Dialogical Strategies as Proof-search Strategies

Matteo Acclavio

Gothenburg

28/06/2024

Joint works with Davide Catta

- 2 Motivations
- Intuitionistic Logic (minimal)
- 4 Dialogical Logic
- 5 Correspondence between strategies and derivations
- 6 Conclusion and Future Works

What is a proof?

• A strategy to win an argumentation

- A strategy to win an argumentation
- A sequence of instructions

- A strategy to win an argumentation
- A sequence of instructions
- The sound relations between the components of a statement

- A strategy to win an argumentation 🖘
- A sequence of instructions 🛛 🖘
- The sound relations between the components of a statement

Motivations

In **dialogical logic** proofs are **winning strategies** for a two-player turn-based game.

Proponent (P) tries to construct a proof of a formula A
... by answering to the **Opponent** (**O**) objections.

```
\mathbf{P}: I affirm that a \to (b \to a) holds
```

```
P : I affirm that a \to (b \to a) holds

(

O : Let's grant a, can you show that b \to a holds?
```

```
P : I affirm that a \to (b \to a) holds

O : Let's grant a, can you show that b \to a holds?

P : I affirm that b \to a holds
```

```
P : I affirm that a \rightarrow (b \rightarrow a) holds

O : Let's grant a, can you show that b \rightarrow a holds?

P : I affirm that b \rightarrow a holds

O : Let's grant b, can you show that a holds?
```

```
P : I affirm that a \rightarrow (b \rightarrow a) holds
O : Let's grant a, can you show that b \rightarrow a holds?
\mathbf{P} : I affirm that b \rightarrow a holds
O : Let's grant b, can you show that a holds?
P : Indeed, you already accepted that a holds!
```


- What is the exact relation between these games and derivations?
- Can we capture proof-search strategies as P and O behavior?
- What about game semantics [denotational semantics]?

Intuitionistic Logic (minimal)

Formulas:

 $A, B ::= a \mid A \rightarrow B$

Sequent calculus LJ^{\rightarrow} :

$$ax \frac{\Gamma, A \vdash B}{\Gamma, A \vdash a} \longrightarrow_{R} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} \longrightarrow_{L} \frac{\Gamma, A \to B \vdash A}{\Gamma, A \to B, B \vdash C}$$

Proposition

 $A_1, \ldots, A_n \vdash C$ is derivable in LJ^{\rightarrow} iff $A_1 \rightarrow (\cdots \rightarrow (A_n \rightarrow C) \cdots)$ is valid.

A lot of non-determinism in proof search! [even in in LJ^{\rightarrow}]

$$\overset{a\times}{\rightarrow_{L}} \frac{\overline{\Delta_{1}, a \vdash a}}{a \to b, b \to c, a \vdash b} \overset{a\times}{\rightarrow_{L}} \frac{\overline{\Delta_{2}, b \vdash b}}{a \to b, b \to c, a \vdash b} \overset{a\times}{\rightarrow_{L}} \frac{\overline{\Delta_{3}, c \vdash c}}{a \to b, b \to c, a \vdash c} \\ \overset{3\times \rightarrow_{R}}{\rightarrow_{L}} \frac{\overline{a \to b, b \to c, a \vdash c}}{\vdash (a \to b) \to ((b \to c) \to (a \to c))}$$

A lot of non-determinism in proof search! $[even \text{ in in } LJ^{\rightarrow}]$

$$\underset{\rightarrow_{L}}{\overset{ax}{\rightarrow}} \frac{\prod_{j=1}^{ax} \prod_{j=1}^{ax} \prod_{j=1}$$

Dialogical Logic

Play: sequence $\rho \coloneqq \rho_1, \dots, \rho_n$ of moves [each ρ_{2k} is a **P**-move, each ρ_{2k+1} is an **O**-move]

Justification: map ϕ such that $\phi(\rho_i) = \rho_j$ with j < i:

- $\rho_1 = \langle !, A \rangle;$
- ρ_{2k} is justified by ρ_{2k-1} ;
- $\rho_{2k+1} = \langle !, B \rangle$ is justified by the latest unanswered **O**-attack;
- if $\rho_i = \langle ?, \bullet \rangle$, then i = 2k and $\rho_{i-1} = \langle ?, a \rangle$;
- if $\rho_{2k} = \langle !, a \rangle$, then $\rho_{2j+1} = \langle \star, a \rangle$ for a j < k.

```
P : I affirm that a \rightarrow (b \rightarrow a) holds

(

O : Let's grant a,can you show that b \rightarrow a holds?

(

P : I affirm that b \rightarrow a holds

(

O : Let's grant b, can you show that a holds?

(

P : Indeed. you already accepted that a holds!
```

- $\rho_1 = \langle !, A \rangle;$
- ρ_{2k} is justified by ρ_{2k-1} ;
- $\rho_{2k+1} = \langle !, B \rangle$ is justified by the latest unanswered **O**-attack;
- if $\rho_i = \langle ?, \bullet \rangle$, then i = 2k and $\rho_{i-1} = \langle ?, a \rangle$;
- if $\rho_{2k} = \langle !, a \rangle$, then $\rho_{2j+1} = \langle \star, a \rangle$ for a j < k.

$$\mathbf{P} : \langle !, a \to (b \to a) \rangle$$
$$\mathbf{O} : \langle ?, a \rangle$$
$$\mathbf{P} : \langle !, b \to a \rangle$$
$$\mathbf{O} : \langle ?, b \rangle$$
$$\mathbf{P} : \langle !, a \rangle$$

- $\rho_1 = \langle !, A \rangle;$
- ρ_{2k} is justified by ρ_{2k-1} ;
- $\rho_{2k+1} = \langle !, B \rangle$ is justified by the latest unanswered **O**-attack;

• if
$$\rho_i = \langle ?, \bullet \rangle$$
, then $i = 2k$ and $\rho_{i-1} = \langle ?, a \rangle$;

• if
$$\rho_{2k} = \langle !, a \rangle$$
, then $\rho_{2j+1} = \langle \star, a \rangle$ for a $j < k$.

$$\begin{array}{c|c} \mathbf{P} : \langle \mathbf{l}, \mathbf{a} \to (\mathbf{b} \to \mathbf{a}) \rangle \\ \mathbf{O} : \langle \mathbf{l}, \mathbf{a} \rangle \\ \mathbf{P} : \langle \mathbf{l}, \mathbf{b} \to \mathbf{a} \rangle \\ \mathbf{O} : \langle \mathbf{l}, \mathbf{b} \rangle \\ \mathbf{P} : \langle \mathbf{l}, \mathbf{b} \to \mathbf{a} \rangle \\ \mathbf{O} : \langle \mathbf{l}, \mathbf{b} \rangle \\ \mathbf{P} : \langle \mathbf{l}, \mathbf{a} \rangle \end{array} \qquad \begin{array}{c} \rho_i = \langle \mathbf{l}, \mathbf{a} \rangle \implies \phi(\rho_i) = \langle \star, \mathbf{a} \rangle; \\ \rho_i = \langle \mathbf{l}, \mathbf{a} \rangle \implies \phi(\rho_i) = \langle \star, \mathbf{a} \to \mathbf{B} \rangle; \\ \rho_i = \langle \mathbf{l}, \mathbf{a} \rangle \implies \phi(\rho_i) = \langle \mathbf{l}, \mathbf{a} \to \mathbf{B} \rangle; \\ \rho_i = \langle \mathbf{l}, \mathbf{a} \rangle \implies \phi(\rho_i) = \langle \mathbf{l}, \mathbf{a} \rangle. \end{array}$$

- $\rho_1 = \langle !, A \rangle;$
- ρ_{2k} is justified by ρ_{2k-1} ;
- $\rho_{2k+1} = \langle !, B \rangle$ is justified by the latest unanswered **O**-attack;
- if $\rho_i = \langle ?, \bullet \rangle$, then i = 2k and $\rho_{i-1} = \langle ?, a \rangle$;
- if $\rho_{2k} = \langle !, a \rangle$, then $\rho_{2j+1} = \langle \star, a \rangle$ for a j < k.

$$\begin{array}{c|c} \mathbf{P} : \langle \mathbf{l}, \mathbf{a} \to (\mathbf{b} \to \mathbf{a}) \rangle \\ \mathbf{O} : \langle \mathbf{l}, \mathbf{a} \rangle \\ \mathbf{P} : \langle \mathbf{l}, \mathbf{b} \to \mathbf{a} \rangle \\ \mathbf{O} : \langle \mathbf{l}, \mathbf{b} \rangle \\ \mathbf{P} : \langle \mathbf{l}, \mathbf{b} \rangle \\ \mathbf{P} : \langle \mathbf{l}, \mathbf{a} \rangle \end{array} \qquad \begin{array}{c} \rho_i = \langle \mathbf{l}, \mathbf{e} \rangle \implies \phi(\rho_i) = \langle \mathbf{\star}, \mathbf{a} \rangle; \\ \rho_i = \langle \mathbf{l}, \mathbf{a} \rangle \implies \phi(\rho_i) = \langle \mathbf{\star}, \mathbf{a} \to \mathbf{B} \rangle; \\ \rho_i = \langle \mathbf{l}, \mathbf{a} \rangle \implies \phi(\rho_i) = \langle \mathbf{h}, \mathbf{a} \rangle \\ \rho_i = \langle \mathbf{l}, \mathbf{a} \rangle \implies \phi(\rho_i) = \langle \mathbf{h}, \mathbf{a} \rangle. \end{array}$$

Winning condition for P: ρ is finite with last (**P**-)move $\rho_{2k+1} = \langle !, a \rangle$.

Winning Strategy for P: finite tree such that

- each branch is a play for $A \in \mathcal{F}$ won by **P**;
- each **O**-move has exactly one child;
- each **P**-move has a children for each possible continuation.

(1)

Theorem (Felscher (1985), Herbelin (1995), Fermüller (2003)) There is a winning strategy for F iff F is valid.

 $\mathbf{P} : \mathbf{I} \text{ affirm that } a \to (b \to a) \text{ holds}$ $\mathbf{O} : \text{Let's grant } a, \text{ can you show that } b \to a \text{ holds?}$ $\mathbf{O} : \text{Let's grant } a, \text{ can you show that } b \to a \text{ holds?}$ $\mathbf{P} : \mathbf{I} \text{ affirm that } b \to a \text{ holds}$ $\mathbf{O} : \text{Let's grant } b, \text{ can you show that } a \text{ holds?}$ $\mathbf{O} : \text{Let's grant } b, \text{ can you show that } a \text{ holds?}$ $\mathbf{P} : \text{Indeed, you already accepted that } a \text{ holds!}$

Special Strategies

Lorenzen-Felscher:

In each play, if $\langle \star, a \rangle$ is a **P**-move, then there is a previous **O**-move $\langle \star, a \rangle$;

Stubborn:

In each play

• if
$$\rho \supseteq \rho' \cdot \langle !, A \to B \rangle^{\mathbf{0}}$$
, then $\rho \supseteq \rho' \cdot \langle !, A \to B \rangle^{\mathbf{0}} \cdot \langle ?, A \rangle^{\mathbf{P}}$;
• if $\rho \supseteq \rho' \cdot \langle !, a \rangle^{\mathbf{0}}$, then $\rho \supseteq \rho_1 \cdots \rho_{2j+1} \cdots \rho_{2k+1} \cdot \langle !, a \rangle^{\mathbf{0}} \cdot \langle ?, a \rangle^{\mathbf{P}}$

Correspondence between strategies and derivations

• Strategic derivation:

$$\rightarrow_{L} \frac{\Gamma' \vdash A \to B \quad \Gamma', C \vdash D}{\Gamma, (A \to B) \to C \vdash D} \implies \stackrel{\pi_{2} \parallel}{\longrightarrow} \frac{\Gamma', A \vdash B}{\stackrel{\pi_{2} \parallel}{\rightarrow}_{L} \frac{\Gamma', A \vdash B}{\Gamma' \vdash A \to B} \quad \stackrel{\pi_{2} \parallel}{\Gamma', C \vdash D}$$

• LF-derivation:

$$\xrightarrow{\pi_{1} \parallel} \xrightarrow{\pi_{2} \parallel} \underset{\Gamma, A \to B \vdash C}{\overset{\pi_{2} \parallel}{\Gamma, A \to B \vdash C}} \implies \xrightarrow{\rightarrow_{R}} \xrightarrow{\vdots}_{\Gamma' \vdash A} \xrightarrow{\pi_{2} \parallel} \underset{\Gamma', B \vdash C}{\overset{\pi_{2} \parallel}{\Gamma, A \to B \vdash C}} \quad \text{or} \quad \xrightarrow{ax} \xrightarrow{\tau_{L}} \xrightarrow{\pi_{2} \parallel} \underset{\Gamma', B \vdash C}{\overset{\pi_{2} \parallel}{\Gamma, a \to B \vdash C}}$$

• **ST**-derivation:

$$\xrightarrow{\pi_{1} \parallel} \frac{\pi_{2} \parallel}{\Gamma' \vdash A} \xrightarrow{\pi_{2} \parallel} C \implies \xrightarrow{\pi_{1} \parallel} \frac{\Gamma' \vdash A}{\Gamma' \vdash A} \xrightarrow{\Gamma' \vdash A} \xrightarrow{\Gamma' \vdash A} \stackrel{i}{\Gamma' \vdash A} \stackrel{i}{\Gamma' \vdash A} \stackrel{or}{\Gamma' \vdash A} \xrightarrow{ax} \frac{\Gamma' \vdash A}{\Gamma, A \to B \vdash C} \quad \text{or} \quad \xrightarrow{\mu_{1} \parallel} \frac{\Gamma' \vdash A}{\Gamma, A \to b \vdash C}$$

Example

$$\overset{\text{ax}}{\xrightarrow{-\iota}} \frac{\prod_{a \to b, b \to c, a \vdash c} a \to b, b \to c, b \vdash c}{a \to b, b \to c, a \vdash c} \qquad \overset{\text{ax}}{\xrightarrow{-\iota}} \frac{\prod_{a \to b, b \to c, b \vdash c} a \to b, b \to c, a \vdash c}{a \to b, b \to c, a \vdash c} \qquad \overset{\text{ax}}{\xrightarrow{-\iota}} \frac{\prod_{a \to b, b \to c, a \vdash c} a \to b, b \to c, a \vdash c}{a \to b, b \to c, a \vdash c} \qquad \overset{\text{ax}}{\xrightarrow{-\iota}} \frac{\prod_{a \to b, b \to c, a \vdash c} a \to b, b \to c, a \vdash c}{a \to b, b \to c, a \vdash c}$$

Theorem

There are bijections between:

- Strategic derivations of A and winning strategies for A;
- LF-derivations of A and Lorenzen-Felscher winning strategies for A;
- ST-derivations of A and Stubborn winning strategies for A.

Theorem

Strategic derivations, LF-derivations and ST-derivations are sound and complete for intuitionistic logic.

Theorem

There is a one-to-one correspondence between Stubborn winning strategies and Hyland-Ong winning innocent strategies.

Dialogical Logic	Games on Hyland-Ong arenas
a play $\sigma_1, \sigma_2, \ldots$ starts $i = 1$ odd	a play τ_0, τ_1, \ldots starts $i = 0$ even
a play starts with a P -move	a play starts with a ${f O}$ -move
a move is a subformula of F plus a polarity	a move corresponds to an atom in F

Corollary

There is a one-to-one correspondence between Stubborn winning strategies and λ -terms in $\eta\beta$ -normal form.

Conclusion and Future Works

Main results:

- Correspondence between dialogical games and sequent calculi [between restriction on plays and proof search strategy]
- Correspondence between dialogical games and game semantics [between Lorenz&Lorenzen games and Hyland-Ong games]

Future Works:

- Extensions to the full propositional intuitionistic logic
- What about other logics? (modal, first-order, etc...)
- What about games with loops?