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Classical Formulas and Cographs
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Classical Logic Formulas
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Cographs

Note: logical negation = complementary graph (+ dual labels)

Tip: edge between a and b in [[A]] & aand b meetsina Ain A



From Formulas-as-Graphs to
Graphs-as-Formulas
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Modular decomposition

Notation

G(Hi, ..., H,) is the graph obtained by replacing vertices in G with
graphs “modularly”.

P42 (a, b), ®(c. d)), ®(e. f), ®(g, ®(h, 1)) =

Lemma (Modular decomposition of graphs (Gallai '75))

If G # @ is a graph, then we have exactly one of the following cases:
@ G is a singleton graph

@ G=P(As,...,A,) for a prime graph P




Too many denotations for the same graph

Sources of homonymity:
@ Associativity of ¥ and ®

a®(b®c) = b/a\c - (a@b)®c

@ Graphs isomorphism:

Ps(a, b,c,d) = a b c d =P4(d,c, b, a)
@ Graphs symmetries:
Ps (a,b,c,d) =a b c d= P4 (b,d,a,c)

~—— ——

a—b—c—d c—a—d—>b




Graphical connectives (Graphs)

For each (family of symmetric) prime graphs, we fix an order on vertices:

o Bvi,va): v, v,
o ®(vi,va): vy v,
@ Py(vi,vo, v3, va): vy Vs V3 v,
e Bull(vi,...,w): VTV?\\//V?V“
5



Formula representation of graphs

Formulas

Interpretation as graphs

[l=2 [al=a [a‘]=a



Previous and Related Works
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Original research question:
Proof Theory treating the happens-before relation “logically”

Logical time is expressed by logical connectives

A “happens before” B ~y A<B

and

Logical implication (—) capturing partial order refinements

a b a b a—>b a b
DS X IN

(a*®b*) <(ct@dh))p(a<c)®(b<d) | (a* ®b*) <(c* ®d*))®N(a, b, c.d)
Provable in BV | Provable in GV*
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A. et al

Previous results:

@ Proof systems (deep inference) operating on undirected graphs (GS),
and mixed graphs (GV and GV*);

@ GS conservative extension of MLL® [LICS2020,LMCS2021];
@ GV and GV*' conservative extensions of GS and BV [FSCD2022];

Why deep inference?
Theorem (Tiu 2006)

No possible sequent systems for BV.

it
(at<bt<ct)yw(a<b<c)

o
. ~ abc ((( )wq&)))
x7®x*t
(a<b<c)

(@ < (xRt ®(b <ch)))

(at <x)® (x* ®(bt < ct))

ql



Das et al

Extension of boolean logic [Calk, Das, Waring ArXiv2020, |:

@ Two enteilement mechanisms

A=, B VCymax-Clin A 3ICg max-Clin B s.t. Cg C Cy
A=y B VSg max-Stin B 354 max-Stin A s.t. S4 C Cg

@ Similar idea in Pratt’'s “Modeling concurrency with partial orders”
1986;

@ Linear Inferences [Das& Rice FSCD2021&LMCS2023];
@ Conservative extension of LK.

Why deep inference?
Context-free rewriting rules.



Sequent calculi operating on Graphs



Rules

FL o0 F0o Ry, A T
ax aeA i ® w
Fa,at FT, 000 FL, 000, A FT, 0
J FIL o)) Fln do(n)>¥e(n) {(r € &(k) CF r,¢,¢
-k
FTL o Do k(61 by k(1 0) e Bkt )
kI RI FO ok FAk(d1,. .., Pk-15° Pka1s- - - o)
mix wdg
I, 1% FF,A,KG¢1,...,¢,,I)
. FT x (o), o(m) {0’ € &(x)
v L k(@1s- s Pks Oy Phtls - - - s D) [[(o1. ... D> O Phes1s s ¢l = (X (¢ ---» dom)] 2

MGL = {ax,’?,®,d-P}
MGL®° = MGL U {mix, wdg, uK}
KGL = MGLU {w,c}



Main results

Theorem (Graph isomorphism)

If [[¢]] = [[¥] then rygLe ¢ o— . (If ¢ and y unit-free, then MGL)

Theorem (Cut-elimination)

The rule cut is admissible;

Theorem (Conservativity)

MGL > MLL MGL® > MLL® KGL > LK
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Note: Ax2 =%(A,2)=A
A new notion of “sub-formula” analyticity arises from this work:

AN / AN AN

AN

has sub-connective (e.g.) o and .

Analytic proof: no “new connectives” occurs during proof search

Theorem
If ¢ is provable, than ¢ admits an analytic proof.
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e Mathematical structure of graphs (w.r.t. modular decomposition).
Are there similar structures?

e Topological characterization (beyond Retore’s criterion)
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e Mathematical structure of graphs (w.r.t. modular decomposition).

Are there similar structures?

e Topological characterization (beyond Retore’s criterion)
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To sum up:
@ Graphs naturally represent complex patterns of interaction;
@ We can define proof systems operating on graphs!

o New graphs-as-connectives approach.

Reminder: Proof theory on formulas is the “easy” fragment

Challenge for the ATP community
Define efficient theorem provers operating on graphs
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Questions?
Comments?
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