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Abstract Proof nets are a syntax for linear logic proofs which gives a coarser notion of
proof equivalence with respect to syntactic equality together with an intuitive geometrical
representation of proofs. In this paper we give an alternative 2-dimensional syntax for mul-
tiplicative linear logic derivations. The syntax of string diagrams authorizes the definition of
a framework where the sequentializability of a term, i.e. deciding whether the term corre-
sponds to a correct derivation, can be verified in linear time. Furthermore, we can use this
syntax to define a denotational semantics for multiplicative linear logic with units by means
of equivalence classes of proof diagrams modulo a terminating rewriting.
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1 Introduction

Proof nets are a geometrical representation of linear logic proofs introduced by Girard [8].
The building blocks of this syntax are called proof structures, later generalized by Lafont
[19] in the so-called interaction nets. To recognize if a proof structure is a proof net one
needs to verify its sequentializability property, that is, verifying whether it corresponds to a
correct linear logic proof derivation.

Following Girard’s original correction criterion, others methods have been introduced:
the method by Danos-Regnier [6], that ensures graph acyclicity by a notion of switchings on
` cells, and the method by Guerrini [12], that reformulates correction by means of graph
contrictability. Unfortunately the aforementioned criteria become ineffective in presence of
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the multiplicative unit ⊥. In order to recover a sequentialization condition for the multiplica-
tive fragment with units (MLLu) Girard has introduced the notion of jumps [11]. These are
untyped edges which assign a ⊥ to an axiom in order to represent a dependency relation of
the respective rules in sequentialization.

One peculiar feature of this syntax for proofs is that proof structures allow to recover
the semantical equivalence of derivations under some inference rules permutations [19]. In
the case of the multiplicative fragment of linear logic (MLL), proof nets perfectly capture
this equivalence by giving a canonical representative for each class. On the other hand, in
presence of multiplicative units, proof nets are not canonical [24] and have to be identified
up to jump re-assignment, ruling out a satisfactory notion of proof net [16].

In this work we give an alternative syntax forMLLu proofs and we study its properties. For
this purpose,we replace the underlying interaction nets syntaxwith the one of string diagrams.
We show that this syntax, which also presents an intuitive 2-dimensional representation of
proofs, is able to capture some inference rule permutations in derivations.

String diagrams [18] are a syntax with a rigid structure for 2-arrows (or 2-cells) of a 2-
category. Although the two syntaxes may graphically look similar, string diagrams’ strings
do not just denote connections between cells but they represent morphisms. Since crossing
strings is not allowed without the introduction of twisting operators, we introduce the notion
of twisting relations in order to equate diagrams by permitting cells to cross certain strings.

As soon aswe consider a derivation of a proof as a sequence of n-ary operators applications
over lists of formulas, we are able to express it by means of string diagrams which keep
track of lists reordering. In a sense, string diagrams keep track of edge crossing in pictorial
representations of proof nets.

We study several diagram rewriting systems given by twisting polygraphs. In this particular
class of polygraph [5] string crossings are restrained to a specific family of strings, while
some rewriting rules recover the graph representation equivalence.

The syntax of string diagrams allows us to define a polygraph where we introduce some
control strings in order to encode the correct parenthesization of operators. In particular, these
strings prevent the representation of non-correct applications of inference rules, resulting into
a sound framework where sequentializability, that is whether a proof diagram corresponds
to a derivation, can be checked in linear time on diagram inputs and outputs pattern only.

Furthermore, this syntax induces an equivalence relation over linear logic derivations
representable by the same proof diagrams. However, this equivalence does not capture all
rule permutations required for the elimination of the so called commutative cuts. In fact,
these rule permutations require the permutation of derivation tree branches as shown in the
following case:

1
...

� Γ, A, B

2
...

� Δ,C ⊗1� Γ,Δ, (B ⊗1 C), A

3
...

� Σ, D ⊗2� Γ,Δ,Σ, (A ⊗1 D), (B ⊗2 C)
∼

1
...

� Γ, A, B

3
...

� Σ, D ⊗2� Γ,Σ, (A ⊗1 D), B

2
...

� Δ,C ⊗1� Γ,Δ,Σ, (A ⊗1 D), (B ⊗2 C)

If a syntax does not equate derivations differing for rule permutations, it is crucial in view of
cut-elimination theorem to explicitly authorize them. On the other hand, this syntax makes
equivalent some proofs which are representable by proof nets differing in jumps assignment
only.

With the purpose of keeping this last nice feature and extend the equivalence to include
the missed rules permutations, we here extend the results presented in [3] by enriching our
polygraph with some additional generators and rewriting rules. The equivalence induced by
these rewriting rules induces an equivalence over derivation (seen as syntactical expressions)
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effective to identify all and onlyMLLu derivations which we use to consider equivalent (with
respect of independent inference rules permutations).

In the last section we extend our polygraphic presentation with the rewriting rules for cut-
elimination and a relative cut-elimination theorem. We conclude by giving a denotational
semantics [9] forMLLu proofs by means of equivalence classes of proof diagrams.

2 String Diagrams

In this section we recall some basic notions in string diagram rewriting [18]. For an introduc-
tion to this syntax see Selinger’s survey [23] and refer to John’s notes [4] for some interesting
observations on the motivation and applications of this formalism.

Given two lists Γ = Γ1 ∗ · · · ∗ Γn and Δ = Δ1 ∗ · · · ∗ Δm of symbols in an alphabet Σ ,
a string diagram φ : Γ ⇒ Δ with inputs in(φ) = Γ and outputs out(φ) = Δ is pictured as
follows:

Γ

φ

Δ

A string diagram can be interpreted as a function with multiple inputs and outputs of type
respectively Γ1, . . . Γn and Δ1, . . . , Δm . Diagrams may be composed in two different ways.
If φ : Γ ⇒ Δ and φ′ : Γ ′ ⇒ Δ′ are diagrams, we define:

– sequential composition: if Δ = Γ ′, the diagram φ′ ◦ φ : p ⇒ q ′ corresponds to
usual composition of maps as the notation suggests. This composition is associative
with units idΓ : Γ ⇒ Γ for each possible list of inputs Γ . In other words, we have

φ ◦ idin(φ) = φ = idout(φ) ◦ φ. The identity diagram idΓ is pictured as follows:
Γ

Γ

– parallel composition: the diagram φ ∗ φ′ : Γ ∗ Γ ′ ⇒ Δ ∗ Δ′ is always defined. This
composition is associative with unit id0 : ∅ ⇒ ∅. In other words, we have id0 ∗φ = φ =
φ ∗ id0. This id0 is called the empty diagram.

These two compositions are respectively represented as follows:

Γ

φ

φ′

Δ′

Γ Γ ′

φ φ′

Δ Δ′
.

Our two compositions satisfy the interchange rule: if φ : Γ ⇒ Δ and φ′ : Γ ′ ⇒ Δ′, then

(idΔ ∗ φ′) ◦ (φ ∗ idΓ ′) = φ ∗ φ′ = (φ ∗ idΔ′) ◦ (idΓ ∗ φ′)

that corresponds to the following picture:

Γ Γ ′

φ

φ′

Δ Δ′

=
Γ Γ ′

φ φ′

Δ Δ′
=

Γ Γ ′

φ′

φ

Δ Δ′
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String diagrams are a formalism for morphisms in a strict monoidal category with objects
finite lists of symbols over an alphabet Σ . The sequential composition ◦ denotes the usual
morphisms composition while the product is the list concatenation and it is denoted by ∗.
Definition 1 (Signature) Fixed an alphabetΣ we denote byΣ∗ the set of words or lists over
Σ . A signature S is a set of atomic diagrams (or gates type). Given a signature, a diagram
φ : Γ ⇒ Δ (with Γ,Δ ∈ Σ∗) represents a morphism in the monoidal category S∗ in which
morphisms are freely generated by S, i.e. by the two compositions ∗ and ◦ and identities. A
gate is an occurrence of an atomic diagram, we denote g : α or we say that g is an α-gate if
g is an occurrence of α ∈ S.

Definition 2 We say that φ is a subdiagram of φ′ if and only if there exist χu, χd ∈ S∗ and
Γ,Δ such that φ′ = χd ◦ (idΓ ∗ φ ∗ idΔ) ◦ χu .

Notation Given φ ∈ S∗ and S ′ ⊆ S, we write |φ|S ′ the number of gates in φ with gate type
α ∈ S ′.

Definition 3 We call horizontal a diagram φ generated by parallel composition (and identi-
ties) only in S∗. It is elementary if |φ|S = 1.

2.1 Diagram Rewriting

Definition 4 (Diagram rewriting system) Fixed an alphabet Σ , a diagram rewriting system
is a couple (S,R) given by a signature S and a set R of rewriting rules of the form

Γ

φ

Δ

Γ

φ′

Δ

where φ, φ′ : Γ ⇒ Δ are diagrams in S∗ with same inputs and outputs. We call φ and φ′
respectively source and target of the rewriting rules.

Definition 5 We allow each rewriting rule under any context, that is, if φ is a subdiagram of

ψ and φ φ′ in R, then:

ψ =
χu

φ

χd

χu

φ′

χd

.

We say that ψ reduces, or rewrites, to ψ ′ (denoted ψ
∗

ψ ′ ) if there is a rewriting sequence
P : ψ = ψ0 ψ1 . . . ψn = ψ ′ .

We here recall some classical notions in rewriting:

– A diagram φ is irreducible if there is no φ′ such that φ φ′ ;
– A rewriting system terminates if there is no infinite rewriting sequence;
– A rewriting system is confluent if for all φ1, φ2 and φ such that φ φ1 and φ φ2 ,

there exists φ′ such that φ1
∗

φ′ and φ2
∗

φ′ ;
– A rewriting system is convergent if both properties hold.
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3 Polygraphs

In this section we formulate some basic notion in string diagram rewriting by using the
language of polygraphs. Introduced by Street [25] as computads, later reformulated and
extended by Burroni [5], polygraphs can be considered as the generalization for higher
dimensional categories of the notion of monoid presentation and the construction of the free
category generated by an oriented graph—i.e. the free categorywith objects the graph vertices
and arrows the oriented paths [21].

In this paper we study some diagram rewriting systemswith labels on strings in terms of 3-
polygraphs, which are denotedΣ = (Σ0,Σ1,Σ2,Σ3)where eachΣi is the set of its i-cells.
In particular, we consider polygraphs with just one 0-cell in Σ0; otherwise we would need
to introduce background labelings in string diagrams. The set of 1-cells Σ1 represents string
labels, the 2-cells in Σ2 are the signature SΣ of our rewriting system with rules RΣ = Σ3,
the set of 3-cells. We say that a polygraph Σ exhibits some computational properties when
the relative diagram rewriting system does.

Notation We denote φ ∈ Σ whenever φ is a diagram generated by the associated signature
SΣ . IfΣ is a 3-polygraphwith one 0-cell, we denote by 〈Σ〉 themonoidal category generated
by Σ , that is the category with objects the words in Σ1 and morphisms [φ] the equivalence
classes of diagrams φ ∈ S∗ modulo RΣ (we denote [φ] ∈ 〈Σ〉). For a detailed description
of the construction of the category generated by a polygraph refer to [5,15]. We say that Σ ′
extends Σ if Σ ′ can be obtained by Σ by extending the sets of i-cells, that is Σi ⊆ Σ ′

i for
all i .

3.1 Twisting Polygraph

In this section we introduce a notion of polygraph which generalizes polygraphic presenta-
tions of symmetric monoidal categories.

Definition 6 (Symmetric polygraph) We call the polygraph of permutation the following
monochrome 3-polygraph:

S =
(

Σ0 = {�},Σ1 = {},Σ2 = { },Σ3 =
{

,

})

We call symmetric a 3-polygraph Σ with one 0-cell, one 1-cell (i.e. Σ1 = {}), containing
one 2-cell ∈ Σ2 and such that the following holds

= ,
α =

α
and

α =
α

for all α ∈ Σ2

in the 2-category Σ∗. In such 3-polygraph to denote diagrams inputs and outputs it suffices
to provide the respective numbers of their input and output strings.

Theorem 1 (Convergence of S) The polygraph S is convergent.

Proof As in [20], in order to prove termination we interpret every diagram φ : n ⇒ m ∈ S∗
with amonotone function [φ] : Nn → N

m . These have well-founded partial order induced by
product order on N

p (x̄ = (x1, . . . , xp) ≤ (y1, . . . yp) = ȳ whenever x1 ≤ x1 ∧ · · · ∧ xp ≤
yp):

f, g : N∗p → N
∗p then f < g iff f (x̄) < g(x̄) for all x̄ ∈ N

∗p.
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916 M. Acclavio

We interpret the gate by the function [ ](x, y) → (x+y, x). This allows us to associate
to any 3-cell φ ψ two monotone maps [φ] and [ψ] such that [φ] > [ψ]:

[ ]
(x, y) = (2x + y, x + y) > (x, y) =

[ ]
(x, y),

[ ]
(x, y, z) = (2x + y + z, x + y, x) > (x + y + z, x + y, x) =

[ ]
(x, y, z)

By the compatibility of the order with sequential and parallel composition, this suffices to

prove that, for any couple of diagrams, [φ] > [ψ] holds if φ
∗

ψ . Since this order on
monotone maps on integers admits no infinite decreasing chain, infinite reduction paths can
not exist.

In order to prove convergence, it suffices to check the confluence of the following critical
peaks, that are the minimal critical branchings of the rewriting system (see [2] for details):

��
Each diagram in S can be interpreted as a permutation in the group of permutations

over n elements Sn with product ◦ defined as their function composition. On the other hand,
each σ ∈ Sn corresponds to some diagrams in S. In particular, we interpret the diagram
idk−1 ∗ ∗ idn−(k+1) : n ⇒ n as the transposition (k, k + 1) ∈ Sn .

Notation We note Ladln = : n ⇒ n and Ladrn = : n ⇒ n the left and
right ladder diagrams corresponding respectively to the permutations (2, 3, . . . , n, 1) and
(n, 1, 2, . . . , n − 1) in Sn .

Proposition 1 For any permutation σ ∈ Sn there is a unique diagram in normal form
φ̂σ : n ⇒ n ∈ S corresponding to σ . We call it the canonical diagram of σ .

Proof We define S1 = {} and Sn+1 the set of diagrams in S of the form:

σ ′ = φ̂σ : n + 1 ⇒ n + 1

with σ ′ ∈ Sn and = = Ladlk ∗ id(n+1−k). We have |Sn | = n!
since |S1| = 1 and |Sn+1| = (n + 1)|Sn | on account of n + 1 = |{Ladlk}1≤k≤n+1| =
|{Ladlk ∗ id(n+1−k)}1≤k≤n+1|.

To exhibit a one-to-one correspondence between Sn+1 and Sn+1, for any σ ∈ Sn+1 we
define Er(σ ) ∈ Sn as the permutation

Er(σ ) =
{
i → σ(i + 1) i f σ(i + 1) < σ(1)

i → σ(i + 1) + 1 i f σ(1) < σ(i + 1)
.

and φ̂σ = (Ladlk ∗ id(n+1−σ(1))) ◦ (id1 ∗ φ̂Er(σ )).

No element in Sn contains subdiagram of the form nor . This means that they

are irreducible and so, by the confluence ofS, in normal form. ��
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Definition 7 (Twisting polygraph) A twisting polygraph is a 3-polygraph Σ with one 0-cell
equipped with a set TΣ ⊆ Σ1 called twisting family such that for each A, B ∈ TΣ there is a
twisting operator A,B : A ∗ B ⇒ B ∗ A ∈ Σ2 and Σ3 includes the following families TR
of twisting relations:

– For all A, B,C ∈ TΣ :

A B
A B and

A B C

C B A

A B C

C B A

; (1)

– For all α : Γ → Γ ′ ∈ Σ2 with Γ, Γ ′ ∈ T ∗
Σ , A ∈ TΣ , at least one of the two possible

orientation of the following rewriting rules is in Σ3:

Γ A

α

A Γ ′

Γ A

α

A Γ ′

and

A Γ

α

Γ ′ A

A Γ

α

Γ ′ A

. (2)

Moreover, if φ,ψ are twisting diagrams (i.e. diagrams made only of twisting operators)

φ
∗
RΣ

ψ iff φ
∗
RT

ψ where RT is the set given by rewriting rules of (1). A total-twisting

polygraph is a twisting polygraph with TΣ = Σ1.

The idea behind twisting polygraphs is to present diagram rewriting systems where, in
equivalence classes modulo rewriting, the crossings of strings labeled by the twisting family
are not taken into account. In fact, the family of relations (1) says that these crossings are
involutive and satisfy Yang–Baxter equation [17] for braidings, while relations in (2) allow
gates to “cross” a string in case of fitting labels.

We interpret a twisting diagram φσ : Γ ⇒ σ(Γ ) as the permutations in S|Γ | acting over
the order of occurrence of 1-cells in the word Γ ∈ T ∗

Σ . For this reason, as in S, we define
left ladders, right ladders and the standard diagrams φ̂Γ

σ : Γ → σ(Γ ) (or simply φ̂σ ) with
source and target in T ∗

Σ . In conformity with the twisting polygraph restrictions over Σ3, we
can prove the uniqueness of φ̂σ as in Proposition 1.

4 Multiplicative Linear Logic Sequent Calculus

In this paper we focus on the multiplicative fragment of linear logic sequent calculus with
units. We here we recall the usual inference rules:

– Structural rules are the axiom and the cut:

−−−−−−−−−− Ax� A, A⊥
� Γ, A � A⊥,Δ
−−−−−−−−−−−−−−−−−−−−−−− Cut� Γ,Δ

– Multiplicative rules are the tensor (⊗) and the par (`):

� Γ, A � B,Δ
−−−−−−−−−−−−−−−−−−−−− ⊗� Γ, A ⊗ B,Δ

� Γ, A, B
−−−−−−−−−−−−−− `� Γ, A ` B
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918 M. Acclavio

– (Multiplicative) units are the bottom (⊥) and the one (1):

� Γ, A,⊥
−−−−−−−−−−−− ⊥� Γ, A

−−−− 1� 1

We also consider the usually omitted exchange rule:

� A1, . . . , Ak−−−−−−−−−−−−−−−−−−−−−−−− σ ∈ Sk� Aσ(1), . . . , Aσ(k)

We call principal a formula which occurs in the conclusion of a rule but does not occur
in the premise(s) and active a formula which occurs in the premise of a rule but not in the
conclusion. In a derivation d(Γ ), we say that aCut rule is commutativewhen one of its active
formulas is not principal. Moreover, a commutative cut is pure if the non-principal active
formula is principal for a ⊗ rule. A cut-free derivation is a derivation with no occurrences of
Cut rules.

We finally recall that the multiplicative linear logic fragment with units (MLLu) is given
by the aforementioned inference rules, while the multiplicative fragment (MLL) is the one
given by the inference rules Ax,Cut,⊗,` (and exchange) only.

Definition 8 (Negation) We assume negation to be involutive, i.e. A⊥⊥ = A and the De
Morgan’s laws to apply with respect to` and⊗, i.e. (A` B)⊥ = B⊥ ⊗ A⊥ and (A⊗ B)⊥ =
A⊥ ` B⊥ for any formulas A, B. Moreover 1⊥ = ⊥.

Remark 41 (On rules) In this work we interpret inference rules as operators with specific
arities over the set of sequents: Ax and 1 are nullary, ` and ⊥ are unary and ⊗ and Cut are
binary.

Notation We denote with FMLL and FMLLu the sets of formulas respectively in MLL and
MLLu. Moreover we denote with F∗

MLL and F∗
MLLu

their respective sets of sequents.
In the formalism of sequent calculus, oftentimes two derivations are identified when they

can be transformed one into the other by a sequence of permutations over inference rules.
Indeed, this identification is crucial to obtain a cut-elimination result whenever we face a
commutative cut. In this paper we consider the equivalence among derivations only from a
syntactical viewpoint: namely, two derivations are considered equal if and only if they display
exactly the same sequents (multisets of formulas) and the same rules in the same order. We
then formalize the equivalence relation ∼ over MLLu derivations given by the permutation
of inference rules with disjoint sets of active formula occurrences:

Definition 9 We define the standard equivalence over MLLu derivations (denoted by ∼) as
the equivalence relation generated by the following equivalences for all A, B,C, D ∈ FMLLu ,
Γ,Δ,Σ ∈ F∗

MLLu
and for all permutations of the branching order of derivations:

� A, B,C, D, Γ−−−−−−−−−−−−−−−−−−−−− `� A` B,C, D, Γ−−−−−−−−−−−−−−−−−−−−−−−− `� A` B,C ` D, Γ

∼
� A, B,C, D, Γ−−−−−−−−−−−−−−−−−−−−− `� A, B,C ` D, Γ−−−−−−−−−−−−−−−−−−−−−−−− `� A` B,C ` D, Γ

� A, B, Γ−−−−−−−−−−−−−−− ⊥� A, B, ⊥, Γ−−−−−−−−−−−−−−−−− `� A` B, ⊥, Γ

∼
� A, B, Γ−−−−−−−−−−−−− `� A` B, Γ−−−−−−−−−−−−−−−−− ⊥� A` B, ⊥, Γ

� Γ−−−−−−− ⊥1⊥1, Γ−−−−−−−−−−−− ⊥2⊥1, ⊥2, Γ

∼
� Γ−−−−−−− ⊥2⊥2, Γ−−−−−−−−−−−− ⊥1⊥1, ⊥2, Γ

� A,C, D, Γ � B, Δ−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗� A ⊗ B,C, D, Γ, Δ−−−−−−−−−−−−−−−−−−−−−−−−−−− `� A ⊗ B,C ` D, Γ, Δ

∼
� A,C, D, Γ−−−−−−−−−−−−−−−−− `� A,C ` D, Γ � B, Δ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗� A ⊗ B,C ` D, Γ

� A, Γ � B, Δ−−−−−−−−−−−−−−−−−−− ⊗� A ⊗ B, Γ, Δ−−−−−−−−−−−−−−−−−−−− ⊥� A ⊗ B, ⊥, Γ, Δ

∼
� A, Γ−−−−−−−−−−− ⊥� A, ⊥, Γ � B, Δ−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗� A ⊗ B, ⊥, Γ

� A,C, Γ � D, Δ−−−−−−−−−−−−−−−−−−−−−−− ⊗� A,C ⊗ D, Γ, Δ � B, Σ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗� A ⊗ B,C ⊗ D, Γ, Δ, Σ

∼
� A,C, Γ � B, Σ−−−−−−−−−−−−−−−−−−−−−−− ⊗� A ⊗ B,C, Γ, Σ � D, Δ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗� A ⊗ B,C ⊗ D, Γ, Δ, Σ
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together with the not written equivalences for Cut , which are analogous to the ⊗ relations
(with suitable premises and conclusions).

We define the cut-elimination procedure by the following set of rewriting rules over
derivations:

Definition 10 (Cut-elimination procedure) The cut-elimination procedure is the relation
→Cut generated by the following (oriented) relations called cut-elimination steps:

...� Γ, A
−−−−−−−−−− Ax� A, A⊥

−−−−−−−−−−−−−−−−−−−−− Cut� Γ, A

→Cut
...� Γ, A

−−−−−−−−−− Ax� A, A⊥
...� Γ, A−−−−−−−−−−−−−−−−−−−−−−−−−− Cut� Γ, A

→Cut
...� Γ, A

...� Γ, A

...� Δ, B−−−−−−−−−−−−−−−−−−−− ⊗� A ⊗ B, Γ, Δ

...

� B⊥, A⊥,Σ−−−−−−−−−−−−−−−−−− `� B⊥ ` A⊥, Σ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Cut� Γ,Δ, Σ

→Cut
...� Γ, A

...� Δ, B

...

� B⊥, A⊥, Σ−−−−−−−−−−−−−−−−−−−−−−−−−−−− Cut� Δ, A,⊥ ,Σ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Cut� Γ,Δ, Σ

...

� B⊥, A⊥, Σ−−−−−−−−−−−−−−−−−− `� B⊥ ` A⊥, Σ

...� Γ, A

...� Δ, B−−−−−−−−−−−−−−−−−−−− ⊗� A ⊗ B, Γ,Δ−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Cut� Γ,Δ, Σ

→Cut

...

� B⊥, A⊥, Σ

...� Γ, A−−−−−−−−−−−−−−−−−−−−−−−−−−−− Cut� B⊥, Γ,Σ

...� Δ, B−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Cut� Γ,Δ, Σ

...� Γ−−−−−−−− ⊥� Γ,⊥ −−− 1� 1−−−−−−−−−−−−−−−−−− Cut� Γ

→Cut
...� Γ

−−− 1� 1

...� Γ−−−−−−−− ⊥� Γ,⊥−−−−−−−−−−−−−−−−− Cut� Γ

→Cut
...� Γ, A

The cut-elimination theorem forMLLu sequent calculus is proved by showing the termina-
tion of the cut-elimination procedure [8]. This result requires the identification of derivations
by the standard equivalence. Alternatively, the proof requires the definition of some addi-
tional rewriting rules which permute the commutative Cut instances. We remark that even
in non-commutative extensions of linear logics [1] where permutations of formulas in a
sequent are strongly restricted, we require permutations over derivation branches for a proof
of cut-elimination theorem.

For this reason, any denotational semantic ofMLLu sequent calculus [7,10,22] has to take
into account the standard equivalence of derivations in order to capture the cut-elimination. It
results that the equivalence relation over derivations induced by any such semantics contains
the equivalence relation ≈ over the derivations syntax generated by (→Cut ∪ ∼).

5 String Diagram Syntax for Linear Logic

In this section we define some particular 3-polygraphs which generate a family of string
diagrams we call proof diagrams. These diagrams are a syntax for linear logic sequent
calculus with explicit exchange rules.

The first polygraphMPNMLLu we define generates a family of terms corresponding to the
different representations ofMLLu proof nets, with explicit notation for wire crossings but no
jump assignments.
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We then improve this construction adding two non-twisting colors for strings andwe adapt
certain gate types in order to make them interact with these control strings. Due to the more
rigid structure of the diagrammatic syntax, in this polygraph Ũ we are able to characterize
diagrams corresponding to linear logic derivations by just checking their inputs and outputs
patterns. On the other hand, the rewriting we define is able to capture all permutations of
inference rules with exception of the ones between two binary rules (⊗ or Cut), in particular
the one needed to eliminate commutative cuts, crucial for the sequent calculus cut-elimination
theorem.

We extend to U the polygraphic presentation of this model by extending Ũ with two sets
of generators and relations which allows us to perform some transformations corresponding
to certain permutations of binary inference rules. We then show that the classes of equivalent
diagrams modulo the rewriting of this polygraph are in one-to-one correspondence with the
classes of ∼-equivalentMLLu proof.

We conclude with the polygraph UCut which include the rewriting rules corresponding
to cut-elimination steps ofMLLu sequent calculus showing that the associated quotient over
MLLu derivations captures the semantic equivalence of proof.

Notation From now on, in order to unify the notation 1-cell composition with the one of
sequents, we replace the symbol ∗ for string diagrams parallel composition with a comma.

5.1 Proof Diagrams for MLLu Proof Nets

The first polygraph we introduce can be seen as a formal syntax for proof net representations.

Definition 11 The 3-polygraph MPN is the polygraph of multiplicative linear logic proof
nets with units. It is given by the following sets of cells:

– MPN0 = { � };
– MPN1 = {

A
}A∈FMLLu

;

– MPN2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊗A,B : A, B ⇒ A ⊗ B =
A B

⊗
A⊗B

`A,B : A, B ⇒ A ` B =
A B

`
A`B

AxA : � ⇒ A, A⊥ = A

A A⊥

CutA : A, A⊥ ⇒ � = A A⊥

A

A,B : A, B ⇒ B, A =
A B

B A

1 : � ⇒ 1 = 1

⊥ : � ⇒ ⊥ = ⊥

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A,B∈FMLLu

If there is no ambiguity we note and instead of A and A .

– MPN3 = MPNM
Twist ∪ MPNu

Twist ∪ MPNAx
Cut ∪ MPNM

Cut ∪ MPNu
Cut where
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– MPNM
Twist is given by the following twisting relations:

A B

A B

A B ,

A B C

C B A

A B C

C B A

,

B

B A A⊥

B

B A A⊥
,

B

A A⊥ B

B

A A⊥ B

,

A A⊥ B

B

A A⊥ B

B

,

B A A⊥

B

B A A⊥

B

,

A B C

⊗

C A⊗B

A B C

⊗
C A⊗B

,

A B C

⊗

B⊗C A

A B C

⊗
B⊗C A

,

A B C

`

C A`B

A B C

`
C A`B

,

A B C

`

B`C A

A B C

`
B`C A

;

together with two rules representing the involution A⊥⊥ = A:

A

A⊥ A

A⊥

A⊥ A

,

A⊥ A

A

A⊥ A

A⊥ ;

– MPNu
Twist is given by the following twisting relations:

A

A ⊥

A

A ⊥
,

A

⊥ A

A

⊥ A

,
A

A 1

A

A 1

,
A

1 A

A

1 A

;

– MPNAx
Cut is following the set of rules for the cut elimination:

Γ A

A Γ

Γ A

A Γ

,

A Γ

Γ A

A Γ

Γ A

, for any Γ ∈ F∗
MLL

A

A

A ,

A Γ

σ

A σ(Γ )

A Γ

σ

A σ(Γ )

, for any

Γ

σ

σ(Γ )

canonical diagram of σ ;

– MPNM
Cut is following the set of rules for the cut elimination:

A B B⊥A⊥

` ⊗
A B B⊥A⊥

,

A B B⊥A⊥

⊗ `
A B B⊥A⊥

,

– MPNu
Cut the following set of rules for cut elimination:

∅ , ∅ .
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Remark 51 The polygraphMPN is twisting with twisting family FMLLu , i.e. it is total twist-
ing.

Theorem 2 (Interpretation of proofs in MPN) For any derivation d(Γ ) of � Γ in MLLu
there is a proof diagram φd(Γ ) : � ⇒ Γ ∈ MPN.

Proof Let d(Γ ) be a derivation inMLLu of � Γ . First we observe that, if there is a diagram
φ : Δ ⇒ Γ so there also is a diagram φσ = φ̂σ ◦ φ : Δ ⇒ σ(Γ ) for all permutation
σ ∈ S|Γ |. Thus, we can proceed by induction on the number of inference rules appearing in
d(Γ ):

– If just one inference rule occurs in d(Γ ), it must be an Ax rule or a 1 rule. It follows that
Γ = A, A⊥ and φd(Γ ) = AxA : � ⇒ A, A⊥ or that Γ = 1 and φΓ = 1 : � ⇒ 1;

– If n + 1 inference rules occur in d(Γ ), then we consider the last one and we distinguish
two cases in base of its arity (see Remark 41):

– If it is unary and Γ = Γ ′, A ` B, then, by inductive hypothesis, there is a diagram
φd(Γ ′,A,B) : � → Γ ′, A, B of the derivation d(Γ ′, A, B) with n inference rules.
Therefore

φd(Γ ) = (idΓ ′ ,`A,B) ◦ φd(Γ ′,A,B) : � ⇒ Γ ;
– If it is an unary ⊥ and Γ = Γ ′,⊥, then, by inductive hypothesis, there is a diagram

φΓ ′ : � ⇒ Γ ′ and φΓ = φΓ ′ ,⊥.
– If it is binary and Γ = Δ, A ⊗ B,Δ′, then, by inductive hypothesis, there are two

diagrams φd(Δ,A) : � ⇒ Δ, A and φd(B,Δ′) : � ⇒ B,Δ′ relative to the two
derivations d(Δ, A) and d(B,Δ′) with at most n inference rules. Therefore

φd(Γ ) = (idΔ,⊗A,B , idΔ′) ◦ (φd(Δ,A), φd(B,Δ′)) : � ⇒ Γ ;
– Similarly, if it is binary and Γ = Δ,Cut (A, A⊥),Δ′, then

φd(Γ ) = (idΔ, cutA, idΔ′) ◦ (φd(Δ,A), φd(A⊥,Δ′)) : � ⇒ Γ.

��
The 2-cells of this syntax remindsMLLu proof structure representations. We remark two

important differences: cells are always top-to-bottom orientated, that is with the active port
on the bottom, and wire crossing are part of this syntax by means of twisting operators. This
intuition leads to the following:

Proposition 2 (Proof structure interpretation) We can associate to any proof diagram φ in
MPN a MLLu proof structures Pφ .

Proof It suffices to consider a proof diagram as a specific representation of a proof structure
with no specific jumps assignment: strings, Ax-gates and Cut-gates are interpreted as wires
( � and � ), twisting operators as wire crossing and gates of type⊗,`,⊥
and 1 as the corresponding cells of the proof structure with a coherent labeling with respect
of gate types. Then, since proof diagrams inMPN keep no records about jump assignments,
for each ⊥-gate we assign arbitrary jump. ��

However, the converse is not true. In fact even if we interpret down-to-down and up-to-up
wire turn-backs as Ax and Cut gates respectively (i.e. � and � ) and wire
crossing as occurrences of twisting operators, in the syntax of proof diagrams we are not able
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to represent some (incorrect) proof structures because of the type of inputs and outputs of Ax

and Cut gates. By means of example, consider the proof structure ` whose translation

in proof diagram syntax requires the existence of A, B ∈ FMLLu with A⊥ = A⊥ ` B in order
to be well defined.

For this syntax we do not formulate any correctness criterion since this would be a refor-
mulations of a standard proof net one.

5.2 Proof Diagram with Control for MLLu

In order to have an analogous of the proof net correctness criterion formalized inside a syntax
ofMLLu proof diagrams, we enrich the set of string labels with two new non-twisting colors
L = (left) and R = (right) that we call control strings.

The idea is to use these strings to reproduce a 2-dimensional notation for parenthesization,
in order to internalize a notion of well-parenthesization in a setting where a proof derivation
can be seen as a sequence of operations over lists of sequents. Thus, unary derivation rules
act on single sequents (as in the case of ` and ⊥), binary ones act on two sequent (as in the
case of ⊗ and Cut) and the nullary one, that are Ax and 1, generates a new sequent. For this
purpose we re-define the 2-cells for 0-ary and binary rules in order to make them interact
with control strings.
Notation In order to help reader, L and R control strings are represented in diagrams by
strings decorated by a certain number of and respectively. These have to be considered as
string labels and not gates.

Definition 12 The control polygraph of multiplicative linear logic with units Ũ is given by
the following sets of cells:

– Ũ0 = { � };
– Ũ1={

A
}A∈FMLLu

∪ {L = , R = };

– Ũ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊗A,B : A, R, L , B ⇒ A ⊗ B =
A B

⊗
A⊗B

`A,B : A, B ⇒ A ` B =
A B

`
A`B

AxA : � ⇒ L , A, A⊥, R = A

A A⊥

CutA : A, R, L , A⊥ ⇒ � = A A⊥

A,B : A, B ⇒ B, A =
A B

B A

1 : � ⇒ L , 1, R = 1

⊥ : � ⇒ ⊥ = ⊥

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

A,B∈FMLLu

– Ũ3 = M̃Twist ∪ ŨTwist where:

– M̃Twist is given by the following twisting relations:
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A B

A B

A B ,

A B C

C B A

A B C

C B A

,

A B C

`

C A`B

A B C

`
C A`B

,

A B C

`
B`C A

A B C

`

B`C A

;

together with one rule representing the involution A⊥⊥ = A:

A

A⊥ A

A⊥

A⊥ A

– ŨTwist is given by the following twisting relations:

A

A ⊥

A

A ⊥
,

A

⊥ A

A

⊥ A

.

Remark 52 The polygraph Ũ is twisting with twisting family FMLLu . This means that we can
represent any crossing of strings labeled by MLLu formulas and these crossings interact as
we attend with 2-cells which are not connected to control strings.

Remark 53 (Cut-gates shape) In light ofDeMorgan’s laws given inDefinition 8, the possible
Cut-gates inputs/outputs are the following:

– CutA`B : (A ` B), R, L , (B⊥ ⊗ A⊥) ⇒ � ;
– CutA⊗B : (A ⊗ B), R, L , (B⊥ ` A⊥) ⇒ � ;
– Cut⊥ : ⊥, R, L , 1 ⇒ � ;
– Cut1 : 1, R, L ,⊥ ⇒ � .

In this setting we are able to prove that the sequentializability of a diagram depends only
on its inputs and outputs. Moreover, we are able to characterize MLLu provable sequents in
terms of existence of proof diagrams with a specific type.

Theorem 3 (Controlled proof diagram correspondence in Ũ) A sequent Γ is derivable in
MLLu if and only if there is a proof diagram φ ∈ Ũ such that φ has no input and output of
the form L , Γ, R, that is

�MLLu Γ ⇔ ∃φ ∈ Ũ such that φ : � ⇒ L , Γ, R.

Proof To prove the left-to-right implication ⇒, as in Theorem 2, we remark that, if there is
a diagram φ : � ⇒ L , Γ, R with Γ sequent in MLLu, so there is a diagram

φσ = (idL , φ̂σ , idR) ◦ φ : � ⇒ L , σ (Γ ), R

for any permutation σ ∈ S|Γ |. Then we proceed by induction on the number of inference
rules in a derivation d(Γ ) in MLLu:

– If just one inference rule occurs in d(Γ ), then it is an Ax or a 1, then Γ = A, A⊥ and
φd(Γ ) = AxA : � ⇒ L , A, A⊥, R or Γ = 1 and φd(Γ ) = 1 : � ⇒ L , 1, R;

– If n + 1 inference rules appear in d(Γ ), we consider the last one and we distinguish two
cases in base of its arity:

– If it is an unary ` and Γ = Γ ′, A ` B, then, by inductive hypothesis, there is a
diagram φd(Γ ′,A,B) : � ⇒ L , Γ ′, A, B, R of the derivation d(Γ ′, A, B) and

φd(Γ ) = (idL ,Γ ′ ,`A,B , idR) ◦ φd(Γ ′,A,B) : � ⇒ L , Γ, R;
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– Similarly, if it is a unary ⊥ and Γ = Γ ′,⊥, then, by inductive hypothesis, there is a
diagram φΓ ′ : � ⇒ L , Γ ′, R and φΓ = (L ,⊥, idΓ ′ , R) ◦ φΓ ′ ;

– If it is a binary⊗ and Γ = Δ, A⊗B,Δ′, then, by inductive hypothesis, there are two
diagrams φd(Δ,A) : � ⇒ L ,Δ, A, R and φd(B,Δ′) : � ⇒ L , B,Δ′, R relative to
the two derivations d(Δ, A) and d(B,Δ′) with at most n inference rules. Therefore

φd(Γ ) = (idL ,Δ,⊗A,B , idΔ′,R) ◦ (φd(Δ,A), φd(B,Δ′)) : � ⇒ L , Γ, R

– Similarly, if it is a binary Cut and Γ = Δ,Cut (A, A⊥),Δ′, then

φd(Γ ) = (idL ,Δ,CutA⊥ , idΔ′,R) ◦ (φd(Δ,A), φd(A⊥,Δ′)) : � ⇒ L , Γ, R.

In order to prove sequentialization, i.e. the right-to-left implication ⇐, we proceed by
induction on the number |φ|S of gates in φ:

– If |φ|Ũ = 0 so φ : idΓ : Γ ⇒ Γ . By hypothesis φ has no input (i.e. s2(φ) = � ) so it
is the identity diagram over the empty string, this is the empty diagram id0 : � ⇒ �
which it is not sequentializable since t2(φ) = � �= L , R;

– If |φ|Ũ = 1 then φ is an elementary diagram. The elementary diagrams with source
� and target L , Γ, R with Γ ∈ F∗

MLLu
are atomic made of a unique 2-cell of type

AxA : � → L , A, A⊥, R for some A ∈ FMLLu or 1 : 0 → L , 1, R. The associated
sequent � A, A⊥ or � 1 is derivable in MLLu;

– Otherwise there is 2-cell of type α : Γ ′ ⇒ α(Γ ′) ∈ Ũ2 and Γ = Δ,α(Γ ′),Δ′. In
this case φ = (idL ,Δ, α, idΔ,R) ◦ φ′ where φ′ : � ⇒ L ,Δ, Γ ′,Δ′, R. We have the
following cases:

– If α = A,B , Γ
′ = A, B and α(Γ ′) = B, A. The diagram φ′ is sequentializable by

inductive hypothesis since |φ|Ũ = |φ′|Ũ + 1:

φ′

Δ B A Δ′

– Similarly if α = `A,B , Γ ′ = A, B and α(Γ ′) = A ` B or if α = ⊥, Γ ′ = ∅ and
α(Γ ′) = ⊥:

φ′

`
Δ A`B Δ′

φ′

Δ ⊥ Δ′

– If α = ⊗A,B so Γ ′ = A, R, L , B, α(Γ ′) = A ⊗ B and

φ′ : � ⇒ L ,Δ, A, R, L , B,Δ′, R.

This diagram is a parallel composition φ = φ′
l , φ

′
r with

φ′
l : � ⇒ L ,Δ, A, R and φ′

r : � ⇒ L , B,Δ′, R

of two diagrams which satisfy inductive hypothesis since |φ|Ũ = |φ′
l |Ũ +|φ′

r |Ũ + 1:

φ′
l φ′

r

⊗
Δ A⊗B Δ′
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– Similarly if α = CutA with B = A⊥ we have Γ ′ = A, R, L , A⊥ and α(Γ ′) = ∅:
φ′
l φ′

r

Δ Δ′

��
In particular, this theorem gives a representation procedure to associate a diagram to a

derivation and a sequentialization procedure to associate a derivation to a proof diagram.From
the theorem we can deduce the complexity of a sequentializability test for proof diagrams.

Corollary 1 The sequentializability of a proof diagram φ ∈ Ũ can be checked in linear time
on the number of inputs (if in(φ) = � ) and outputs (if out(φ) = L , Γ, R with Γ ∈ FMLLu ).

In particular, this test does not depends on the number of gates in φ – and then the number
of inference rules in the associate derivation – which is greater the number of conclusion
formula only in case of a single-gate diagram – i.e. a single-rule derivation.

Definition 13 (Representation) We say that a proof diagram φ ∈ Ũ with φ : � ⇒ L , Γ, R
represents a derivation d(Γ ) if it can be sequentialized into the derivation d(Γ ), and that a
derivation d(Γ ) is represented by φ or that φ is a diagrammatic representation of d(Γ ) if
the derivation d(Γ ) can be imitated by φ.

Definition 14 (Proof diagram branch)We says thatψ is a branch of a sequentializable proof
diagram φ if it is a subdiagram of the form ψ : � ⇒ L , Γ, R.

A branch ψ ⊆ ψ represents to a sub-derivation of the derivation represented by φ, in other
words it is a branch of the relative derivation tree.

We prove the termination of the polygraph Ũ in order to give a definition of irreducible
proof diagram.

Theorem 4 (Termination of Ũ) The polygraph Ũ is terminating.

Proof We define a termination order as in [13,20] to prove termination by associating to any
proof diagram φ : Γ ⇒ Δ a function [−] : N|Γ | → N

|Δ| defined according to the following
interpretations of gates:

[ ] : ∅ → (1, 1, 1, 1) , [ ] : (z1, x, y, z2) → ∅ ,

[ ` ] : (x, y) → x + y + 1 , [ ⊗ ](x, z1, z2, y) → x + y + 1 ,

[ ] : (x, y) → (x + y, x) , [ ] : (∅) → 1 , [ ] : (∅) → (1, 1, 1) ,

In particular, for any rule φ φ′ ∈ Ũ3 we have such that [φ] > [φ′]:
[ ]

(x, y) = (2x + y, x + y) > (x, y) =
[ ]

(x, y),
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[ ]
(x, y, z) = (2x + y + z, x + y, x) > (x + y + z, x + y, x) =

[ ]
(x, y, z),

[ ]
∅ = (0, 2, 1, 0) > (0, 1, 1, 0) =

[ ]
∅,

[ ` ]
(x, y, z) = (x + y + z + 1, x + y + 1) > (x + y + z, x + y + 1) =

[
`

]
(x, y, z),

[
`

]
(x, y, z) = (2x + y + z + 1, x) > (x + y + z + 1, x) =

[ ` ]
(x, y, z),

[ ]
(x) = (x + 1, 1) > (x, 1) =

[ ]
(x),

[ ]
(x) = (x + 1, x) > (1, x) =

[ ]
(x),

The compatibility of the order with sequential and parallel composition suffices to con-

clude that for any couple of diagrams [φ] > [φ′] holds whenever φ
∗

ψ . This rules out
the existence of an infinite reduction path by the same argumentations given in Theorem 1
proof. ��

In the next section we study the quotient over derivations induced by the morphisms in
〈Ũ〉.
5.3 The Quotient Over Derivations Induced by Ũ

The polygraph Ũ generates a monoidal category 〈Ũ〉 where morphisms are the equivalence
classes of proof diagrams generated by the signature Ũ2 modulo the rewriting rules in Ũ3. The
representability of a derivation bymeans of a proof diagramgives rise to an important question
about the correlation between two derivations represented by the same proof diagram.

In this section we study the equivalence relation between derivations which can be repre-
sented by the same proof diagrams and by proof diagrams belonging to the same equivalence
class in 〈Ũ〉. We compare it with the standard equivalence relation ∼ and the equivalence
relation induced over derivation by the proof net syntax [24].

If we denote Nd(Γ ) the proof net representing the derivation d(Γ ) and φd(Γ ) ∈ Ũ a proof
diagram representing a derivation d(Γ ), we can define the following equivalence relations
overMLLu derivations:

– we denote ∼N the equivalence relation over derivations induced by proof nets syntax. It
is defined as follows:

d ′(Γ ) ∼N d ′′(Γ ) iff Nd ′(Γ ) = Nd ′′(Γ ).

In other words, d ′(Γ ) ∼N d ′′(Γ ) if and only if they can be represented by the same
proof net.
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– we denote�D the equivalence relation over derivations induced by proof diagram syntax.
It is defined as follows:

d ′(Γ ) �D d ′′(Γ ) iff ∃φ ∈ Ũ such that φd ′(Γ ) = φ = φd ′′(Γ ).

In other words, d ′(Γ ) �D d ′′(Γ ) if and only if they can be represented by the same
proof diagram in Ũ3.

– we denote ∼D̃ the equivalence relation over derivations induced by 〈Ũ〉. It is defined as
follows:

d ′(Γ ) ∼D̃ d ′′(Γ ) iff ∃φd ′(Γ ), φd ′′(Γ ) ∈ Ũ s.t. [φd ′(Γ )]Ũ = [φd ′′(Γ )]Ũ.

In other words, d ′(Γ ) ∼D̃ d ′′(Γ ) if and only if they can be represented by two proof

diagrams which are equivalent modulo Ũ3.

It is well-known that ∼N captures all permutation of multiplicative inference rules except
the ones changing the jump assignment for a ⊥ cell. This implies that ∼N=∼ over the pure
multiplicative fragment of linear logic but that∼N is finer than∼ in presence ofmultiplicative
units [16].

We remark that ∼D̃ captures all commutations of unary inference rules (⊥, ` and
exchange) with disjoint sets of principal and active formula occurrences (by the interchange
rule) together with permutations between ⊥ or ` rules and exchange rules (by twisting
relations).

At the same time, in MLLu sequent calculus we usually consider sequents as multisets;
thus, the equivalence relation �D does not really take into account the geometry of twisting
operators in proof diagrams. In fact, we can always re-arrange the order of occurrences
of formulas in the sequents inside a derivation before representing it by a proof diagram.
This allows to shape at will the geometry of twisting operators of the representation of
the derivation. For this reason, unexpectedly (but not that much) it emerges that the two
equivalence relations �D and ∼D̃ are equivalent.

However, this equivalence relation �D is not able to capture all permutations of binary
inference rules (⊗ and Cut): let α, β ∈ {⊗,Cut}, then ∼ equates only permutations of the
kind that follows:

1
...

� Σ, A

2
...

� B, Γ,C
α� Σ,α(A, B), Γ,C

3
...

� D,Δ
β� Σ,α(A, B), Γ, β(C, D),Δ ∼

1
...

� Σ, A

2
...

� B, Γ,C

3
...

� D,Δ
β� A, Γ, β(C, D),Δ

α� Σ,α(A, B), Γ, β(C, D),Δ

that is, permutations of ⊗ or Cut rules that do not change the order of the branching in a
derivation tree.

For an actual example of these particular cases, consider the linear logic sequent B ⊗
C, A ⊗ D. This exhibits two different ∼-equivalent (but also ∼N -equivalent) derivations
which are not �D-equivalent:

1
...

� A, B

2
...

� C ⊗� A, B ⊗ C

3
...

� D ⊗� A ⊗ D, B ⊗ C
∼

1
...

� A, B

3
...

� D ⊗� A ⊗ D, B

2
...

� C ⊗� A ⊗ D, B ⊗ D
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in fact, their diagrammatic representations belong to two different equivalence classes in 〈Ũ〉:
⎡
⎢⎢⎢⎢⎣

1 2 3

A B C D

⊗

⊗

⎤
⎥⎥⎥⎥⎦ �=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 3 2

A B D C

⊗

⊗

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It follows that �D equates less than ∼. Most of all, the equivalence relation �D does not
capture the part of the semantical equivalence which is required in order to take into account
the elimination of commutative cuts and, consequently, to have an equivalence relation com-
patible with the cut-elimination result.

In the next section, we extend our polygraph in order to make compatible with cut-
elimination the induced equivalence relation over derivations.

Remark 54 The two equivalences �D and ∼N are not comparable. In fact, we have that �D

captures ⊥ rules permutations which change jump assignments that are not captured by ∼N ,
but �D does not capture permutations of binary inference rules which are perfectly captured
by ∼N .

5.4 The Polygraph of MLLu Proof Diagrams

In this section we extend Ũ to a polygraph U in order to induce an equivalence over proof
diagrams which captures the standard equivalence over derivations. To this end, we extend
Ũwith generators and rewriting rules in order to enable some permutations of proof diagram
branches. In effect, these transformations are forbidden in Ũ by the presence of control strings
which impeach the definition of several twisting operators.

As remarked in the previous section, proof diagram syntax is inefficient to capture the
standard proof equivalence in presence of some configurations including the ones of pure
commutative cuts. This is because we keep records of how we manage occurrences of for-
mulas in derivations (by means of twisting operators) revealing an hidden “tangle” structure.

Definition 15 (Crossing split) If φ ∈ Ẽ is an irreducible proof diagram, we says that φ has
a crossing split if it contains a subdiagram of the form

Γ Γ ′ A C Δ D Σ

N

β

N ′

α

β(N ,C) Δ α(N ′,D) Σ

or

Σ D Δ C A Γ ′ Γ

N

β

N ′

α

Σ α(D,N ′) Δ β(C,N )

where α, β are splitting gates, that are gates of type ⊗ or Cut , and N , N ′ ∈ { ,`,⊥}∗.
In other words, we have a crossing split in a proof diagram whenever the corresponding

derivation exhibits two binary inference rules α after β such that the left (resp. right) active
formula of α derives by the rightmost (resp. leftmost) sub-derivation branch of the left (resp.
right) branch of β. For example, consider the two following configurations with A active
formula of α:
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Γ1 ΓB Γ2 ΓA

. . .
... . .

.

� Γ, Γ ′
A , B

...

� C,Δ

β(B,C)

� Γ,Δ, Γ ′
A , β(B,C)

� Γ ′,Δ′, A , β(B,C)

...

� D,Σ
α(A, D)

� Γ ′,Δ′, β(B,C), α( A , D),Σ
or

...

� Σ, D

...

� Δ,C

ΓA Γ1 ΓB Γ2

. . .
... . .

.

� Γ, Γ ′
A , B

β(C, B)

� Δ,β(B,C), Γ ′
A , Γ

� β(B,C), A , Γ ′,Δ′
α(D, A)

� Σ,β(B,C), α(D, A ), Γ ′Δ′

where ΓA and Γ ′
A are sequents made of subformulas of A only (similarly for the formula B

and ΓB).
These configurations can be avoided in a proof diagram by giving a specific order to Ax

and 1-gates, in the same way we permute branches in derivation trees by ∼.
We call untangle procedure the method of removing crossing split from a proof diagram.

This requires to perform some rewritings which permute proof diagram branches. For this
purpose, we define some gates type with the following shape:

W W ′

W ′ W

with W,W ′ ∈ (FMLLu ∪ {R, L})∗

These gates can be seen as some “big twisting operators” able to cross a two sheafs of strings
labeled by L ,W, R and L ,W ′, R where W,W ′ are lists made not only by formulas but also
by L and R.

Definition 16 (Polygraph of MLLu) The polygraph of multiplicative proof diagrams is the
polygraph U obtained extended the polygraph Ũ as follows:

– U0 = Ũ0;
– U1 = Ũ1;
– U2 = Ũ2 ∪ Big where

Big =

⎧⎪⎨
⎪⎩BW,W ′ =

W W ′

W ′ W

⎫⎪⎬
⎪⎭

W,W ′∈(FMLLu∪{R,L})∗
;

– U3 = Ũ3 ∪ UBig where UBig is made of the following sets of 3-cells:

– B-introduction: for anyα, β ∈ {Cut,⊗} andφ, φ1, φ2, ψ,ψ1, ψ2, N , N ′ irreducible
in Ũ, with N , N ′ ∈ { ,`,⊥}∗, we define the following 3-cells:

φ φ1 φ2

α

N

β

Γ α Δ β Σ

φ φ1 φ2

N

β

α

Γ α Δ β Σ

and
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ψ1 ψ2 ψ

α

N

β

Σ β Δ α Γ

ψ1 ψ2 ψ

N

β

α

Σ β Δ α Γ

where φ and ψ are respectively of the form:

φ

Γ Γ ′ A
=

φ′

N ′

Γ Γ ′′ Γ ′′′ A

ψ

A Γ ′ Γ

=

ψ ′

N ′

A Γ ′′ Γ ′′′ Γ

with Γ ′ = Γ ′′, Γ ′′′;

– The untangle relations: for any A ∈ FMLLu ,

in(x)

x

out(x)

∈ Ẽ2, BW,W ′ ∈ Big we define

the following 3-cells:

W A

A A⊥ W

A W

A A⊥ W
,

A W

W A A⊥

W A

W A A⊥
,

W

1 W

W

1 W

,

W

W 1

W

W 1
.

W1 x W2 W ′

W ′ W1 out(x) W2

W1 in(x) W2 W ′

W ′ W1 x W2

,

W W ′
1 x W ′

2

W ′
1 out(x) W ′

2 W ′

W W ′
1 in(x) W ′

2

W ′
1 x W ′

2 W ′
,

whereW1, in(x),W2 = L ,W, R andW ′
1, in(x),W

′
2 = L ,W ′, RwithW1,W2 �= �

and W ′
1,W

′
2 �= �

To have an intuition, a B-gate can be visualized as follows (but we remind the reader that
such diagrams can not be defined in our syntax since twisting operators are not defined for
control strings):
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W W ′

W ′ W

�

W W ′

W ′ W

AB-introduction rule eliminates from a Ũ3-irreducible proof diagram a crossing split: it
exchanges the order of splitting gate, it modifies some twisting operators and it triggers the
crossing of two proof diagram branches by the introduction of a B-gate.

At the same time, the untangle relations move gates from the top to the bottom of a B-gate
according with our intuition: when a gate “crosses” a B-gate, it slides on the sheaf of strings
passing from the left to the right and vice versa. These rules untangle, step-by-step, two
crossed branches of a diagram:

Proposition 3 (B-gate elimination) If φ,ψ ∈ Ũ are proof diagrams of type φ : � ⇒
L ,W1, R and ψ : � ⇒ L ,W2, R with W1,W ′

2 ∈ (FMLLu ∪ {R, L})∗, then there are
rewritings path made only of untangle relations of the following forms for gates of type
BW1,W2 :

φ ψ

W2 W1

∗ ψ φ

W2 W1

We call this rewriting path a B-gate elimination. Moreover, if φ′, ψ ′ ∈ Ũ are proof diagrams
of type φ′ : W1 ⇒ L ,W ′

1, R and ψ ′ : W2 ⇒ L ,W ′
2, R with W1,W ′

1,W2,W ′
2 ∈ (FMLLu ∪

{R, L})∗, then there are rewritings path made only of untangle relations of the following
forms:

φ =

W1 W2

φ1 ψ1

W ′
2 W ′

1

∗

W1 W2

φ1 ψ1

W ′
2 W ′

1

= ψ

We call this rewriting path a B-gate reduction.

Proof By induction over the number of gates in the diagram φ,ψ : each untangle relation
decrease it. ��

We call untangle sequence a rewriting path made of one B-introduction rule followed
by its relative B-gate elimination rewriting path. Each untangle sequence corresponds to the
elimination of a crossing split and it terminates after a finite number of steps depending on
the number of gates in the diagram.
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We have a maximal B-gate reduction φ
∗

φ′ when φ′ is of the form:

φ′ = χd ◦ (idW , (ψ ′ ◦ B), idW ′) =
W W ′

ψ ′

χd

with ψ ′ ∈ Big∗

We call any such rewriting path a B-deactivation.
We assume that any of this sequence generate no new crossing split. In fact, the elimination

of a crossing split generate a new one if and only if there is a gate corresponding to a binary
inference rule in parallel with respect of the lower splitting gate, for example:

φ φ1 φ2 φ3

⊗

⊗ ⊗

In these cases it is possible to verify that either we apply the B-introduction rule in such
a way as to maintain these two gates in the same branching of the diagram, or we perform a
second untangle sequence we are able to recover a configuration where they are in parallel
again. In the previous example we have:

φ φ1 φ2 φ3

⊗

⊗
⊗

A B C D

∗

φ φ2 φ1 φ3

⊗

⊗

⊗
A B C D

∗

φ φ1 φ2 φ3

⊗

⊗
⊗

A B C D

∗

φ φ2 φ3 φ1

⊗ ⊗

⊗

A B C D

The choice of defineB-introduction rules with premises Ũ3-irreducible diagrams with no
B-gates leads the following result:

Corollary 2 Conflicts between aB-introduction rule and an untangle relation and conflicts
between a rule in UBig and a rule in Ũ3 are trivially solvable. Then we can assume the
corresponding rewritings paths commute.

Proof The subdiagram rewritten by aB-introduction rules is Ũ3-irreducible and contains no
B-gates then all possible non-trivial conflicts are the ones between twoB-introduction rules
discussed above. The confluence of non-trivial critical peaks between untangle relations and
rules in Ũ3 follows by argumentations similar to the ones given in the Proposition 3. ��

This lead the following theorem about the termination of rewriting in U.

Theorem 5 (Termination in U) The polygraph U is terminating.
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Proof Corollary 2 implies that a rewriting path in U can be written as an alternate sequence
of rewriting paths in Ũ3, untangle sequences and B-deactivations. We know that the length
of untangle sequences and B-deactivations are finite and linearly depends on the number of
gates in a diagram. Moreover, Theorem 4 proves that there are not infinite rewriting paths
composed of rules in Ũ3. Then, to prove termination it suffices to prove that the number n of
alternations is finite.

For any φ ∈ U, if φCross is the number of crossing splits in φ, any alternate rewriting path
starting from φ counts at most |φ|{Big} B-deactivations and φCross untangle sequences. In
fact, no rule in Ũ3 generates new B-gates either crossing splits. This is underlined by the cor-
respondence between equivalence relation over derivations �D=∼D̃ and rules permutations
over derivations which do not change the structure of tree branching. ��

We extend the Theorem 3 to proof diagrams in Ũ. This leads the linear complexity of the
test of sequentializability for proof diagrams in U.

Theorem 6 (Multiplicative proof diagram correspondence)

�MLLu Γ ⇔ ∃φ ∈ U such that φ : � ⇒ L , Γ, R.

Proof The left-to-right implication immediate follows by Theorem 3. For the proof of right-
to-left implicationwe have to also consider the cases when it occurs a 2-cells in Big. We
observe that a proof diagram φ : � ⇒ L , Γ, R contains a gate of type B ∈ Big iff there
is a subdiagram φ′ ⊆ φ of the form

φ′ = (idL ,Γ ′ , gα, idΓ ′′,R) ◦ (φ′
2, φ

′
1) ◦ B ◦ (φ1, φ2)

with gα gate of type α ∈ {Cut,⊗}. Then, during the sequentialization procedure, whenever
a gate of type ⊗ or Cut occurs, we consider the following cases:

φ1 φ2

⊗
Γ ′ A⊗B Γ ′′

,

φ1 φ2

Γ ′ Γ ′′
,

φ1 φ2

φ′
2 φ′

1

⊗
Γ ′ A⊗B Γ ′′

,

φ1 φ2

φ′
2 φ′

1

Γ ′ Γ ′′

.

the first two cases are handled by the same strategy of Theorem3. The sequentialization
procedure for the two new cases follows the intuition behind B-gates as proof diagram
branchings twisting: (idL ,Γ ′ , gα, idΓ ′′,R)◦(φ′

2, φ
′
1)◦B◦(φ1, φ2) : � ⇒ L , Γ ′′, R, L , Γ ′, R

is sequentializable iff φ′
1 ◦ φ1 : � ⇒ L , Γ ′, R and φ′

2 ◦ φ2 : � ⇒ L , Γ ′′, R are. ��
Remark 55 The signature Ũ2 suffice to represent MLLu derivations, that is, B-gates are not
needed in order to represent proofs and that the quotient 〈U〉 equate more of these proof
diagrams than 〈Ũ〉.

Let consider the equivalence relation ∼D over derivations of MLLu sequent calculus
defined as follows:

d ′(Γ ) ∼D d ′′(Γ ) iff ∃φd ′(Γ ), φd ′′(Γ )′ ∈ Ũ such that [φd ′(Γ )]U = [φd ′′(Γ )]U.

where φd(Γ ) ∈ U is a diagrammatic representation of a MLLu derivation d(Γ ). In other
words, d ′(Γ ) ∼D d ′′(Γ ) whenever they can be represented by two proof diagrams which
are equivalent modulo U3.

The standard proof equivalence ofMLLu sequents is faithfully represented by ∼D :
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Theorem 7 (Proof diagram representation) Two derivations are equivalent modulo ∼ if and
only if they are represented by two equivalent proof diagrams with respect of 〈U〉. That is:

d(Γ ) ∼ d ′(Γ ) ⇔ d(Γ ) ∼D d ′(Γ )

Proof Given two derivation d(Γ ), d ′(Γ ) inMLLu sequent calculus, d(Γ ) ∼ d ′(Γ ) iff there
is a sequence of rules permutations from d(Γ ) to d ′(Γ ). As remarked in Sect. 5.3,∼D̃ capture
all rules permutations which do not affect the branching of a derivation tree and �D⊂∼D .

This implies that even if we consider derivations up to rules permutations, it is possible
to well-define the following function which associate to a derivation an equivalence class of
proof diagrams in U:

[−]U : {MLLu derivations} → { morphisms in 〈U〉}
d(Γ ) → [φd(Γ )]U

Moreover, in a diagrammatic representation of a derivation (.Γ ), untangle sequences and
their inverses permute pairs of proof diagram branches which correspond to the represented
derivation branches. This means that ∼D captures all rules permutations missed by �D , then
that ∼=∼D ��

We define the following polygraph:

Definition 17 (Polygraph of MLLu semantics) The polygraph of multiplicative linear logic
semantics SMLLu is given by extending the polygraph U with the following the sets of 3-cells
S3 = U3 ∪ SCut

MLLu
where SCut

MLLu
= MCut ∪ UCut is given by the following sets of 3-cells:

– MCut is made of the following 3-cells:

A

A

A ,

A B Γ B⊥A⊥

⊗
`

Γ

A B Γ B⊥A⊥

Γ

,

A

A

A ,

A B Γ B⊥ A⊥

⊗
`

Γ

A B Γ B⊥ A⊥

Γ

,

for all A, B ∈ FMLLu , Γ ∈ F∗
MLLu

;
– UCut is made of the following 3-cells:

, ;

Theorem 8 (Termination in SMLLu ) The polygraph SMLLu is terminating.

Proof Any rewriting path in S3 is a sequence of rewriting paths in U and rewriting rules in
SCut
MLLu

occurrences. If the number these latter is finite in any rewriting path, we conclude by
Theorem 5 that there are no infinite rewriting paths in SMLLu .
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We define the degree δ(g) = ‖A‖ of CutA-gates g ∈ φ as the number of occurrences
of ` and ⊗ symbols in the formula A. We define a weight w(φ) of a proof diagram φ ∈ U

depending on the degrees of all its Cut-gates:

w(φ) =
g∈φ∑
g:Cut

3δ(g)

We observe that w(φ) = w(ψ) whenever φ
U3

ψ since φ and ψ have the same occurrences

of Cut-gates.
However,w(φ) > w(ψ)whenever φ S3

ψ . In fact,φ has an extraCut-gates with respect

to the one of ψ or else in φ there is a CutA⊗B -gate or a CutA`B -gate which is replaced in ψ

by one CutA-gate and one CutB -gate. The inequality holds because for any A, B ∈ FMLLu
we have 3A⊗B = 3A`B = 3‖A‖+‖B‖+1 > 3‖A‖ + 3‖B‖,

This concludes the proof since any rewriting path in S3 there is a finite number of occur-
rence rewriting rules in SCut

MLLu
��

Consequently, we have a cut-elimination Theorem for sequentializable proof diagrams in
SMLLu

Theorem 9 (Cut-elimination) An irreducible proof diagram φ ∈ SMLLu which represent a
derivation contains no Cut-gates.

Proof Proposition 3 assures that a U3-irreducible proof diagram φ ∈ SMLLu of type φ :
� ⇒ L , Γ, R contains no B-gates and, by Theorem 8, neither crossing splits. Since twisting
relations moves ` and ⊥ gates downward in a proof diagram φ, if a CutA-gate occurs in φ

then it has to belong in a subdiagram with shape the source one of the rules in S3. ��
However, the twisting relations generate a wide family of critical peaks in the rewritings

of Ũ, U and SMLLu . Some of these critical peaks are not solvable. This leads the following:

Proposition 4 (SMLLu confluence) The polygraph SMLLu is not confluent.

Proof In SMLLu (but also in Ũ and U) the following critical peak is not confluent:

⊗ ⊗ ⊗

This rules out a confluence for this polygraph. ��
Since the signature of SMLLu is the same as that ofMLLu, we naturally extend the Theorem

6:

Theorem 10 (Multiplicative linear logic correspondence)

�MLLu Γ ⇔ ∃φ ∈ SMLLu such that φ : � ⇒ L , Γ, R.

After Theorem 7, this correspondence ensures the well-definition of the following func-
tion:
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Definition 18 (Denotational semantics of proof diagrams) For any MLLu derivation d(Γ )

we associate an equivalence class of proof diagrams, that is a morphism of the category
〈SMLLu〉 generated by SMLLu as follows:

[−]D : {MLLu derivations} → { morphisms in 〈SMLLu〉}
d(Γ ) → [d(Γ )]D = [φd(Γ )]SMLLu

where φd(Γ ) is an arbitrary representation of d(Γ ).
If d(Γ, A) and d(A⊥,Δ) are two derivations, we define the semantical composi-

tion of [d(Γ, A)]D and [d(A⊥,Δ)]D (denoted •) as the equivalence class [d(Γ, A)]D •
[d(A⊥,Δ)]D = [(idL ,Γ , cutA, idΔ,R) ◦ (φd(Γ,A), φd(A⊥,Δ))]D .

We remark that even if SMLLu has the structure of monoidal category, its product (the
parallel composition) is not compatible with the map [−]D . In fact, the parallel composition
of two sequentializable proof diagrams is not sequentializable (it corresponds to the mix
rule, the binary rule with conclusion the juxtaposition of the two premise sequents). Then
([−]D, •) is not a substructure of SMLLu , but it is a category with objects the images of [−]D
in the category SMLLu .

Theorem 11 (Proof diagram semantics) ([−]D, •) is a denotational semantics for MLLu
sequent calculus.

Proof We define the following equivalence relation ≈D overMLLu derivations:

d ′(Γ ) ≈D d ′′(Γ ) if and only if [d ′(Γ )]D = [d ′′(Γ )]D
There exists a a one-to-one correspondence between rewriting rules in SCut

MLLu
and cut-

elimination steps. Moreover, if we denote by ↔∗
Cut the equivalence relation induced over

equivalence classes in 〈U〉 by the rewriting rules in SCut
MLLu

, we have that 〈SMLLu〉 = 〈U〉
↔∗

Cut
.

Thus, the following properties hold:

1. if d(Γ ) →Cut d̂(Γ ), then d(Γ ) ≈D d̂(Γ ): each cut-elimination step over the dia-
grammatic representation of φd(Γ ) is replicated by a rewriting rule in SCut

MLLu
eventually

preceded by a rewriting path ∗
U in U3.

2. ≈D is non-degenerated, i.e. one can find a formula with at least two non-equivalent
proofs: it suffices to take any formula A ∈ FMLLu which exhibits two non-equivalent
(with respect of ∼) cut-free derivations d(A) and d ′(A), then trivially d(A) �≈D d ′(A);

3. ≈D is a congruence, i.e. if d(Δ) ≈ d ′(Δ) and we obtain d(Γ ) and d ′(Γ ) by applying the
same inference rule to d(Δ) and d ′(Δ), then, from the compatibility of rewriting with
sequential and parallel diagram compositions, it follows that d(Γ ) ≈ d(Γ )′.

We remark that [−]D is coherent with the involutivity of negation. In fact, the invariance
of diagram inputs and outputs with respect to rewriting imposes the equivalence A⊥⊥ = A:

AxA =
A

A A⊥

A⊥

A A⊥

A⊥⊥

A A⊥
= AxA⊥⊥
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Similarly, De Morgan’s laws follow by the definition of Cut-gates (see Remark 53). By
means of example, consider the equivalence of A ` B = (B⊥ ⊗ A⊥)⊥:

φ B⊥⊗A⊥

`
A`B

(A⊥⊗B⊥)⊥

φ

`

(A⊥⊗B⊥)⊥

From these properties we deduce that [−]D defines a denotational semantics for MLLu
sequent calculus by means of equivalence classes of proof diagrams with composition •. ��

6 Conclusion and Future Work

In this paper we have presented the syntax of proof diagrams, a particular class of string
diagrams suitable to represent linear logic proof derivations, and we have studied its prop-
erties. Even if this syntax reminds the intuitive 2-dimensional representations of proof nets,
proof diagrams strings have a more rigid structure with respect to proof structures wirings.
This allows for the definition of some control strings and a consequent sequentializability
test. Indeed, in this setting we can test when a proof diagram can be interpreted as a MLLu
derivation in linear time by checking the type of its inputs and outputs only.

Furthermore, the syntax of proof diagrams induce an equivalence relation over the syntax
ofMLLu sequent calculus derivations. In the paperwehave studied somedifferent equivalence
relations over derivation induced by some rewriting systems defined over proof diagrams;
we here summarize the principal results:

– proof diagrams syntax induces an equivalence relation over derivation capturing all per-
mutations of ` and ⊥ rules, but not the permutations involving Cut and ⊗ that also
permute derivation branches order. This equivalence turns out to be invariant under a
given set of diagram rewriting rules we call twisting relations;

– we can simulate derivation branches permutations by enriching our representation with
some additional gates and rewriting rules. This allows us to capture the standard proof
equivalence ofMLLu sequent calculus;

– we can simulate cut-elimination steps by rewriting rules and prove cut-elimination the-
orem for proof diagrams independently from sequent calculus result.

These results allow us to define a denotational semantics forMLLu sequent calculus bymeans
of equivalence classes of proof diagrams generated by a polygraph SMLLu . For this semantics
we define a composition of proofs which can be interpreted as the application ofCut between
the conclusion formulas of the two proofs.

We showed that the diagram rewriting systems we have introduced are terminating. How-
ever, the presence of control strings added to guarantee a linear sequentializability test rules
out the confluence of the rewriting systems. In conclusion, we can affirm that interchange
law for two dimensional string diagrams does not suffice to capture syntactically the notion
proof equivalence.

This work suggests several future research directions. In particular, in the near future,
we will focus on extending the present results to the multiplicative-exponential linear logic
fragment, and we will use the generalization of the interchange law in higher-dimensional
categories to syntactically capture the whole proof equivalence without the use of rewriting
systems.
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