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Why graphs?
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Classical Formulas and Cographs

Classical Logic Formulas

𝜙, 𝜓 B a | a⊥ | 𝜙 ∨ 𝜓 | 𝜙 ∧ 𝜓

Cographs

a a⊥
•
...

•

•
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•

•
...

•

•
...

•

©« or
•
...

•

•
...

•

ª®®®¬
[[·]] : {Formulas} → {Cographs}

Note: logical negation = complementary graph (+ dual labels)

Tip: edge between a and b in [[A]] ⇐⇒ a and b meets in a ∧ in A
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From Formulas-as-Graphs to
Graphs-as-Formulas



Modules

A module of a graph G = H [M] is a set of vertices M s.t.

M

•
...

•

•
...

•
= M

•
...

•

•
...

•

A graph G is prime if it has modules VG , ∅ and {x} for all x ∈ VG .

O ⊗ P4 Bull

• • • • • • • • • • • •
• · · · (infinitely many)
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Modular decomposition

Notation
G LH1, . . . ,HnM is the graph obtained by replacing vertices in G with
graphs “modularly”.

P4LOLa, bM, ⊗Lc , dM, ⊗Le, f M, ⊗Lg , ⊗Lh, iMMM =

c d e f

a b g h i

=

c
d

e
f

a b g h i

Lemma (Modular decomposition of graphs (Gallai ’75))

If G ≠ ∅ is a graph, then we have exactly one of the following cases:

(i) G is a singleton graph

(ii) G = PLA1, . . . ,AnM for a prime graph P
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Too many denotations for the same graph

Sources of homonymity:

Associativity of O and ⊗

a ⊗(b ⊗ c) = a
b c

= (a ⊗ b) ⊗ c

Graphs isomorphism:

P4La, b, c , dM = a b c d = P4Ld , c , b, aM

Graphs symmetries:

P4︸︷︷︸
a b c d

La, b, c , dM = a b c d = P4
′︸︷︷︸

c a d b

Lb, d , a, cM



Graphical connectives (Graphs)

For each (family of symmetric) prime graphs, we fix an order on vertices:

OLv1, v2M : v
1

v
2

⊗Lv1, v2M : v
1

v
2

P4Lv1, v2, v3, v4M : v
1

v
2

v
3

v
4

BullLv1, . . . , v5M :
v
1

v
2

v
3

v
4

v
5

. . .



Formula representation of graphs

Formulas

𝜙1, . . . , 𝜙n B ◦ | a | a⊥ | 𝜅PL𝜙1, . . . , 𝜙nP M

Interpretation as graphs

[[◦]] = ∅ [[a]] = a
[[
a⊥

]]
= a⊥[[

𝜅PL𝜙1, . . . , 𝜙nM
]]
= PL[[𝜙1]] , . . . , [[𝜙n]]M



Previous and Related Works



A. et al

Original research question:
Proof Theory treating the happens-before relation “logically”

Logical time is expressed by logical connectives

A “happens before” B ⇝ A ⊳ B

and

Logical implication (⊸) capturing partial order refinements
a b a b

⊸

c d c d

a b a b

⊸

c d c d

((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) O(a ⊳ c) ⊗(b ⊳ d) ((a⊥ ⊗ b⊥) ⊳ (c⊥ ⊗ d⊥)) ONLa, b, c , dM
Provable in BV Provable in GVsl
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A. et al

Previous results:

Proof systems (deep inference) operating on undirected graphs (GS),
and mixed graphs (GV and GVsl);

GS conservative extension of MLL◦ [LICS2020,LMCS2021];

GV and GVsl conservative extensions of GS and BV [FSCD2022];

Why deep inference?

Theorem (Tiu 2006)

No possible sequent systems for BV.

a x⊥ x b c ⊸ a b c

◦
i↑

(a⊥ ⊳ b⊥ ⊳ c⊥) O(a ⊳ b ⊳ c)
asso ©«a⊥ ⊳

©«©«
◦

x O x⊥
ª®¬ ⊗(b⊥ ⊳ c⊥)ª®¬ª®¬

s
(a⊥ ⊳ (x O(x⊥ ⊗(b⊥ ⊳ c⊥))))

q↓
(a⊥ ⊳ x) O (x⊥ ⊗(b⊥ ⊳ c⊥))

O(a ⊳ b ⊳ c)
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Das et al

Extension of boolean logic [Calk, Das, Waring ArXiv2020, ]:

Two enteilement mechanisms

A ⇒∧ B ∀CA max-Cl in A ∃CB max-Cl in B s.t. CB ⊆ CA

A ⇒∨ B ∀SB max-St in B ∃SA max-St in A s.t. SA ⊆ CB

Similar idea in Pratt’s “Modeling concurrency with partial orders”
1986;

Linear Inferences [Das& Rice FSCD2021&LMCS2023];

Conservative extension of LK.

Why deep inference?
Context-free rewriting rules.



Sequent calculi operating on Graphs



Rules

ax a ∈ A
⊢ a, a⊥

⊢ Γ, 𝜙, 𝜓
O
⊢ Γ, 𝜙O𝜓

⊢ Γ, 𝜙 ⊢ 𝜓,Δ
⊗

⊢ Γ, 𝜙 ⊗ 𝜓,Δ

⊢ Γ
w
⊢ Γ, 𝜙

⊢ Γ1, 𝜙𝜎 (1) , 𝜓𝜏 (1) · · · ⊢ Γn, 𝜙𝜎 (n) , 𝜓𝜏 (n)
d-𝜅

{
𝜎 ∈ 𝔖(𝜅 )
𝜏 ∈ 𝔖(𝜅⊥ )⊢ Γ1, . . . , Γn, 𝜅L𝜙1, . . . , 𝜙nM, 𝜅⊥L𝜓1, . . . 𝜓nM

⊢ Γ, 𝜙, 𝜙
c

⊢ Γ, 𝜙

⊢ Γ1 ⊢ Γ2
mix

⊢ Γ1, Γ2

⊢ Γ, 𝜙k ⊢ Δ, 𝜅L𝜙1, . . . , 𝜙k−1, ◦, 𝜙k+1, . . . , 𝜙nM
wd⊗

⊢ Γ,Δ, 𝜅L𝜙1, . . . , 𝜙nM
⊢ Γ, 𝜒L𝜙𝜎 (1) , . . . , 𝜙𝜎 (n)M

u𝜅

{
𝜎 ∈ 𝔖(𝜒)[[
𝜅L𝜙1, . . . , 𝜙k , ◦, 𝜙k+1, . . . , 𝜙nM

]]
=
[[
𝜒L𝜙𝜎 (1) , . . . , 𝜙𝜎 (n) M

]]
≠ ∅⊢ Γ, 𝜅L𝜙1, . . . , 𝜙k , ◦, 𝜙k+1, . . . , 𝜙nM

MGL = {ax,O, ⊗, d-P}
MGL◦ = MGL ∪

{
mix,wd⊗, u𝜅

}
KGL = MGL ∪ {w, c}



Main results

Theorem (Graph isomorphism)

If [[𝜙]] = [[𝜓]] then ⊢MGL◦ 𝜙� 𝜓. (If 𝜙 and 𝜓 unit-free, then MGL)

Theorem (Cut-elimination)

The rule cut is admissible;

Theorem (Conservativity)

MGL ⊃ MLL MGL◦ ⊃ MLL◦ KGL ⊃ LK



Note: A★∅ = ★(A,∅) = A

A new notion of “sub-formula” analyticity arises from this work:

• •
• •

•

•

has sub-connective (e.g.)

•
•

•

•

and

• •
• •

•

Analytic proof: no “new connectives” occurs during proof search

Theorem

If 𝜙 is provable, than 𝜙 admits an analytic proof.
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Future Works



Mathematical structure of graphs (w.r.t. modular decomposition).
Are there similar structures?

Topological characterization (beyond Retore’s criterion)

b⊥ a⊥ a b

oO o⊗

rO r⊗

b⊥ a⊥ a b

oO oO

rO rO

Connected+Æ-acyclic (MLL) Æ-acyclic (MLL◦)

b a⊥ b⊥ a

oP4

rP4

c⊥ a⊥ d⊥ b⊥

oP⊥
4

rP⊥
4

a b c d

oP4

rP4

Æ-Acyclic (but not in GS) Æ-Acyclic (but in GS)

What if we use the arena (directed graphs) encoding of intuitionistic
formulas?

[[((a ∧ a) → b) → ((c → a) → b)]] =
a
a b b
c a
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To sum up:

Graphs naturally represent complex patterns of interaction;

We can define proof systems operating on graphs!

New graphs-as-connectives approach.

Reminder: Proof theory on formulas is the “easy” fragment

Challenge for the ATP community
Define efficient theorem provers operating on graphs
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