
Propositional Dynamic Logic and Concurrency

Matteo Acclavio

Joint Work With Fabrizio Montesi and Marco Peressotti

Copenhagen 24/06/2024

1 / 21

1 Motivations

2 Propositional Dynamic Logic

3 Problem

4 Operational Propositional Dynamic Logic

5 Proof Theoretical Properties of OPDL

6 Conclusion and Future Work

2 / 21

Motivations

3 / 21

Last year, in Odense

“X-IDF: Explainable Internet Data Flows”

Mission: empowering citizens in gaining agency about their private data
by build a technology that is accessible and actionable.

Goal: find a way to distinguish protocols
(w.r.t. transmitted private data)

4 / 21

Last year, in Odense

“X-IDF: Explainable Internet Data Flows”

Mission: empowering citizens in gaining agency about their private data
by build a technology that is accessible and actionable.

Goal: find a way to distinguish protocols
(w.r.t. transmitted private data)

4 / 21

Bisimulation as program equivalence

𝜋1 = (𝛼; 𝛽) + (𝛼; 𝛾) 𝜋2 = 𝛼; (𝛽 + 𝛾)
•

• •

• •

𝛼

𝛽

𝛼

𝛾

≃

•

•

• •

𝛼

𝛽 𝛾

BUT
We do not want to reason about reachable states only,

we also want to express properties such as
“after the program 𝛼 is executed, then agent p knows 𝑥”

5 / 21

Bisimulation as program equivalence

𝜋1 = (𝛼; 𝛽) + (𝛼; 𝛾) 𝜋2 = 𝛼; (𝛽 + 𝛾)
•

• •

• •

𝛼

𝛽

𝛼

𝛾

≃

•

•

• •

𝛼

𝛽 𝛾

BUT

We do not want to reason about reachable states only,
we also want to express properties such as

“after the program 𝛼 is executed, then agent p knows 𝑥”

5 / 21

Bisimulation as program equivalence

𝜋1 = (𝛼; 𝛽) + (𝛼; 𝛾) 𝜋2 = 𝛼; (𝛽 + 𝛾)
•

• •

• •

𝛼

𝛽

𝛼

𝛾

≃

•

•

• •

𝛼

𝛽 𝛾

BUT
We do not want to reason about reachable states only,

we also want to express properties such as
“after the program 𝛼 is executed, then agent p knows 𝑥”

5 / 21

Use the same methods used in formal verification of security protocols:

The secret is revealed if there is a state 𝑆 such that

𝑆 ⊩ ⟨𝛼1⟩ · · · ⟨𝛼𝑛⟩ ⟨secret 𝑚⟩ ⊤

Logical framework: dynamic logic (Hennessy-Milner logic, modal
𝜇-calulus) + epistemic Logic. . .

6 / 21

Propositional Dynamic Logic

7 / 21

Propositional Dynamic Logic (1976)

Formulas Programs
𝜙, 𝜓 B | ⊤ true

| ⊥ false
| 𝑝 ∈ A (with 𝑝 ∈ A) atom
| 𝑝 (with 𝑝 ∈ A) negated atom
| 𝜙 ∨ 𝜓 disjunction
| 𝜙 ∧ 𝜓 conjunction
| [𝛼] 𝜙 box
| ⟨𝛼⟩ 𝜙 diamond︸ ︷︷ ︸

Propositional Reasoning

𝛼, 𝛽 B | 𝜖 terminated program
| ∅ stacked program
| 𝑎 ∈ I instruction
| 𝑡 ∈ T test
| 𝛼; 𝛽 sequential composition
| 𝛼∗ iteration
| 𝛼 ⊕ 𝛽 (non-deterministic) choice︸ ︷︷ ︸

Trace reasoning

Note: programs in PDL are elements of a regular language

8 / 21

𝔪 (⊤) = 𝑊

𝔪 (⊥) = ∅
𝔪

(
𝜙

)
= 𝑊 \𝔪 (𝜙)

𝔪 (𝜙 ∨ 𝜓) = 𝔪 (𝜙) ∪𝔪 (𝜓)
𝔪 (𝜙 ∧ 𝜓) = 𝔪 (𝜙) ∩𝔪 (𝜓)
𝔪 ([𝛼] 𝜙) = {𝑣 | 𝑤 ∈ 𝔪 (𝜙) for all 𝑤 s.t. (𝑣, 𝑤) ∈ 𝔪 (𝛼)}
𝔪 (⟨𝛼⟩ 𝜙) = {𝑣 | 𝑤 ∈ 𝔪 (𝜙) for a 𝑤 s.t. (𝑣, 𝑤) ∈ 𝔪 (𝛼)}

𝔪 (𝜖) = {(𝑣, 𝑣) | 𝑣 ∈ 𝑊}
𝔪 (∅) = ∅
𝔪 (𝜙?) = {(𝑣, 𝑣) | 𝑣 ∈ 𝔪 (𝜙)}
𝔪 (𝛼; 𝛽) = {(𝑢, 𝑤) | exists 𝑣 s.t. (𝑢, 𝑣) ∈𝔪 (𝛼) and (𝑣, 𝑤) ∈𝔪 (𝛽)}
𝔪 (𝛼 ⊕ 𝛽) = 𝔪 (𝛼) ∪𝔪 (𝛽)
𝔪 (𝛼∗) =

⋃
𝑛≥0𝔪 (𝛼𝑛) (where 𝛼0 = 𝜖)

𝔐1 ⊮ ⟨(𝛼; 𝛽) + (𝛼; 𝛾)⟩ 𝑝 ∨ [𝛽 + 𝛾] 𝑝 𝔐2 ⊩ [(𝛼; 𝛽) + (𝛼; 𝛾)] 𝑝 ∨ ⟨𝛽 + 𝛾⟩ 𝑝

⊤

⊤ ⊤

𝑝 ⊤

𝛼

𝛽

𝛼

𝛾

⊤

𝑝

𝑝 ⊤

𝛼

𝛽 𝛾

9 / 21

𝔪 (⊤) = 𝑊

𝔪 (⊥) = ∅
𝔪

(
𝜙

)
= 𝑊 \𝔪 (𝜙)

𝔪 (𝜙 ∨ 𝜓) = 𝔪 (𝜙) ∪𝔪 (𝜓)
𝔪 (𝜙 ∧ 𝜓) = 𝔪 (𝜙) ∩𝔪 (𝜓)
𝔪 ([𝛼] 𝜙) = {𝑣 | 𝑤 ∈ 𝔪 (𝜙) for all 𝑤 s.t. (𝑣, 𝑤) ∈ 𝔪 (𝛼)}
𝔪 (⟨𝛼⟩ 𝜙) = {𝑣 | 𝑤 ∈ 𝔪 (𝜙) for a 𝑤 s.t. (𝑣, 𝑤) ∈ 𝔪 (𝛼)}

𝔪 (𝜖) = {(𝑣, 𝑣) | 𝑣 ∈ 𝑊}
𝔪 (∅) = ∅
𝔪 (𝜙?) = {(𝑣, 𝑣) | 𝑣 ∈ 𝔪 (𝜙)}
𝔪 (𝛼; 𝛽) = {(𝑢, 𝑤) | exists 𝑣 s.t. (𝑢, 𝑣) ∈𝔪 (𝛼) and (𝑣, 𝑤) ∈𝔪 (𝛽)}
𝔪 (𝛼 ⊕ 𝛽) = 𝔪 (𝛼) ∪𝔪 (𝛽)
𝔪 (𝛼∗) =

⋃
𝑛≥0𝔪 (𝛼𝑛) (where 𝛼0 = 𝜖)

𝔐1 ⊮ ⟨(𝛼; 𝛽) + (𝛼; 𝛾)⟩ 𝑝 ∨ [𝛽 + 𝛾] 𝑝 𝔐2 ⊩ [(𝛼; 𝛽) + (𝛼; 𝛾)] 𝑝 ∨ ⟨𝛽 + 𝛾⟩ 𝑝

⊤

⊤ ⊤

𝑝 ⊤

𝛼

𝛽

𝛼

𝛾

⊤

𝑝

𝑝 ⊤

𝛼

𝛽 𝛾

9 / 21

Problem

10 / 21

No “pre-cooked” logics suitable for our purpose:

No satisfactory Dynamic Logics handling both parallel/interleaving
and recursion;

The Hoare Logic1 for choreographies (Cruz-Filipe, Graversen, Montesi
& Peressotti, 2023) only reasons on formulas of the form

𝜙 ⇒ [𝛼] 𝜓

. . . But we want diamonds!

1Hoare 1969
11 / 21

WHY?

programs in PDL = regular languages (elements of a Kleene Algebra)

and

Kleene Algebra + commutations︸ ︷︷ ︸
interleaving

Kozen ’96
=⇒ undecidability whether 𝛼 = 𝛽

So in any “concurrent-PDL” ⊢ [𝛼] ⊤ ⇔ [𝛽] ⊤ is undecidable.

Solution: control the semantics of programs in the logic

12 / 21

WHY?

programs in PDL = regular languages (elements of a Kleene Algebra)
and

Kleene Algebra + commutations︸ ︷︷ ︸
interleaving

Kozen ’96
=⇒ undecidability whether 𝛼 = 𝛽

So in any “concurrent-PDL” ⊢ [𝛼] ⊤ ⇔ [𝛽] ⊤ is undecidable.

Solution: control the semantics of programs in the logic

12 / 21

WHY?

programs in PDL = regular languages (elements of a Kleene Algebra)
and

Kleene Algebra + commutations︸ ︷︷ ︸
interleaving

Kozen ’96
=⇒ undecidability whether 𝛼 = 𝛽

So in any “concurrent-PDL” ⊢ [𝛼] ⊤ ⇔ [𝛽] ⊤ is undecidable.

Solution: control the semantics of programs in the logic

12 / 21

WHY?

programs in PDL = regular languages (elements of a Kleene Algebra)
and

Kleene Algebra + commutations︸ ︷︷ ︸
interleaving

Kozen ’96
=⇒ undecidability whether 𝛼 = 𝛽

So in any “concurrent-PDL” ⊢ [𝛼] ⊤ ⇔ [𝛽] ⊤ is undecidable.

Solution: control the semantics of programs in the logic

12 / 21

Operational Propositional Dynamic Logic

13 / 21

O(perational Semantics)

 AOS : [𝛼] 𝜙 ⇔
©­­«

𝛽 atomic∧
𝛼 𝛽 𝛾

[𝛽] [𝛾] 𝜙
ª®®¬

PDL



PL : Axiomatization of propositional classical logic

Neg : [𝛼] 𝜙 ⇔
(
⟨𝛼⟩ 𝜙

)
K : ([𝛼] (𝜙 ⇒ 𝜓)) ⇒ ([𝛼] 𝜙 ⇒ [𝛼] 𝜓)
A∅ : [∅] 𝜙
A𝜖 : [𝜖] 𝜙 ⇔ 𝜙

A? : [𝜓?] 𝜙 ⇔ (𝜓 ∨ 𝜙)
A⊕ : [𝛼 ⊕ 𝛽] 𝜙 ⇔ ([𝛼] 𝜙 ∧ [𝛽] 𝜙)
A; : [𝛼; 𝛽] 𝜙 ⇔ [𝛼] [𝛽] 𝜙
A∗ : [𝛼∗] 𝜙 ⇔ (𝜙 ∧ [𝛼] [𝛼∗]𝜙)

⊢ 𝜙 ⊢ 𝜙 ⇒ 𝜓
mp −−−−−−−−−−−−−−−−−−−−

⊢ 𝜓
⊢ 𝜙

nec −−−−−−−−−−
⊢ [𝛼] 𝜙

⊢ 𝜙 ⇒ [𝛼] 𝜙
li −−−−−−−−−−−−−−−−−−−
⊢ 𝜙 ⇒ [𝛼∗] 𝜙

Meaning of a non-atomic program:

𝔪 (𝛼) =
⋃

𝛼 𝛽 𝛾

𝔪 (𝛽; 𝛾)

14 / 21

Proof Theoretical Properties of OPDL

15 / 21

⊤ −−−−
⊢ ⊤

ax −−−−−−−−
⊢ 𝜙, 𝜙

⊢ Γ
w −−−−−−−−
⊢ Γ, 𝜙

⊢ Γ, 𝜙, 𝜓
∨ −−−−−−−−−−−−−−
⊢ Γ, 𝜙 ∨ 𝜓

⊢ Γ, 𝜙 ⊢ Γ, 𝜓
∧ −−−−−−−−−−−−−−−−−−−−

⊢ Γ, 𝜙 ∧ 𝜓

⊢ Γ, 𝜙
k𝛼 −−−−−−−−−−−−−−−−−−− 𝛼 ∉ { 𝜖 ,∅}

⊢ ⟨𝛼⟩ Γ, [𝛼] 𝜙
⊢ Γ, 𝜙 ⊢ Γ, 𝜙

cut −−−−−−−−−−−−−−−−−−−−
⊢ Γ

⊢ Γ, 𝜙
[𝜖] −−−−−−−−−−−−−

⊢ Γ, [𝜖] 𝜙
[∅] −−−−−−−−−−

⊢ [∅] 𝜙
⊢ Γ, 𝜙 ∨ 𝜓

[?] −−−−−−−−−−−−−−−
⊢ Γ, [𝜙?] 𝜓

⊢ Γ, [𝛼] 𝜙 ⊢ Γ, [𝛽] 𝜙
[⊕] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⊢ Γ, [𝛼 ⊕ 𝛽] 𝜙
⊢ Γ, [𝛼] [𝛽] 𝜙

[;] −−−−−−−−−−−−−−−−−−−
⊢ Γ, [𝛼; 𝛽] 𝜙

⊢ Γ, 𝜙 ⊢ Γ, [𝛼;𝛼∗] 𝜙
[∗] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⊢ Γ, [𝛼∗] 𝜙
⊢ Γ, 𝜙

⟨𝜖 ⟩ −−−−−−−−−−−−−
⊢ Γ, ⟨𝜖⟩ 𝜙

⊢ Γ, 𝜓
⟨∅⟩ −−−−−−−−−−−−−−−−−

⊢ Γ, 𝜓, ⟨∅⟩ 𝜙
⊢ Γ, 𝜙 ∧ 𝜓

⟨?⟩ −−−−−−−−−−−−−−−
⊢ Γ, ⟨𝜙?⟩ 𝜓

⊢ Γ, ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙
⟨⊕⟩ −−−−−−−−−−−−−−−−−−−−−−

⊢ Γ, ⟨𝛼 ⊕ 𝛽⟩ 𝜙
⊢ Γ, ⟨𝛼⟩ ⟨𝛽⟩ 𝜙

⟨;⟩ −−−−−−−−−−−−−−−−−−−
⊢ Γ, ⟨𝛼; 𝛽⟩ 𝜙

⊢ Γ, 𝜙, ⟨𝛼;𝛼∗⟩ 𝜙
⟨∗⟩ −−−−−−−−−−−−−−−−−−−−−−

⊢ Γ, ⟨𝛼∗⟩ 𝜙

⊢ Γ, [𝛽1] [𝛾1] 𝜙 · · · ⊢ Γ, [𝛽𝑛] [𝛾𝑛] 𝜙
[OS] −− †

⊢ Γ, [𝛼] 𝜙
⊢ Γ, ⟨𝛽1⟩ ⟨𝛾1⟩ 𝜙, . . . , ⟨𝛽𝑛⟩ ⟨𝛾𝑛⟩ 𝜙

⟨OS ⟩ −− †
⊢ Γ, ⟨𝛼⟩ 𝜙

† B {(𝛽𝑖 , 𝛾𝑖) | 𝑖 ∈ {1, . . . , 𝑛}} = {(𝛽, 𝛾) | 𝛼 𝛽 𝛾}

Theorem

Let Γ be a sequent. Then ⊢LOPD Γ iff ⊢LOPD∪{cut} Γ.

Theorem

Let Γ be a sequent. Then ⊢LOPD Γ iff ⊢OPDL Γ.

16 / 21

Conclusion and Future Work

17 / 21

The standard PDL = OPDL with the following operational semantics:

𝑎; 𝛽 𝑎 𝛽 𝛼 ⊕ 𝛽 𝜖 𝛼 𝛼 ⊕ 𝛽 𝜖 𝛽

𝜙?; 𝛽 𝜙? 𝛽 𝛼∗ 𝜖 𝜖 𝛼∗ 𝜖 𝛼;𝛼∗

OPDL for CCS (previous attempt not satisfactory2)

processes labels
𝑃,𝑄 B 0 terminated process 𝜆 B 𝑎 actions (𝑎 ∈ Act)

| 𝜆.𝑃 action prefix | 𝑎 co-actions (𝑎 ∈ Act)
| 𝑃 |𝑄 parallel composition | 𝜏 silent
| 𝑃 +𝑄 choice
| 𝑃\𝑎 action restriction
| 𝑋 process name

pre 𝜆.𝑃 𝜆 𝑃

par1 𝑃 |𝑄 𝜆 𝑃′ |𝑄 if 𝑃 𝜆 𝑃′

par2 𝑃 |𝑄 𝜆 𝑃 |𝑄′ if 𝑄 𝜆 𝑄′

com 𝑃 |𝑄 𝜏 𝑃′ |𝑄′ if 𝑃 𝑎 𝑃′ and 𝑄 𝑎 𝑄′

sum1 𝑃 +𝑄 𝜆 𝑃′ if 𝑃 𝜆 𝑃′

sum2 𝑃 +𝑄 𝜆 𝑄′ if 𝑄 𝜆 𝑄′

res 𝑃\𝑎 𝜆 𝑃′\𝑎 if 𝑃 𝜆 𝑃′ and 𝜆 ∉ {𝑎, 𝑎}
rec 𝑋 𝜆 𝑃′ if 𝑋

def
= 𝑃 and 𝑃 𝜆 𝑃′

2No nested parallel, and iteration instead of recursion
18 / 21

OPDL for choreographic programming

choreographies pn(𝐶) =
𝐶 B 0 inactive process ∅

| 𝐼;𝐶 sequential composition pn(𝐼) ∪ pn(𝐶)
| if p.𝑏 then𝐶1 else𝐶2 conditional {p} ∪ pn(𝐶1) ∪ pn(𝐶2)
| 𝑋 call pn(𝐶) where 𝑋

def
= 𝐶

instructions
𝐼 B p.𝑥 B 𝑒 local assignment {p}

| p.𝑒 → q.𝑥 communication {p, q}
| p→ q[l] selection {p, q}
| p : 𝑋 (call continuation, runtime) {p}
| p.𝑏? test (T) {p}
| p.𝑏? (negative) test {p}

19 / 21

Main results:

Cut-elimination for PDL;

More general framework OPDL parametric w.r.t. the desired OS

. . . able to support concurrent programs!

Future work:

Formalize;

Add epistemic reasoning;

Use results on differential privacy to define expert systems;

Bake cookies Back to cookies!

20 / 21

Thanks

Questions?

21 / 21

	Motivations
	Propositional Dynamic Logic
	Problem
	Operational Propositional Dynamic Logic
	Proof Theoretical Properties of
	Conclusion and Future Work

