Sequent Systems on Undirected Graphs

Matteo Acclavio

IJCAR2024 - Nancy (FR) 05/07/2024

Why graphs?

Formulas-as-(co)Graphs

Prom Formulas-as-Graphs to Graphs-as-Formulas

- Decomposition Theorem
- Graphical Connectives
- Previous and Related Works
 - Reasoning about Logical Time
 - Maximal Clique Preserving
 - Sequent calculi operating on Graphs

Future Works

Why graphs?

\checkmark	read_X	⊲write _{h(x)}	٩	$read_y$	٩	$write_{g(x,y)}$
\checkmark	$read_X$	⊲ read _y	٩	$write_{g(x,y)}$	٩	$write_{h(x)}$
\checkmark	$read_X$	⊲ read _y	۷	$write_{h(x)}$	۷	$write_{g(x,y)}$
\checkmark	$read_y$ ·	\triangleleft read _x	۷	$write_{g(x,y)}$	۷	$write_{h(x)}$
\checkmark	$read_y$ ·	\triangleleft read _x	٩	$write_{h(x)}$	٩	$write_{g(x,y)}$

\checkmark	$read_x$	\triangleleft write _{h(x)}	٩	$read_y$	٩	$write_{g(x,y)}$
\checkmark	$read_x$	⊲ read _y	٩	$write_{g(x,y)}$	۷	$write_{h(x)}$
\checkmark	$read_x$	⊲ read _y	۷	$write_{h(x)}$	۷	$write_{g(x,y)}$
\checkmark	$read_y$	\triangleleft read _x	۷	write $g(x,y)$	۷	$write_{h(x)}$
\checkmark	$read_y$	\triangleleft read _x	٩	$write_{h(x)}$	۷	$write_{g(x,y)}$
X	$read_x$	\triangleleft write _{h(x)}	٩	$write_{g(x,y)}$	٩	$read_y$

Classical Formulas and Cographs

 $[\llbracket \cdot \rrbracket] : \{\mathsf{Formulas}\} \to \{\mathsf{Cographs}\}$

Note: logical negation = complementary graph (+ dual labels)

Classical Formulas and Cographs

 $[\llbracket \cdot \rrbracket] : \{\mathsf{Formulas}\} \to \{\mathsf{Cographs}\}$

Note: logical negation = complementary graph (+ dual labels)

Tip: edge between a and b in $[[A]] \iff a$ and b meets in $a \land in A$

From Formulas-as-Graphs to Graphs-as-Formulas

Modules

A module of a graph G = H[M] is a set of vertices M s.t.

Modules

A module of a graph G = H[M] is a set of vertices M s.t.

A graph G is **prime** if it has modules V_G , \emptyset and $\{x\}$ for all $x \in V_G$.

Modules

A module of a graph G = H[M] is a set of vertices M s.t.

A graph G is **prime** if it has modules V_G , \emptyset and $\{x\}$ for all $x \in V_G$.

Notation

 $G(|H_1, \ldots, H_n|)$ is the graph obtained by replacing vertices in G with graphs "modularly".

Notation

 $G(|H_1, \ldots, H_n|)$ is the graph obtained by replacing vertices in G with graphs "modularly".

 $\mathsf{P}_4(\!\! \otimes \!\! ([a,b]\!), \otimes \!\! ([c,d]\!), \otimes \!\! ([e,f]\!), \otimes \!\! ([g,\otimes ([h,i]\!)))$

Notation

 $G(|H_1, \ldots, H_n|)$ is the graph obtained by replacing vertices in G with graphs "modularly".

 $\mathsf{P}_4(\!\! \langle \! \otimes (\!\! a,b)\!\! \rangle, \otimes (\!\! (c,d)\!\! \rangle, \otimes (\!\! (e,f)\!\! \rangle, \otimes (\!\! (g,\otimes (\!\! (h,i)\!\!))\!\! \rangle) =$

Notation

 $G(|H_1, \ldots, H_n|)$ is the graph obtained by replacing vertices in G with graphs "modularly".

 $\mathsf{P}_4(\!\! \langle \! \otimes (\!\! a,b)\!\! \rangle, \otimes (\!\! (c,d)\!\! \rangle, \otimes (\!\! (e,f)\!\! \rangle, \otimes (\!\! (g,\otimes (\!\! (h,i)\!\!))\!\! \rangle) =$

Lemma (Modular decomposition of graphs (Gallai '75))

If $G \neq \emptyset$ is a graph, then we have exactly one of the following cases:

G is a singleton graph

$$G = P(A_1, \ldots, A_n) for a prime graph P$$

Too many denotations for the same graph

Sources of homonymity:

 \bullet Associativity of \otimes and \otimes

$$a \otimes (b \otimes c) = b = c = (a \otimes b) \otimes c$$

• Graphs isomorphism:

$$P_4(a, b, c, d) = a - b - c - d = P_4(d, c, b, a)$$

• Graphs symmetries:

$$\underbrace{\mathsf{P}_4}_{a-b-c-d} ([a, b, c, d]) = a - b - c - d = \underbrace{\mathsf{P}_4'}_{c-a-d-b} ([b, d, a, c])$$

For each (family of symmetric) prime graphs, we fix an order on vertices:

Formula representation of graphs

Formulas

$$\phi_1,\ldots,\phi_n\coloneqq \circ \mid a\mid a^{\perp}\mid \kappa_P(\phi_1,\ldots,\phi_{n_P})$$

Interpretation as graphs $[[\circ]] = \emptyset \qquad [[a]] = a \qquad [[a^{\perp}]] = a^{\perp}$ $[[\kappa_P(\phi_1, \dots, \phi_n)]] = P([[\phi_1]], \dots, [[\phi_n]])$

Previous and Related Works

Original research question:

Proof Theory treating the happens-before relation "logically"

Original research question:

Proof Theory treating the happens-before relation "logically"

Logical time is expressed by logical connectives

A "happens before" $B \longrightarrow A \triangleleft B$

Original research question:

Proof Theory treating the happens-before relation "logically"

Logical time is expressed by logical connectives

A "happens before" $B \longrightarrow A \triangleleft B$

Original research question:

Proof Theory treating the happens-before relation "logically"

Logical time is expressed by logical connectives

A "happens before" $B \longrightarrow A \triangleleft B$

Original research question:

Proof Theory treating the happens-before relation "logically"

Logical time is expressed by logical connectives

A "happens before" $B \longrightarrow A \triangleleft B$

Original research question:

Proof Theory treating the happens-before relation "logically"

A "happens before" $B \longrightarrow A \triangleleft B$

Previous results:

 Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GV^{sl});

Previous results:

- Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GV^{sl});
- GS conservative extension of MLL° [LICS2020,LMCS2021];

Previous results:

- Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GV^{sl});
- GS conservative extension of MLL° [LICS2020,LMCS2021];
- GV and GV^{sl} conservative extensions of GS and BV [FSCD2022];

Previous results:

- Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GV^{sl});
- GS conservative extension of MLL° [LICS2020,LMCS2021];
- GV and GV^{sl} conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Previous results:

- Proof systems (deep inference) operating on undirected graphs (GS), and mixed graphs (GV and GV^{sl});
- GS conservative extension of MLL° [LICS2020,LMCS2021];
- GV and GV^{sl} conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Theorem (Tiu 2006)

No possible sequent systems for BV.

$$a \rightarrow x^{\perp} - (x \quad b \rightarrow c) \quad \multimap \quad a \rightarrow b \rightarrow c$$

$$\frac{\circ}{asso} \frac{(a^{\perp} \triangleleft b^{\perp} \triangleleft c^{\perp}) \Im(a \triangleleft b \triangleleft c)}{\left(a^{\perp} \triangleleft (a^{\perp} \triangleleft (a^{\perp} \triangleleft (b^{\perp} \triangleleft c^{\perp}))))\right)} \Im(a \triangleleft b \triangleleft c)} \Im(a \triangleleft b \triangleleft c)$$

Extension of boolean logic [Calk, Das, Waring ArXiv2020,]:

• Two enteilement mechanisms

 $\begin{array}{lll} A \Rightarrow_{\wedge} B & \forall C_A \text{ max-Cl in } A & \exists C_B \text{ max-Cl in } B & \text{s.t. } C_B \subseteq C_A \\ A \Rightarrow_{\vee} B & \forall S_B \text{ max-St in } B & \exists S_A \text{ max-St in } A & \text{s.t. } S_A \subseteq C_B \end{array}$

- Similar idea in Pratt's "Modeling concurrency with partial orders" 1986;
- Linear Inferences [Das& Rice FSCD2021&LMCS2023];
- Conservative extension of LK.

Why deep inference?

Context-free rewriting rules.

Sequent calculi operating on Graphs

$$MGL = \{ax, \mathcal{B}, \otimes, d-P\}$$

$$MGL^{\circ} = MGL \cup \{mix, wd_{\otimes}, u_{\kappa}\}$$

$$KGL = MGL \cup \{w, c\}$$

Theorem (Graph isomorphism)

If $[[\phi]] = [[\psi]]$ then $\vdash_{\mathsf{MGL}^\circ} \phi \leadsto \psi$. (If ϕ and ψ unit-free, then MGL)

Theorem (Cut-elimination)

The rule cut is admissible;

Theorem (Conservativity)

 $\mathsf{MGL} \supset \mathsf{MLL} \qquad \mathsf{MGL}^\circ \supset \mathsf{MLL}^\circ \qquad \mathsf{KGL} \supset \mathsf{LK}$

Note: $A \star \emptyset = \star (A, \emptyset) = A$

Analytic proof: no "new connectives" occurs during proof search

Analytic proof: no "new connectives" occurs during proof search

Theorem

If ϕ is provable, than ϕ admits an analytic proof.

Future Works

- Mathematical structure of graphs (w.r.t. modular decomposition). Are there similar structures?
- Topological characterization (beyond Retore's criterion)

 What if we use the arena (directed graphs) encoding of intuitionistic formulas?

$$[[((a \land a) \to b) \to ((c \to a) \to b)]] = a \to b \to b$$

$$c \to a$$

- Mathematical structure of graphs (w.r.t. modular decomposition). Are there similar structures?
- Topological characterization (beyond Retore's criterion)

 What if we use the arena (directed graphs) encoding of intuitionistic formulas?

$$[[((a \land a) \to b) \to ((c \to a) \to b)]] = a \to b \to b \\ c \to a$$

To sum up:

- Graphs naturally represent complex patterns of interaction;
- We can define proof systems operating on graphs!
- New graphs-as-connectives approach.

To sum up:

- Graphs naturally represent complex patterns of interaction;
- We can define proof systems operating on graphs!
- New graphs-as-connectives approach.

Reminder: Proof theory on formulas is the "easy" fragment

To sum up:

- Graphs naturally represent complex patterns of interaction;
- We can define proof systems operating on graphs!
- New graphs-as-connectives approach.

Reminder: Proof theory on formulas is the "easy" fragment

Challenge for the ATP community Define efficient theorem provers operating on graphs

Thank you

Thank you

Questions? Comments?