Sequent Systems on Undirected Graphs

Matteo Acclavio

IJCAR2024 - Nancy (FR) 05/07/2024

1 [Why graphs?](#page-2-0)

[Formulas-as-\(co\)Graphs](#page-7-0)

2 [From Formulas-as-Graphs to Graphs-as-Formulas](#page-9-0)

- [Decomposition Theorem](#page-10-0)
- **•** [Graphical Connectives](#page-18-0)
- 3 [Previous and Related Works](#page-20-0)
	- [Reasoning about Logical Time](#page-21-0)
	- [Maximal Clique Preserving](#page-32-0)

5 [Future Works](#page-40-0)

Why graphs?

Classical Formulas and Cographs

 $[[\cdot]]$: {Formulas} \rightarrow {Cographs}

Note: logical negation $=$ complementary graph $(+)$ dual labels)

Classical Formulas and Cographs

 $[[\cdot]]$: {Formulas} \rightarrow {Cographs}

Note: logical negation $=$ complementary graph $(+)$ dual labels)

Tip: edge between a and b in $[[A]] \iff$ a and b meets in a \wedge in A

From Formulas-as-Graphs to Graphs-as-Formulas

Modules

A **module** of a graph $G = H[M]$ is a set of vertices M s.t.

Modules

A **module** of a graph $G = H[M]$ is a set of vertices M s.t.

A graph G is **prime** if it has modules V_G , \emptyset and $\{x\}$ for all $x \in V_G$.

Modules

A **module** of a graph $G = H[M]$ is a set of vertices M s.t.

A graph G is **prime** if it has modules V_G , \emptyset and $\{x\}$ for all $x \in V_G$.

Notation

 $G(H_1, \ldots, H_n)$ is the graph obtained by replacing vertices in G with graphs "modularly".

Notation

 $G(H_1, \ldots, H_n)$ is the graph obtained by replacing vertices in G with graphs "modularly".

 $P_4\{\otimes [a, b], \otimes [c, d], \otimes [e, f], \otimes [g, \otimes [h, i])\}$

Notation

 $G(H_1, \ldots, H_n)$ is the graph obtained by replacing vertices in G with graphs "modularly".

 $P_4\{\otimes(a, b), \otimes(c, d), \otimes(e, f), \otimes(g, \otimes(h, i))\}$ =

Notation

 G (H_1, \ldots, H_n) is the graph obtained by replacing vertices in G with graphs "modularly".

f

Lemma (Modular decomposition of graphs (Gallai '75))

If $G \neq \emptyset$ is a graph, then we have exactly one of the following cases:

(i) G is a singleton graph

$$
G = P(A_1, \ldots, A_n) \text{ for a prime graph } P
$$

Too many denotations for the same graph

Sources of homonymity:

● Associativity of \otimes and \otimes

$$
a\otimes(b\otimes c) = \bigvee_{b}\bigwedge^{a} c = (a\otimes b)\otimes c
$$

Graphs isomorphism:

$$
P_4(a, b, c, d) = a
$$
— b — c — $d = P_4(d, c, b, a)$

• Graphs symmetries:

$$
P_4 (a, b, c, d) = a - b - c - d = P_4' (b, d, a, c)
$$

a-b-c-d
c-a-d-b

For each (family of symmetric) prime graphs, we fix an order on vertices:

Formula representation of graphs

Formulas

$$
\phi_1,\ldots,\phi_n\coloneqq\circ\mid a\mid a^{\perp}\mid\kappa_P(\phi_1,\ldots,\phi_{n_P})
$$

Interpretation as graphs $[[\circ]] = \emptyset$ $[[a]] = a$ $[[a^{\perp}]] = a^{\perp}$ $[[\kappa_P(\phi_1,\ldots,\phi_n)]] = P([[\phi_1]] , \ldots, [[\phi_n]]]$

Previous and Related Works

Original research question:

Proof Theory treating the happens-before relation "logically"

Original research question:

Proof Theory treating the happens-before relation "logically"

Logical time is expressed by logical connectives

A "happens before" $B \longrightarrow A \triangleleft B$

Original research question:

Proof Theory treating the happens-before relation "logically"

Logical time is expressed by logical connectives

A "happens before" $B \longrightarrow A \triangleleft B$

Original research question:

Proof Theory treating the happens-before relation "logically"

Logical time is expressed by logical connectives

A "happens before" $B \longrightarrow A \triangleleft B$

Original research question:

Proof Theory treating the happens-before relation "logically"

Logical time is expressed by logical connectives

A "happens before" $B \longrightarrow A \triangleleft B$

Original research question:

Proof Theory treating the happens-before relation "logically"

A "happens before" $B \longrightarrow A \triangleleft B$

Previous results:

Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GVsl);

Previous results:

- Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GVsl);
- GS conservative extension of MLL◦ [LICS2020,LMCS2021];

Previous results:

- Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GVsI);
- GS conservative extension of MLL◦ [LICS2020,LMCS2021];
- GV and GV^{sl} conservative extensions of GS and BV [FSCD2022];

Previous results:

- Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GVsI);
- GS conservative extension of MLL◦ [LICS2020,LMCS2021];
- GV and GV^{sl} conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Previous results:

- Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GVsl);
- GS conservative extension of MLL◦ [LICS2020,LMCS2021];
- GV and GV^{sl} conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Theorem (Tiu 2006)

No possible sequent systems for BV.

$$
a \rightarrow x^{\perp} \stackrel{\frown}{\longrightarrow} \begin{bmatrix} x & b \rightarrow c \end{bmatrix} \quad \rightarrow \quad a \rightarrow b \rightarrow c
$$

if
\n
$$
\overline{}
$$
\n
$$
\overline{}
$$
\n
$$
\overline{}
$$
\n
$$
\overline{}
$$
\n
$$
\overline{a^{2} \cdot 4 \cdot 2^{2} \cdot 2^{2} \cdot 4^{2} \cdot 2^{2} \cdot 2^{2
$$

Extension of boolean logic [Calk, Das, Waring ArXiv2020,]:

• Two enteilement mechanisms

 $A \Rightarrow_{\wedge} B \quad \forall C_A$ max-Cl in $A \exists C_B$ max-Cl in B s.t. $C_B \subseteq C_A$ $A \Rightarrow_{\vee} B \quad \forall S_B$ max-St in B $\exists S_A$ max-St in A s.t. $S_A \subseteq C_B$

- Similar idea in Pratt's "Modeling concurrency with partial orders" 1986;
- Linear Inferences [Das& Rice FSCD2021&LMCS2023];
- **Conservative extension of LK**

Why deep inference?

Context-free rewriting rules.

Sequent calculi operating on Graphs

$$
\begin{array}{ccccccccc}\n& & & & & & & \rightarrow & \mathbf{F} & \mathbf{F}, & \phi, & \psi & \phi & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F} \\
& & & & & & & & \rightarrow & \mathbf{F} & \mathbf{F}, & \phi \otimes \psi, & \Delta & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F}, & \phi \\
& & & & & & & & \rightarrow & \mathbf{F} & \mathbf{F}, & \phi \\
& & & & & & & & & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F} \\
& & & & & & & & & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F}, & \phi & \mathbf{F} &
$$

$$
\min \frac{\vdash \Gamma_1 + \Gamma_2}{\vdash \Gamma_1, \Gamma_2} \qquad \text{wd}_{\otimes} \frac{\vdash \Gamma, \phi_k \quad \vdash \Delta, \kappa(\phi_1, \ldots, \phi_{k-1}, \circ, \phi_{k+1}, \ldots, \phi_n)}{\vdash \Gamma, \Delta, \kappa(\phi_1, \ldots, \phi_n)} \\
\downarrow \Gamma, \chi(\phi_{\sigma(1)}, \ldots, \phi_{\sigma(n)}) \qquad \qquad \left\{ \sigma \in \Xi(\chi) \right\} \\
\downarrow \Gamma, \kappa(\phi_1, \ldots, \phi_k, \circ, \phi_{k+1}, \ldots, \phi_n) \left[\left[\lceil \kappa(\phi_1, \ldots, \phi_k, \circ, \phi_{k+1}, \ldots, \phi_n) \right] \rceil = \left[\lceil \chi(\phi_{\sigma(1)}, \ldots, \phi_{\sigma(n)}) \right] \rceil \neq \varnothing \right]
$$

$$
MGL = \{ax, \mathcal{B}, \otimes, d-P\}
$$

$$
MGL^{\circ} = MGL \cup \{mix, wd_{\otimes}, u_{\kappa}\}
$$

$$
KGL = MGL \cup \{w, c\}
$$

Theorem (Graph isomorphism)

If $[[\phi]] = [[\psi]]$ then ⊢_{MGL}[。] $\phi \sim \psi$. (If ϕ and ψ unit-free, then MGL)

Theorem (Cut-elimination)

The rule cut is admissible;

Theorem (Conservativity)

MGL ⊃ MLL MGL◦ ⊃ MLL◦ KGL ⊃ LK

Note: $A \star \emptyset = \star(A, \emptyset) = A$

Analytic proof: no "new connectives" occurs during proof search

Analytic proof: no "new connectives" occurs during proof search

Theorem

If ϕ is provable, than ϕ admits an analytic proof.

Future Works

- Mathematical structure of graphs (w.r.t. modular decomposition). Are there similar structures?
- Topological characterization (beyond Retore's criterion)

What if we use the arena (directed graphs) encoding of intuitionistic formulas?

$$
\left[\left[\left((a \land a) \to b \right) \to \left((c \to a) \to b \right) \right] \right] = \underset{c \to a}{\overset{a}{\longrightarrow}} b \underset{c}{\to} b
$$

- Mathematical structure of graphs (w.r.t. modular decomposition). Are there similar structures?
- Topological characterization (beyond Retore's criterion)

What if we use the arena (directed graphs) encoding of intuitionistic formulas?

$$
[[((a \wedge a) \rightarrow b) \rightarrow ((c \rightarrow a) \rightarrow b)]] = \underset{c \rightarrow a}{\overset{a}{\rightarrow}} b \underset{c}{\rightarrow} b
$$

To sum up:

- Graphs naturally represent complex patterns of interaction;
- We can define proof systems operating on graphs!
- New graphs-as-connectives approach.

To sum up:

- Graphs naturally represent complex patterns of interaction;
- We can define proof systems operating on graphs!
- New graphs-as-connectives approach.

Reminder: Proof theory on formulas is the "easy" fragment

To sum up:

- Graphs naturally represent complex patterns of interaction;
- We can define proof systems operating on graphs!
- New graphs-as-connectives approach.

Reminder: Proof theory on formulas is the "easy" fragment

Challenge for the ATP community

Define efficient theorem provers operating on graphs

Thank you

Thank you

Questions? Comments?