derivations

We have the following inclusions:

- $\sim_{N} \subsetneq \sim$ since \perp permutations changing jump assignations are not captured by the proof net syntactical equivalence;
- $\sim_{\tilde{D} \subsetneq \sim \text { since binary rules permutation which changes branching order }}$ are not captured by the proof diagrams equivalence.

$$
\begin{aligned}
& \frac{\frac{\vdash \Gamma, \Delta, \Sigma}{\vdash \odot_{1}(\Gamma), \Delta, \Sigma} \odot_{1}}{\vdash \odot_{1}(\Gamma), \odot_{2}(\Delta), \Sigma} \odot_{2} \quad \sim \quad \frac{\frac{\vdash \Gamma, \Delta, \Sigma}{\vdash \Gamma, \odot_{2}(\Delta), \Sigma} \odot_{2}}{\vdash \odot_{1}(\Gamma), \odot_{2}(\Delta), \Sigma} \odot_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\vdash \stackrel{+}{2}, A \vdash \Sigma, B, C}{\vdash \Gamma, \Sigma, \odot_{1}(A, B), C} \odot_{1}^{\vdash \Gamma, \Sigma, \Delta, \odot_{1}(A, B),\left(C \odot_{2} D\right)} \vdash_{2} \quad \sim \quad \frac{\vdash \Gamma, D}{\vdash \Gamma, A} \frac{\vdash \Sigma, B, C}{\vdash \Sigma, \Delta, B, \odot_{2}(C, D)} \odot_{2}
\end{aligned}
$$

Equivalences over $M L L_{u}$ derivations

The equivalence \simeq_{D} does not capture the case of permutation in which binary rules have different branching order:

while the corresponding represented proof are \sim-equivalent:

$$
\begin{array}{ccccc}
1 & 2 & & 1 & 3 \\
\vdots & \vdots & 3 & & \vdots \\
\qquad A, B & \vdash C & \vdots & & 2 \\
\frac{\vdash A, B \otimes C}{\vdash A \otimes D, B \otimes C} & \vdash D \\
\frac{\vdash A, B}{\vdash A} \otimes & \sim & \frac{\vdash A, B}{\vdash A \otimes D, B} \otimes & \vdash C \\
\vdash A \otimes D, B \otimes D
\end{array}>
$$

Equivalences over $M L L_{u}$ derivations

Proposition

The equivalence relation $\sim_{\tilde{D}}$ is equivalent to \simeq_{D}.
For example:

Future works

- Extend the works on "Rewriting modulo symmetric monoidal structures" in order to internalize wire crossings;
- Use proof diagrams in order to study proof equivalence complexity of different sequent calculi (MELL, CyLL, MALL, modal logics, LK);
- Study 2-dimensional representations of non-commutative logics proof nets;
- ...
- The use of 2-dimensional syntax is suitable to express a notion of non-consequentiality without requiring a notion of contemporaneity;
- This notion plays an important role in any definition of proof equivalence compatible with cut elimination, especially in case of reversible inference rules;
- More in general, this notion is becoming prominent (and in some cases essential) in the formalization of many different science fields.
"We have taken the word, the sentence, logic and number as the foundation stones of our civilisation, forcing our brains to use limiting modes of expression which we assume are the only correct ones."
[Tony Buzan, The mind map book, 1993]

Thank you for the attention

"We have taken the word, the sentence, logic and number as the foundation stones of our civilisation, forcing our brains to use limiting modes of expression which we assume are the only correct ones."
[Tony Buzan, The mind map book, 1993]

Thank you for the attention

"We have taken the word, the sentence, logic and number as the foundation stones of our civilisation, forcing our brains to use limiting modes of expression which we assume are the only correct ones."
[Tony Buzan, The mind map book, 1993]

Thank you for the attention

Questions?

The polygraph of $M L L_{u}$ proof diagrams

The polygraph of $M L L_{u}$ proof diagrams and proof diagram semantics

Definition (Polygraph of diagrammatic $M L L_{u}$ proof diagrams)
The polygraph of diagrammatic $M L L_{u}$ proof nets is the polygraph obtained extended the polygraph \mathfrak{U} with the following cells:

- $\mathfrak{U}_{0}=\tilde{\mathfrak{U}}_{0}$;
- $\mathfrak{U}_{1}=\tilde{\mathfrak{U}}_{1}$;

$$
W, W^{\prime} \in\left(\mathfrak{F}_{M \ell \ell_{u}} \cup\{L, R\}\right)^{*}
$$

The polygraph of $M L L_{u}$ proof diagrams

- $\mathfrak{U}_{3}=\tilde{\mathfrak{U}}_{3} \cup \mathfrak{U}_{\text {Big }}$ where $\mathfrak{U}_{\text {Big }}$ is made of the following 3-cells: \mathfrak{B}-introduction:

The polygraph of $M L L_{u}$ proof diagrams
where ϕ and ψ are of the form

and

The polygraph of $M L L_{u}$ proof diagrams

The untangle relations: for any $\left.\frac{\mid \ldots .1}{x|\ldots|} \right\rvert\, \underset{\tilde{U}_{2}}{ }$

Proposition

If $\phi \in \mathfrak{U}$ is a proof diagram $\phi: \square \Rightarrow L, \Gamma, R$ containing a B-gate, then there is a rewriting sequence made by untangle relations of the form

The polygraph of $M L L_{u}$ proof diagrams
B-introduction rules are applied on configurations of the form

where α, β are splitting gates, that are gates of type \otimes or $C u t$. For example, consider the two following configurations with A active formula of α :

$$
\begin{aligned}
& \begin{array}{lllll}
\Gamma_{1} & \Gamma_{B} & \Gamma_{2} & \Gamma_{A} \\
& & & &
\end{array}
\end{aligned}
$$

Theorem (Termination of \mathfrak{U})
The polygraph \mathfrak{U} is terminating.
In particular, if $\phi \in \mathfrak{U}$ is irreducible, then $\phi \in \tilde{\mathfrak{U}}$.

Even if the polygraph \mathfrak{U} is not confluent, the rewriting concerning only B-gates elimination is:

Proposition
The order of the $A x$ and 1 gates (derivation tree leafs) is the same for every \mathfrak{U}_{3}-equivalent irreducible diagram in \mathfrak{U}.

A denotational semantics for $M L L_{u}$

A denotational semantics for $M L L_{u}$

We define the following equivalence relation:

$$
d^{\prime}(\Gamma) \sim_{D} d^{\prime \prime}(\Gamma) \text { iff } \exists \phi_{d^{\prime}(\Gamma)}, \phi_{d^{\prime \prime}(\Gamma)} \in \tilde{\mathfrak{U}} \text { s.t. }\left[\phi_{d^{\prime}(\Gamma)}\right]_{\mathfrak{U}}=\left[\phi_{d^{\prime \prime}}(\Gamma)\right]_{\mathfrak{L}} .
$$

Theorem

Two derivations are equivalent modulo \sim if and only if they are represented by two equivalent proof diagrams with respect of $\langle\mathfrak{U}\rangle$. That is:

$$
d(\Gamma) \sim d^{\prime}(\Gamma) \Leftrightarrow d(\Gamma) \sim_{D} d^{\prime}(\Gamma)
$$

Thus the following function is well defined:

$$
\begin{array}{cccc}
{[-]_{\mathfrak{U}}:\left\{M L L_{u} \text { proofs }(\bmod \sim)\right\}} & \rightarrow & \{\text { morphisms in }\langle\mathfrak{U}\rangle\} \\
d(\Gamma) & \rightarrow & {\left[\phi_{d(\Gamma)}\right]_{\mathfrak{U}}}
\end{array}
$$

A denotational semantics for $M L L_{u}$

Definition (Polygraph of $M L L_{u}$ semantics)

The polygraph of multiplicative linear logic semantics $\mathcal{S}_{M L L_{u}}$ is given by \mathfrak{U} enriched with the set of 3-cells $\mathcal{S}_{M L L_{u}}^{C u t}=\mathfrak{M}_{C u t} \cup \mathfrak{U}_{C u t}$:

- $\mathfrak{M}_{C u t}$ is made of the following 3 -cells:

- $\mathfrak{U}_{\text {Cut }}$ is made of the following 3-cells:

A denotational semantics for $M L L_{u}$

Theorem (Termination in $\mathcal{S}_{M L L_{u}}$)
The polygraph $\mathcal{S}_{M L L_{u}}$ is terminating.

Consequently, we have a cut-elimination Theorem for the set of sequentializable proof diagrams in $\mathcal{S}_{M L L_{u}}$.

Theorem (Cut-elimination)
An irreducible proof diagram $\phi \in \mathcal{S}_{M L L_{u}}$ which represent a derivation contains no Cut-gates.

A denotational semantics for $M L L_{u}$

Theorem (Multiplicative linear logic correspondence)

$$
\vdash_{M L L_{u}} \Gamma \Leftrightarrow \exists \phi \in \mathcal{S}_{M L L_{u}} \text { such that } \phi: \square \Rightarrow L, \Gamma, R .
$$

We define the following function associating to any $M L L_{u}$ derivation $d(\Gamma)$ a morphism of the category $\left\langle\mathcal{S}_{M L L_{u}}\right\rangle$ as follows:

Definition (Denotational semantics of proof diagrams)

$$
\begin{aligned}
{[-]_{D}:\left\{M L L_{u} \text { derivations }\right\} } & \rightarrow\left\{\text { morphisms in }\left\langle\mathcal{S}_{M L L_{u}}\right\rangle\right\} \\
d(\Gamma) & \rightarrow[d(\Gamma)]_{D}=\left[\phi_{d(\Gamma)}\right]_{\mathcal{S}_{M L L}}
\end{aligned}
$$

where $\phi_{d(\Gamma)}$ is an arbitrary representation of $d(\Gamma)$.

A denotational semantics for $M L L_{u}$

Theorem (Proof diagram semantics)
$[-]_{D}$ is a denotational semantics for $M L L_{u}$ sequent calculus.
Proof.
We define the following equivalence relation \approx_{D} over $M L L_{u}$ derivations:

$$
d^{\prime}(\Gamma) \approx_{D} d^{\prime \prime}(\Gamma) \text { iff }\left[d^{\prime}(\Gamma)\right]_{D}=\left[d^{\prime \prime}(\Gamma)\right]_{D}
$$

We have the following properties:
(1) if $d(\Gamma) \rightarrow_{C u t} \hat{d}(\Gamma)$, then $d(\Gamma) \approx_{D} \hat{d}(\Gamma)$;
(2) \approx_{D} is non-degenerated, i.e. one can find a formula with at least two non-equivalent proofs;
(3) \approx_{D} is a congruence;

A denotational semantics for $M L L_{u}$

We remark that $[-]_{D}$ is coherent with the involutivity of negation. In fact, the invariance of diagram inputs and outputs with respect to rewriting impose the equivalence $A^{\perp \perp}=A$:

Similarly, De Morgan's laws follow by the definition of Cut-gates. By means of example, consider the equivalence of $A \not 8 B=\left(B^{\perp} \otimes A^{\perp}\right)^{\perp}$:

