
Sequent Systems on Undirected Graphs

Matteo Acclavio

IJCAR2024 - Nancy (FR) 05/07/2024

1 Why graphs?
Formulas-as-(co)Graphs

2 From Formulas-as-Graphs to Graphs-as-Formulas
Decomposition Theorem
Graphical Connectives

3 Previous and Related Works
Reasoning about Logical Time
Maximal Clique Preserving

4 Sequent calculi operating on Graphs

5 Future Works

Why graphs?

a b c d

readx writeh(x)

ready writeg (x ,y)

✓ readx ⊳ writeh(x) ⊳ ready ⊳ writeg (x ,y)
✓ readx ⊳ ready ⊳ writeg (x ,y) ⊳ writeh(x)
✓ readx ⊳ ready ⊳ writeh(x) ⊳ writeg (x ,y)
✓ ready ⊳ readx ⊳ writeg (x ,y) ⊳ writeh(x)
✓ ready ⊳ readx ⊳ writeh(x) ⊳ writeg (x ,y)
✗ readx ⊳ writeh(x) ⊳ writeg (x ,y) ⊳ ready

readx writeh(x)

ready writeg (x ,y)

✓ readx ⊳ writeh(x) ⊳ ready ⊳ writeg (x ,y)
✓ readx ⊳ ready ⊳ writeg (x ,y) ⊳ writeh(x)
✓ readx ⊳ ready ⊳ writeh(x) ⊳ writeg (x ,y)
✓ ready ⊳ readx ⊳ writeg (x ,y) ⊳ writeh(x)
✓ ready ⊳ readx ⊳ writeh(x) ⊳ writeg (x ,y)

✗ readx ⊳ writeh(x) ⊳ writeg (x ,y) ⊳ ready

readx writeh(x)

ready writeg (x ,y)

✓ readx ⊳ writeh(x) ⊳ ready ⊳ writeg (x ,y)
✓ readx ⊳ ready ⊳ writeg (x ,y) ⊳ writeh(x)
✓ readx ⊳ ready ⊳ writeh(x) ⊳ writeg (x ,y)
✓ ready ⊳ readx ⊳ writeg (x ,y) ⊳ writeh(x)
✓ ready ⊳ readx ⊳ writeh(x) ⊳ writeg (x ,y)
✗ readx ⊳ writeh(x) ⊳ writeg (x ,y) ⊳ ready

Classical Formulas and Cographs

Classical Logic Formulas

𝜙, 𝜓 B a | a⊥ | 𝜙 ∨ 𝜓 | 𝜙 ∧ 𝜓

Cographs

a a⊥
•
...

•

•
...

•

•
...

•

•
...

•

©« or
•
...

•

•
...

•

ª®®®¬
[[·]] : {Formulas} → {Cographs}

Note: logical negation = complementary graph (+ dual labels)

Tip: edge between a and b in [[A]] ⇐⇒ a and b meets in a ∧ in A

Classical Formulas and Cographs

Classical Logic Formulas

𝜙, 𝜓 B a | a⊥ | 𝜙 ∨ 𝜓 | 𝜙 ∧ 𝜓

Cographs

a a⊥
•
...

•

•
...

•

•
...

•

•
...

•

©« or
•
...

•

•
...

•

ª®®®¬
[[·]] : {Formulas} → {Cographs}

Note: logical negation = complementary graph (+ dual labels)

Tip: edge between a and b in [[A]] ⇐⇒ a and b meets in a ∧ in A

From Formulas-as-Graphs to
Graphs-as-Formulas

Modules

A module of a graph G = H [M] is a set of vertices M s.t.

M

•
...

•

•
...

•
= M

•
...

•

•
...

•

A graph G is prime if it has modules VG , ∅ and {x} for all x ∈ VG .

O ⊗ P4 Bull

• • • • • • • • • • • •
• · · · (infinitely many)

Modules

A module of a graph G = H [M] is a set of vertices M s.t.

M

•
...

•

•
...

•
= M

•
...

•

•
...

•

A graph G is prime if it has modules VG , ∅ and {x} for all x ∈ VG .

O ⊗ P4 Bull

• • • • • • • • • • • •
• · · · (infinitely many)

Modules

A module of a graph G = H [M] is a set of vertices M s.t.

M

•
...

•

•
...

•
= M

•
...

•

•
...

•

A graph G is prime if it has modules VG , ∅ and {x} for all x ∈ VG .

O ⊗ P4 Bull

• • • • • • • • • • • •
• · · · (infinitely many)

Modular decomposition

Notation
G LH1, . . . ,HnM is the graph obtained by replacing vertices in G with
graphs “modularly”.

P4LOLa, bM, ⊗Lc , dM, ⊗Le, f M, ⊗Lg , ⊗Lh, iMMM =

c d e f

a b g h i

=

c
d

e
f

a b g h i

Lemma (Modular decomposition of graphs (Gallai ’75))

If G ≠ ∅ is a graph, then we have exactly one of the following cases:

(i) G is a singleton graph

(ii) G = PLA1, . . . ,AnM for a prime graph P

Modular decomposition

Notation
G LH1, . . . ,HnM is the graph obtained by replacing vertices in G with
graphs “modularly”.

P4LOLa, bM, ⊗Lc , dM, ⊗Le, f M, ⊗Lg , ⊗Lh, iMMM

=

c d e f

a b g h i

=

c
d

e
f

a b g h i

Lemma (Modular decomposition of graphs (Gallai ’75))

If G ≠ ∅ is a graph, then we have exactly one of the following cases:

(i) G is a singleton graph

(ii) G = PLA1, . . . ,AnM for a prime graph P

Modular decomposition

Notation
G LH1, . . . ,HnM is the graph obtained by replacing vertices in G with
graphs “modularly”.

P4LOLa, bM, ⊗Lc , dM, ⊗Le, f M, ⊗Lg , ⊗Lh, iMMM =

c d e f

a b g h i

=

c
d

e
f

a b g h i

Lemma (Modular decomposition of graphs (Gallai ’75))

If G ≠ ∅ is a graph, then we have exactly one of the following cases:

(i) G is a singleton graph

(ii) G = PLA1, . . . ,AnM for a prime graph P

Modular decomposition

Notation
G LH1, . . . ,HnM is the graph obtained by replacing vertices in G with
graphs “modularly”.

P4LOLa, bM, ⊗Lc , dM, ⊗Le, f M, ⊗Lg , ⊗Lh, iMMM =

c d e f

a b g h i

=

c
d

e
f

a b g h i

Lemma (Modular decomposition of graphs (Gallai ’75))

If G ≠ ∅ is a graph, then we have exactly one of the following cases:

(i) G is a singleton graph

(ii) G = PLA1, . . . ,AnM for a prime graph P

Too many denotations for the same graph

Sources of homonymity:

Associativity of O and ⊗

a ⊗(b ⊗ c) = a
b c

= (a ⊗ b) ⊗ c

Graphs isomorphism:

P4La, b, c , dM = a b c d = P4Ld , c , b, aM

Graphs symmetries:

P4︸︷︷︸
a b c d

La, b, c , dM = a b c d = P4
′︸︷︷︸

c a d b

Lb, d , a, cM

Graphical connectives (Graphs)

For each (family of symmetric) prime graphs, we fix an order on vertices:

OLv1, v2M : v
1

v
2

⊗Lv1, v2M : v
1

v
2

P4Lv1, v2, v3, v4M : v
1

v
2

v
3

v
4

BullLv1, . . . , v5M :
v
1

v
2

v
3

v
4

v
5

. . .

Formula representation of graphs

Formulas

𝜙1, . . . , 𝜙n B ◦ | a | a⊥ | 𝜅PL𝜙1, . . . , 𝜙nP M

Interpretation as graphs

[[◦]] = ∅ [[a]] = a
[[
a⊥

]]
= a⊥[[

𝜅PL𝜙1, . . . , 𝜙nM
]]
= PL[[𝜙1]] , . . . , [[𝜙n]]M

Previous and Related Works

A. et al

Original research question:
Proof Theory treating the happens-before relation “logically”

Logical time is expressed by logical connectives

A “happens before” B ⇝ A ⊳ B

and

Logical implication (⊸) capturing partial order refinements
a b a b

⊸

c d c d

a b a b

⊸

c d c d

((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) O(a ⊳ c) ⊗(b ⊳ d) ((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) ONLa, b, c , dM
Provable in BV Provable in GVsl

A. et al

Original research question:
Proof Theory treating the happens-before relation “logically”

Logical time is expressed by logical connectives

A “happens before” B ⇝ A ⊳ B

and

Logical implication (⊸) capturing partial order refinements
a b a b

⊸

c d c d

a b a b

⊸

c d c d

((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) O(a ⊳ c) ⊗(b ⊳ d) ((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) ONLa, b, c , dM
Provable in BV Provable in GVsl

A. et al

Original research question:
Proof Theory treating the happens-before relation “logically”

Logical time is expressed by logical connectives

A “happens before” B ⇝ A ⊳ B

and

Logical implication (⊸) capturing partial order refinements
a b a b

⊸
c d c d

a b a b
⊸

c d c d

((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) O(a ⊳ c) ⊗(b ⊳ d) ((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) ONLa, b, c , dM
Provable in BV Provable in GVsl

A. et al

Original research question:
Proof Theory treating the happens-before relation “logically”

Logical time is expressed by logical connectives

A “happens before” B ⇝ A ⊳ B

and

Logical implication (⊸) capturing partial order refinements
a b a b

⊸

c d c d

a b a b

⊸

c d c d

((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) O(a ⊳ c) ⊗(b ⊳ d) ((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) ONLa, b, c , dM
Provable in BV Provable in GVsl

A. et al

Original research question:
Proof Theory treating the happens-before relation “logically”

Logical time is expressed by logical connectives

A “happens before” B ⇝ A ⊳ B

and

Logical implication (⊸) capturing partial order refinements
a b a b

⊸

c d c d

a b a b

⊸

c d c d

((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) O(a ⊳ c) ⊗(b ⊳ d)

((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) ONLa, b, c , dM

Provable in BV

Provable in GVsl

A. et al

Original research question:
Proof Theory treating the happens-before relation “logically”

Logical time is expressed by logical connectives

A “happens before” B ⇝ A ⊳ B

and

Logical implication (⊸) capturing partial order refinements
a b a b

⊸

c d c d

a b a b

⊸

c d c d

((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) O(a ⊳ c) ⊗(b ⊳ d) ((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) ONLa, b, c , dM
Provable in BV Provable in GVsl

A. et al

Previous results:

Proof systems (deep inference) operating on undirected graphs (GS),
and mixed graphs (GV and GVsl);

GS conservative extension of MLL◦ [LICS2020,LMCS2021];

GV and GVsl conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Theorem (Tiu 2006)

No possible sequent systems for BV.

a x⊥ x b c ⊸ a b c

◦
i↑

(a⊥ ⊳ b⊥ ⊳ c⊥) O(a ⊳ b ⊳ c)
asso ©«a⊥ ⊳

©«©«
◦

x O x⊥
ª®¬ ⊗(b⊥ ⊳ c⊥)ª®¬ª®¬

s
(a⊥ ⊳ (x O(x⊥ ⊗(b⊥ ⊳ c⊥))))

q↓
(a⊥ ⊳ x) O (x⊥ ⊗(b⊥ ⊳ c⊥))

O(a ⊳ b ⊳ c)

A. et al

Previous results:

Proof systems (deep inference) operating on undirected graphs (GS),
and mixed graphs (GV and GVsl);

GS conservative extension of MLL◦ [LICS2020,LMCS2021];

GV and GVsl conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Theorem (Tiu 2006)

No possible sequent systems for BV.

a x⊥ x b c ⊸ a b c

◦
i↑

(a⊥ ⊳ b⊥ ⊳ c⊥) O(a ⊳ b ⊳ c)
asso ©«a⊥ ⊳

©«©«
◦

x O x⊥
ª®¬ ⊗(b⊥ ⊳ c⊥)ª®¬ª®¬

s
(a⊥ ⊳ (x O(x⊥ ⊗(b⊥ ⊳ c⊥))))

q↓
(a⊥ ⊳ x) O (x⊥ ⊗(b⊥ ⊳ c⊥))

O(a ⊳ b ⊳ c)

A. et al

Previous results:

Proof systems (deep inference) operating on undirected graphs (GS),
and mixed graphs (GV and GVsl);

GS conservative extension of MLL◦ [LICS2020,LMCS2021];

GV and GVsl conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Theorem (Tiu 2006)

No possible sequent systems for BV.

a x⊥ x b c ⊸ a b c

◦
i↑

(a⊥ ⊳ b⊥ ⊳ c⊥) O(a ⊳ b ⊳ c)
asso ©«a⊥ ⊳

©«©«
◦

x O x⊥
ª®¬ ⊗(b⊥ ⊳ c⊥)ª®¬ª®¬

s
(a⊥ ⊳ (x O(x⊥ ⊗(b⊥ ⊳ c⊥))))

q↓
(a⊥ ⊳ x) O (x⊥ ⊗(b⊥ ⊳ c⊥))

O(a ⊳ b ⊳ c)

A. et al

Previous results:

Proof systems (deep inference) operating on undirected graphs (GS),
and mixed graphs (GV and GVsl);

GS conservative extension of MLL◦ [LICS2020,LMCS2021];

GV and GVsl conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Theorem (Tiu 2006)

No possible sequent systems for BV.

a x⊥ x b c ⊸ a b c

◦
i↑

(a⊥ ⊳ b⊥ ⊳ c⊥) O(a ⊳ b ⊳ c)
asso ©«a⊥ ⊳

©«©«
◦

x O x⊥
ª®¬ ⊗(b⊥ ⊳ c⊥)ª®¬ª®¬

s
(a⊥ ⊳ (x O(x⊥ ⊗(b⊥ ⊳ c⊥))))

q↓
(a⊥ ⊳ x) O (x⊥ ⊗(b⊥ ⊳ c⊥))

O(a ⊳ b ⊳ c)

A. et al

Previous results:

Proof systems (deep inference) operating on undirected graphs (GS),
and mixed graphs (GV and GVsl);

GS conservative extension of MLL◦ [LICS2020,LMCS2021];

GV and GVsl conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Theorem (Tiu 2006)

No possible sequent systems for BV.

a x⊥ x b c ⊸ a b c

◦
i↑

(a⊥ ⊳ b⊥ ⊳ c⊥) O(a ⊳ b ⊳ c)
asso ©«a⊥ ⊳

©«©«
◦

x O x⊥
ª®¬ ⊗(b⊥ ⊳ c⊥)ª®¬ª®¬

s
(a⊥ ⊳ (x O(x⊥ ⊗(b⊥ ⊳ c⊥))))

q↓
(a⊥ ⊳ x) O (x⊥ ⊗(b⊥ ⊳ c⊥))

O(a ⊳ b ⊳ c)

Das et al

Extension of boolean logic [Calk, Das, Waring ArXiv2020,]:

Two enteilement mechanisms

A ⇒∧ B ∀CA max-Cl in A ∃CB max-Cl in B s.t. CB ⊆ CA

A ⇒∨ B ∀SB max-St in B ∃SA max-St in A s.t. SA ⊆ CB

Similar idea in Pratt’s “Modeling concurrency with partial orders”
1986;

Linear Inferences [Das& Rice FSCD2021&LMCS2023];

Conservative extension of LK.

Why deep inference?
Context-free rewriting rules.

Sequent calculi operating on Graphs

Rules

ax a ∈ A
⊢ a, a⊥

⊢ Γ, 𝜙, 𝜓
O
⊢ Γ, 𝜙O𝜓

⊢ Γ, 𝜙 ⊢ 𝜓,Δ
⊗

⊢ Γ, 𝜙 ⊗ 𝜓,Δ

⊢ Γ
w
⊢ Γ, 𝜙

⊢ Γ1, 𝜙𝜎 (1) , 𝜓𝜏 (1) · · · ⊢ Γn, 𝜙𝜎 (n) , 𝜓𝜏 (n)
d-𝜅

{
𝜎 ∈ 𝔖(𝜅)
𝜏 ∈ 𝔖(𝜅⊥)⊢ Γ1, . . . , Γn, 𝜅L𝜙1, . . . , 𝜙nM, 𝜅⊥L𝜓1, . . . 𝜓nM

⊢ Γ, 𝜙, 𝜙
c

⊢ Γ, 𝜙

⊢ Γ1 ⊢ Γ2
mix

⊢ Γ1, Γ2

⊢ Γ, 𝜙k ⊢ Δ, 𝜅L𝜙1, . . . , 𝜙k−1, ◦, 𝜙k+1, . . . , 𝜙nM
wd⊗

⊢ Γ,Δ, 𝜅L𝜙1, . . . , 𝜙nM
⊢ Γ, 𝜒L𝜙𝜎 (1) , . . . , 𝜙𝜎 (n)M

u𝜅

{
𝜎 ∈ 𝔖(𝜒)[[
𝜅L𝜙1, . . . , 𝜙k , ◦, 𝜙k+1, . . . , 𝜙nM

]]
=
[[
𝜒L𝜙𝜎 (1) , . . . , 𝜙𝜎 (n) M

]]
≠ ∅⊢ Γ, 𝜅L𝜙1, . . . , 𝜙k , ◦, 𝜙k+1, . . . , 𝜙nM

MGL = {ax,O, ⊗, d-P}
MGL◦ = MGL ∪

{
mix,wd⊗, u𝜅

}
KGL = MGL ∪ {w, c}

Main results

Theorem (Graph isomorphism)

If [[𝜙]] = [[𝜓]] then ⊢MGL◦ 𝜙� 𝜓. (If 𝜙 and 𝜓 unit-free, then MGL)

Theorem (Cut-elimination)

The rule cut is admissible;

Theorem (Conservativity)

MGL ⊃ MLL MGL◦ ⊃ MLL◦ KGL ⊃ LK

Note: A★∅ = ★(A,∅) = A

A new notion of “sub-formula” analyticity arises from this work:

• •
• •

•

•

has sub-connective (e.g.)

•
•

•

•

and

• •
• •

•

Analytic proof: no “new connectives” occurs during proof search

Theorem

If 𝜙 is provable, than 𝜙 admits an analytic proof.

Note: A★∅ = ★(A,∅) = A
A new notion of “sub-formula” analyticity arises from this work:

• •
• •

•

•

has sub-connective (e.g.)

•
•

•

•

and

• •
• •

•

Analytic proof: no “new connectives” occurs during proof search

Theorem

If 𝜙 is provable, than 𝜙 admits an analytic proof.

Note: A★∅ = ★(A,∅) = A
A new notion of “sub-formula” analyticity arises from this work:

• •
• •

•

•

has sub-connective (e.g.)

•
•

•

•

and

• •
• •

•

Analytic proof: no “new connectives” occurs during proof search

Theorem

If 𝜙 is provable, than 𝜙 admits an analytic proof.

Note: A★∅ = ★(A,∅) = A
A new notion of “sub-formula” analyticity arises from this work:

• •
• •

•

•

has sub-connective (e.g.)

•
•

•

•

and

• •
• •

•

Analytic proof: no “new connectives” occurs during proof search

Theorem

If 𝜙 is provable, than 𝜙 admits an analytic proof.

Future Works

Mathematical structure of graphs (w.r.t. modular decomposition).
Are there similar structures?

Topological characterization (beyond Retore’s criterion)

b⊥ a⊥ a b

oO o⊗

rO r⊗

b⊥ a⊥ a b

oO oO

rO rO

Connected+Æ-acyclic (MLL) Æ-acyclic (MLL◦)

b a⊥ b⊥ a

oP4

rP4

c⊥ a⊥ d⊥ b⊥

oP⊥
4

rP⊥
4

a b c d

oP4

rP4

Æ-Acyclic (but not in GS) Æ-Acyclic (but in GS)

What if we use the arena (directed graphs) encoding of intuitionistic
formulas?

[[((a ∧ a) → b) → ((c → a) → b)]] =
a
a b b
c a

Mathematical structure of graphs (w.r.t. modular decomposition).
Are there similar structures?

Topological characterization (beyond Retore’s criterion)

b⊥ a⊥ a b
oO o⊗

rO r⊗

b⊥ a⊥ a b
oO oO

rO rO
Connected+Æ-acyclic (MLL) Æ-acyclic (MLL◦)

b a⊥ b⊥ a
oP4

rP4

c⊥ a⊥ d⊥ b⊥

oP⊥
4

rP⊥
4

a b c d

oP4

rP4

Æ-Acyclic (but not in GS) Æ-Acyclic (but in GS)

What if we use the arena (directed graphs) encoding of intuitionistic
formulas?

[[((a ∧ a) → b) → ((c → a) → b)]] =
a
a b b
c a

To sum up:

Graphs naturally represent complex patterns of interaction;

We can define proof systems operating on graphs!

New graphs-as-connectives approach.

Reminder: Proof theory on formulas is the “easy” fragment

Challenge for the ATP community
Define efficient theorem provers operating on graphs

To sum up:

Graphs naturally represent complex patterns of interaction;

We can define proof systems operating on graphs!

New graphs-as-connectives approach.

Reminder: Proof theory on formulas is the “easy” fragment

Challenge for the ATP community
Define efficient theorem provers operating on graphs

To sum up:

Graphs naturally represent complex patterns of interaction;

We can define proof systems operating on graphs!

New graphs-as-connectives approach.

Reminder: Proof theory on formulas is the “easy” fragment

Challenge for the ATP community
Define efficient theorem provers operating on graphs

Thank you

Questions?
Comments?

Thank you
Questions?
Comments?

	Why graphs?
	Formulas-as-(co)Graphs

	From Formulas-as-Graphs to Graphs-as-Formulas
	Decomposition Theorem
	Graphical Connectives

	Previous and Related Works
	Reasoning about Logical Time
	Maximal Clique Preserving

	Sequent calculi operating on Graphs
	Future Works

