UNIVERSITA DEGLI STUDI RoMA TRE
FacoLTA DI SCIENZE M.F.N.
CORSO DI LAUREA IN MATEMATICA

Tesi di Laurea in Matematica

Undecidability of the word problem for groups:
the point of view of rewriting theory

Candidato Relatori
Matteo Acclavio Prof. Y. Lafont

questa tesi é stata redatta nell’ambito del Curriculum Binazionale di Laurea
Magistrale in Logica, con il sostegno dell’Universita Italo-Francese
(programma Vinci 2009)

ANNO AccADEMICO 2011-2012
Ottobre 2012

Classificazione AMS:

Parole chiave:

“There once was a king, Sitting on the sofa,
He said to his maid, Tell me a story, And the maid began:

There once was a king, Sitting on the sofa,
He said to his maid, Tell me a story, And the maid began:

There once was a king, Sitting on the sofa,
He said to his maid, Tell me a story, And the maid began:

There once was a king, Sitting on the sofa,

”

Italian nursery rhyme

Even if you don’t know this tale, it’s easy to understand that this could
continue indefinitely, but it doesn’t have to. If now we want to know if the nar-
ration will finish, this question is what is called an undecidable problem: we’ll
need to listen the tale until it will finish, but even if it will not, one can never
say it won’t stop since it could finish later...those things make some people
loose sleep, but usually children, bored, fall asleep.

More precisely a decision problem is given by a question regarding some data
that admit a negative or positive answer, for example: “is the integer number
n odd?” or “ does the story of the king on the sofa admit an happy ending?”.
The concept of algorithm, mathematically “well-defined”, was introduced at
the beginning of 20" century by Church ([9],1936) and Turing ([21],1937) who
introduced two models of computation: A-calculus and Turing machines re-
spectively. This two model of computation are capable, with a succession of
simple and mechanizable instructions, to compute functions: it’s the birth of
theoretical computer science since by the Turing-Church thesis, both these two
models are equivalent and capable to represent any computable function (this
property is called Turing completeness). A problem is decidable if there exists
a computable function giving an exact answer for any instance of a problem,
undecidable when no computable function that can give an answer to every in-
stance there exists.

The answer to the word problem refers to rewriting systems. A rewriting
system is the data of a finite set of symbols called alphabet used to write finite
sequences of letters called words and a finite set of rules to rewrite some words
into others. Given a rewriting system and two words of its alphabet, the word
problem asks: “can i write one of the two words starting from the other using
only the given rewriting rules ?”. Rewriting systems are used in algebra and
geometry in order to give partial descriptions of objects without giving explicit
exhaustive description. In fact we are capable to rebuild complete descriptions
of objects that could be infinite or with very complex interaction between its
element by rewriting systems that report complex interactions to more simpler
ones regarding only some particular elements (called generators). On the other
hand, rewriting systems are related with logic and theoretical computer science
since they are a Turing complete model of computation.

Rewriting systems are naturally linked with some algebraic structures called
monoids: the orientation of the rewriting rules impede to reverse the equality

in order to obtain the initial element. This impossibility to reverse some inter-
actions between elements is typical of the monoid structures which, in general,
have not inverse elements. The first results on the word problem for monoid are
from 1947 by Markov [18] and Post [20], showing the possibility to encode the
computation of a Turing machine by a rewriting system. This encoding allow to
prove the undecidability of the word problem for monoids. Unfortunately, the
same argumentation cannot be used in the case of the word problem for groups:
the existence of inverses for every element, characteristic of groups, can produce
“interferences” during the rewriting process since every element followed by its
inverse, even if equal to the empty word, can interact with adjacent letters by
some rule. The first results are from 1954 (Novikov [19]) and 1955 (Boone[7]),
that prove independently the existence of an explicit procedure to build groups
for which they prove that the word problem is undecidable.

The central part of this thesis is a comparison of two proofs of the Novikov-
Boone theorem, one by Bokut[5] and the other by Lafont[15], suggested me by
Prof. Lafont in order to check the differences between the two proofs, both
based on the use of rewriting systems.

The thesis is organized as follows:

e Chapter 1 contains some background: some basic monoid and group the-
ory, rewriting theory and presentation of monoids and groups, a proof of
the existence of an embedding F., — F5 of the free group with a denumer-
able number of generators into the free group with two generators (Theor.
3), some notions of computability theory defining the Turing machines,
some of their properties and some other models of computation which will
be used in the sequel,;

e In chapter 2 we present some classical undecidability results: the Godel’s
incompleteness theorems, Church’s theorem on the undecidability of pred-
icate calculus, the undecidability of the halting problem for Turing ma-
chines and some similar results for other models of computation;

e The whole chapter 3 is dedicated to a detailed proof of the Higman-
Neuman-Neumann extension theorem [14]. We present here the proof
given in [15] using rewriting systems as a tool to extend groups in order
to have a suitable combinatorial property;

e Chapter 4 is devoted to present a family of groups introduced by Novikov
in term of groups with stable letters [3], called Novikov-Boone groups.
This groups have a particular combinatorial property useful to prove some
results of undecidability for groups. In the second part we prove some
properties for such type of groups like the fact that they are a particular
case of HNN-extension;

e In chapter 5 the proofs of Bokut’ and Lafont are analyzed step by step;

e In chapter 6 we present an application of the undecidability of the word
problem to prove the undecidability of non-commutative linear logic after
a summary of the differences between the two proofs:

ii

— Bokut’s proof [5] [6] is based on a rewriting system induced by the
relations of the defining presentation of the Boone group G(T,q).
This new infinite rewriting system is built to be convergent. So,
in order to test if a word W is equal to the letter ¢, it will suffice
to compute the normal form of the word W and compare it with ¢
(since ¢ is in normal form). The undecidability of the word problem
for G(T, ¢q) will follow from the undecidability of the word problem
for a special monoid T encoding of a Turing machine;

— Lafont’s proof [15] is inspired by Aandreaa and Cohen’s [1]. It also
uses rewriting, but the only essential point is the notion of convergent
rewriting system and not the study of a particular system. It uses
the undecidability of the halting problem for a particular class of
abstract machines called affine machines. Using some properties of
the free group F.., it is possible to associate a local isomorphism of
an extension of F with every transition of an affine machine A. By
the HNN embedding theorem, the configurations of the machine live
in some group G 4, where transitions are represented by elements of
G 4. In that group, the word problem is equivalent to accessibility
for the affine machine of a fixed configuration, a problem which is
proven to be undecidable ([15]).

e Appendix A gives an overview of combinatorial systems showing some
properties for string rewriting systems; we then prove the undecidability
of the word problem for monoids and we explain why the results for groups
can’t be given in the same way;

e Appendix B gives an overview of linear logic sequent calculus and presents
some classical results.

iii

Contents

Introduction

1

Some backgrounds
1.1 Basic Group and Monoid Theory

1.1.1
1.1.2

Group Theory
Monoid theory

1.2 Monoid presentations.
1.3 Basic Computability Theory

1.3.1
1.3.2

Turing Machines
Some other model of computation

Some Undecidability Results
2.1 Godel’s Theorems i
2.2 Church’s Theorems
2.3 Undecidability of the halting problem for

Turing machines o
2.4 Some otherresults L oL
2.5 Undecidability of Propositional Linear Logic

The Higman-Neuman-Neuman Extension Theorem
3.1 HNN extension theorem

3.1.1

3.1.2

3.1.3

HNN extension theorem proof
Part I: A non convergent presentation of '
HNN extension theorem proof
Part II: A convergent presentation of F'
HNN extension theorem proof
Part ITI: Concluding

3.2 HNN extention theorem application

Novikow-Boone’s groups
4.1 A Novikov-Boone’s group zoo

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6

Novikow group 0, p, - - - - - . oo
Novikow group 24,
Boone group
Borisov group o o
Aandrea group
Valiev group oo

4.2 Group with standard basis 0L

iv

16
16
20

20
21
22

27
27

27

28

29
30

4.2.1 The definition of groups with standard normal form

5 TUndecidibility of the word problem for the groups
5.1 Bokut’ proof
5.1.1 TheBoonegroup
5.2 Lafont proof L

6 Conclusion
6.1 Word problem and Propositional linear logic.

A Combinatorial system
A.1 Undecidability of word problem for monoids
A.2 Why undecidability of word problem for groups is more difficult .

B Linear Logic
B.1 Cut Elimination

Bibliography

38

40
40
40
45

47
48

50
20
o1

53
%)

57

Chapter 1

Some backgrounds

1.1 Basic Group and Monoid Theory

A group is an algebraic structure consisting of a set together with a binary
operation that with two given elements of the set, associates a third one. The
set with an operation, to be a group, have to satisfy a four of axioms: closure,
associativity, identity and invertibility. A group is surely one of the simplest
algebraic structures and it was the first one studied with this modern point
of view. The concept of group arose from Evariste Galois’ studies (1830’s) on
polynomial equations: he linked their solubility to some particular property of a
group associated to each polynomial. The study of the group was also developed
in other field of math: Felix Klein in 1872 in his FErlagen program classify the
new geometries discovered in the 19th century (non-euclidean and projective)
considering them groups of symmetries. Moreover, in number theory, in order to
solve the last Fermat’s problem, this new notion was used to generalize results
to class of object with similar numerical property.

Even though the notion of monoid is differs from group’s one for the absence
of the invertibility axiom, it started to be studied later at the beginning of 20th
century. Eliminating the notion of inverse elements is obtained a structure
which can better represents the concept of function composition and computing
process: even if we know a result and what kind of transformation we have done
to obtain it, we can’t always find out the initial data since such transformation
could be not reversible. For this reason monoids are used every time there is
an irreversible process and so it found large application in theoretical computer
science, category theory but also probability.

1.1.1 Group Theory

Definition 1 (Group) A group G = (S, %) is given by a set S (support of G)
and a binary operation * on S:

xg:9x85 -8
satisfying the following axioms (group aziom):

e (Closure): ¥g,q' € G, g+ g' € G;

o (Associativity): Ng,q',g" € G, g+ (¢' *g") = (g*¢') * ¢";

o (Identity): e € G such thatVge G,exg=g=g=*e;

o (Invertibility): Vg€ G 3g7' € G such that g= g ' =e=g "l xg
where is used to write g € G to note G = (S,) and g€ S.

Notation: Since every operation on a set induce an unique group, in case of
ambiguity in presence of different group operations, we’ll write #g to note the
operation of the group G.

Definition 2 (Order of a group’s element) Let G = (S, *) be a group, the

order of G or cardinality of G is the number of elements of S. If g € G the

order of g := ord(g) is the minimum n € N such that g" = g=*...xg = 1. If
—

n

there is not n € N such that g™ = 1 that will be noted ord(g) = o0.

Definition 3 (Subgroup) If H € G is a subset of elements of G, H is a
subgroup of G (noted H < G) if H satisfies the group aziom under the binary
operation of G.

Definition 4 (Subgroup generated by a subset of a group G) IfS a sub-
set of a group G, the subgroup generated by S is (S)q = {s7*...sF|s; € S}. A

subgroup H < G 1is finitely generated if there is a finite S © G, such that

H=(S¢.

Definition 5 (Coset, Normal Subgroup) If H < G are defined the follow-
ing subset of G:

o gH = {ghlh € H} the left coset of H

e Hg = {hglh e H} the right coset of H.

Remark 1 Two elements g and g’ define the same left (right) coset gH = g'H
(Hg = Hg') iff g '¢' € H (iff g9~ € H). That induce a partition on the
elements of the group given by the left (right) cosets.

Definition 6 (Transversal set) If H < G, we can define a transversal set
HL of H by choosing' a random elements of each coset.

Given a subgroup H of G and a set H' of representatives of right cosets, we
have a unique decomposition of each element of G:

Proposition 1 For every g € G, there is a unique decomposition g = hv with
he H andve H*.

Proof: Because H induces a partition on G (given by its right cosets) and
g € Hg, there exists a unique v € H* such that Hg = Hv. So h = gv~! is an
element of H and g = hv.

Definition 7 (Normal Subgroup) A subgroup H of G is normal if Hg = gH
for all g e G. It is noted by H < G.

1We need the axiom of choice if [G:H] is not finite.

Definition 8 (Centralizer of x) If H < G and z € G, the centralizer of

x in H is the subgroup of H consisting of elements which commute with x:
Cu(z) = {h € H|xh = ha}.

Definition 9 (Quotient Group) A quotient group Q = % is a group ob-
tained identifying together elements of a group G using an equivalence relation
R compatible with the group operation. The elements of Q (class of equivalence)
are usually noted by [g]. Furthermore the set N := [1|g of elements equivalent
to 1g is a normal subgroup: for every x € G, Nx = xN. Vice versa every
N < G induce an equivalence relation on G given by g ~ ¢’ < g¢' ' € N.

Definition 10 (Group Homomorphism) Let G, G’ be groups an group ho-
momorphism ¢ is a map ¢ : G —> G’ such that: ¢(g *a g') = ¢(9) *a ¢(g")

Definition 11 (Group Isomorphism) If ¢ : G — G’ is a group homomor-
phism, ¢ is an isomorphism if it is bijective.

Definition 12 (Local isomorphism) A local isomorphism of G is an iso-
morphism ¢ : H — H' between two subgroups H and H' of G. An element
t € G represents ¢ if Vo € H, ¢(x) = tat~ L. A subgroup K of G is ¢-invariant
ifo(Hn K)=¢(H nK).

1.1.2 Monoid theory

Definition 13 (Monoid) A monoid M = (S, *) is given by a set S and a
binary operation # on S':
#:9%x85 -8

satisfying the following axioms:
e (Closure): Vg, € G, g+ g' € G;
o (Associativity): ¥g,q',9" € G, g (¢' % g") = (g*g') * g";
o (Identity): e € G such thatVge G,exg=g=g=*e.

Definition 14 (Submonoid) A subset N © M is a submonoid of M if it
contains the unity and it is closed under the binary operation induced by that of
M (i.e. for every z,ye N, xzy€ N).

Definition 15 (Quotient Monoid) If M is a monoid and ~ an equivalence
realtion on M, the quotient monoid £ is the monoid with elements the equiv-
alene class of M relative to ~ and the operation is derived by the M ’s one.

Definition 16 (Monoid Homomorphism /Isomorphism) If M and N are
two monoids, a map f: M — N is an homomorphism if f(xy) = f(z)f(y) for
all x,y € M. An homomorphism f is an isomorphism if it is bijective.

1.2 Monoid presentations

Monoid’s and groups’ presentation are strictly related with algebra, geometry
and model of computation. Them was introduced in the end of 19th century
by Walter von Dyck to study groups in term of generators and relation. Study
groups in this way permits to analyze some property without know exactly the
group: algebraic geometry use them to compute fundamental groups of topo-
logical spaces groups’ amalgams arising from the Seifert-Van Kampen theorem.
The link with the computer since is due to the fact that semi- Thue system are a
Turing-complete model of computation (see Chapt. 1.3 and Appendix A) with
interesting behaviors about convergence linked with the monoid’s homology and
finiteness propert.

Definition 17 (Monoid Presentation) Let 3 be an alphabet, ¥* the set of
word on X (i.e. the set of all possible finite concatenation of symbols of the
alphabet including the empty word 1) and R € ¥* x ¥* a set of rules on . A
presentation P is a couple (S|R) given by an alphabet and a set of rule on the
alphabet. A presentation is called finite if ¥ and R are finite sets.

Notation: In order to view a presentation as a string rewriting system?, the
pair (w,w’) will be also denoted as a reduction rule w — w’.

Notation: M = (X|R)" means that M is equal to the quotient of £* by the
congruence <% generated by R (the smallest equivalence relation containing R
and compatible with the multiplication). Similarly, a presentation of a group
is given by an alphabet ¥ and a set of pair of words on the alphabet ¥ U ¥
where ¥ = {Glc € X}. G = (X|R) means that G it’s equal to the monoid
(X UZ|R UZs)* where Iy, = {(05,1)(G0,1)|0 € X}.

Notation: Given a presentation (X|R) and two words v, w € ¥*, v = w means
that v and w are the same word (written with the same letters in the same
order), while v =), w means that they are equivalent in the quotient M (if
there is no ambiguity it will be denoted =).

Example: Z ~ (b|J) =: Fy has a canonical presentation (b) := (b|J) as a
group and a canonical presentation ({b,b}|Ry = {(bb, 1), (bb,1)}) like monoid. If

w = bb, w' = bb so ww' = bb*b = 1.

Notation: Words on an alphabet ¥ will be noted by small or capital letters. If

Wy, ..., w, € X* then W(ws,...,w,) is a word W € ¥* such that every word
is written in therm of wy,...,w, ie. W =W, ... W} with W; = w;, V1 < j <
kKIl<i<n.

It’s preferable to continue to distinguish the two equivalences = and <%
since there is a subtle difference between = and <%: the first is the equality
in the semantics of M, the abstract algebraic object, while the second is the
equality in the syntax of the quotient, so this equality depends from the rewriting

system chosen. If there is not ambiguity (a single system is given) or if all

2see. Appendix A

systems have the same property booth notation will be used with the same
meaning.

Remark 2 A group is finitely presented if it can be is finitely presented as
monoid.

Proof: Given a finite presentation (X|R) of a group G, we get
G = <Z U E|R UIz;>+

where, if ¥ is finite and so ¥ = {7|oc € ¥} and Iy, = {(05,1),(50,1)|0 € X} are
finite too.

Definition 18 (Reductions) If u,v € ¥* and (r,s) € R, we get an elemen-
tary reduction urv —x usv. If there is a sequence ug,uq . ..u, in X* such that
U; =R U1 fori=0...n—1 we get a composed reduction ug =% u, . A word
w is reduced if there is no v such that w —g v. If a word u admits a single
reduced word U such that u —% u, then @ is called its normal form.

Definition 19 (Convergent presentation) A presentation (X|R) is noethe-
rian if there are not infinite sequence {u;}ien such that u; —>r u;+1Vi € N. A
presentation is convergent if, moreover, it have the confluence propriety: for
every u,v,v" such that uw —3% v and u —% v’ there is some w such that v —% w

and v' =% w.
U
v v’
\ /
w

Figure 1.1: Confluent diagram

Definition 20 A subword of a word v is a word w such that v = uwu’ for some
u, ' € X* (u u' can be empty). The overlap of two subword u and w of v is
the longest word v’ such that u = u'v', w = v'w’ and v'v'w' is a subword of v.
If w is a subword of v we say that v contains w, moreover if v = wu (v = uw)
Ju e X*, w it’s a prefix (suffix) of v.

Notation: We write sub(v) for the set of subwords of v.

Definition 21 (Critical Peak) Given a presentation (X|R), a critical peak
is a word w containing two subwords v and v’ with non-empty overlap such that
v and v’ are respectively the prefix and the suffiz of w (orv = w and v’ € sub(w))
and (v,u), (v',u') € R for some u,u’. We'll say that a critical peak w is solvable
if booth path of reduction starting from the word w converge to some word w'.

Definition 22 (Standard presentation of a group) IfG is a group, its stan-
dard presentation (X¢|R¢q) is given by Xg = {a,| z € G} and

Ra ={a1 — 1,azay — agylz,y € G}
Remark 3 The standard presentation of G is convergent.

Proof: The confluence follows from the associativity of the group operation
(ie. Va,y,z € G, z(yz) = (zy)z. Indeed, critical peaks are of the following
forms:

A7y

PN

ApyQz AgQyz

| |

A(ay)z = A (yz)

Figure 1.2: Critical peaks for the standard presentation of a group G

The termination, instead, is guaranteed by the fact that every reduction reduces
the length of a word by one, and so, the reduced words are the letters and the
empty word:

Ugy Oy - - - Op,, =R Oy s a1 -5 1

Definition 23 (Free Product) Let G = (Zg|Rg)t and H = (Sy|Ru)™.
Then the free product F' = G «+ H has a presentation, as monoid, given by the
disjoint union of the presentations of G and H: F = (Xg w Xg|Rg w Ru)™.

Notation: we’ll note Fy the free group with one generato (i.e. F} ~ Z). F,
will note the free group on n generators F,, = (a1,...,a,) = Fy, #--- % Fy_and
F,, the free group of Ry generators {ay, }nen-

Definition 24 (Translation) Let (X|R) and (X'|R’) two presentation of monoids.
A translation it’s a function ¢ : (B|R) — (X'|R') obtained extending a map
¢ : ¥ — X'* on presentation such that:

1. Ywe X, ¢p(w) = p(w);
2. Vv = (u,0) € R, §(v) = (6(u), p(v)) €.

Lemma 1 (Lafont embedding lemma) Let (X|R) and (¥'|R’) be two pre-
sentations such that:

e X CY/;
o (X|R') is convergent;
o R ={(u,v) e RM|lueX*}.

Then the inclusion ¢ : ¥ — X! defines a translation ¢ : (L|R) — (X'|R’) and ¢
18 injective.

Proof: Let [v]r be the equivalence classes of v with respect to <%, it suffice to
prove that [v]r = [v]rr N E*

c) Since RS R if we X* and w <% v then w <%, v;

D) Let we X'™* such that w <%, v. Then, since (¥'|R’) is convergent, there
is uw € X' such that w =%, u and v =%, u. For every v e ¥*, applying a
rewriting rule of R', we get a word in ¥*, so that u € ¥*. If also w € ¥*
then w <% v.

Since ¢ is well defined and for every v,w € £*, v X w iff v ok, ¢ is an

injective homomorphism.

Definition 25 (Embedding Translation) An embedding translation
¢: (ZIR) > P = (¥'|R’) is a translation such that:

e P’ is convergent on ¢(X%);

e 3 a control function® ¥ : ¥* — ¥* compatible with %, i.e. such that
Yo e TF, Y(p(v) < v.

Lemma 2 (Extended embedding lemma) If ezists a embedding translation
b: (X|R) — P' = (X|R'), so exist an homomorphism ¢ : (X|R)*t — (X'|R")*.
Proof: We define ¢([w]r) = [¢(w)]r: and Y([v]r:) = [¥(v)]r. Like in Lemma

1 will be necessary to demonstrate ¢([v]r) = [o(v)]r::
S) since ¢(R) Sok, if we X* and w «% v then p(w) <%, ¢(v)

D) let we T* if p(w) <%, ¢(v) then w <% v. Since (Y'|R') is convergent,
exists an unique © € X* such that ¢(v) =%, ¢(0) and w —%, ¢(0). Since

Y is compatible with <%, and if z € X* every rewriting rule in the path

of reduction from a ¢(z) to ¢(0) is in G(R), so ¢(z) =%, ¢(0) iff z o%
Yo(z) o ¥o(D) oF .

Definition 26 (Iso-translation) An iso-translation between two presentation
¢ : (ZIR) = (X'|R’) is an embedding translation such that for every equivalence
class [V'|r of &'* exists at least a v € ¥* such that ¢p(v) € [V']r.

Proposition 2 If exists a iso-translation ¢ : (X|R) — (X/|R'), so M = (S|R)*
and M' = (X'|R')* are isomorph. B

Proof: By lemma 2 M — M'. Moreover ¢(X*) = ¥'* is a bijection with the
property p(ww') = p(w)p(w'), so an isomorphism.

Definition 27 (Lexico-metric order) Given an alphabet ¥ equipped with an
order <y (o =x, f means a < AP <), v=0qy - -q; andw = qj - Qj ,
it’s possible to extend it to a lexicografic order on the set of words on X:
v<gwe IkVh <k(oy, =s aj, Alk=n<m v (ES<Smak <nAaw;, <s aj,)
and also to lexico-metric order:

Vs, <) W S n<m or Ik <nVh < k(q;, = aj, A, <s ajy)

Example: Let ¥ = {a,b,c} and with the order a =5 b <y ¢ so abc <y bea,
and abc <1 bea but aabca <s bea and bea < aabea.

3it can be a partial function

Theorem 3 It exists an embedding of F,, into Fs.

Proof: Like in [15], showing that the family {b"ab™"},cz is free* in the group
Fy = {a,b), it’s possible to have the embedding translation of ¢ : F,, — Fy given
by ¢(an) = b™ab™™ and so the proof by Lemma 2. In order to founf the control
function of the translation, we’ll build a new convergent presentation of

Fy = (¥ = {a,a,b,b}|R = {aa@ — 1,aa — 1,bb — 1,bb — 1})7*

it suffices to add, for every m > 0, the superfluous generators® given by the
relation:

a, = b"ab™ a, = b"ab" a_, = b"ab™ a_, = b"ab™.
The following relation will be derivable for every n € Z (nominally ag := a):
apay, =1 apa, =1
ba, = api1b bap = Gpp1b bap = ap_1b ba, = Gp_1b.

Let B3 = {b,b} U {an,an}nez, a new presentation of Fy is given by (X2|Ra)
where Ry consists of the following reduction rules (varying n € Z):

Apln, — 1 Apan — 1 bb — 1 bb — 1

ba, — an+1b ba, — Gn41b ba, — a,_1b ba, — a,_1b.

Defining the order on 3o by Yn, a, =s, Gn+1 =5, an <x, b =3, b, is
possible to define a lexico-metric order <ux, on ¥5. The rewriting system is so
noetherian since for every reduction w —g, w', W' <w and < it’s a well-order
on ¥%. By this order every reduced word will be in the form oy . ..anﬁf with
a; € {an,a,} and B € {b,b}. Moreover all the critical picks are solvable:

o For every (v,7') € {(an, an), (an, an), (b,0),(b,b)}

o For every (an,al,) € {(an,an), (@n,an)}

banar, bay,al,

s ~
an_11bat, am1bal,
| |
Oén+104%+16 Qpg 10,410
\ v /

b b

4j.e. there are not relations between the elements

5
°them can be viewed like some abbreviation of some word in Fb

o For (1,7,9) € {(b,5,—1), (5,b,+1)}

¥ o
/

VYCn+§7Y

Yy

N

v

The equivalence of the two presentation is provable showing the existence
of an iso-translation ¢' : (L|R) — (X2|R2) given by ¢'(a) = ag, ¢'(a) = ao,
¢'(B) = B where B = b,b. The control function 1)’ is defined by '(B) = B and
Y (o) = b"ab™ ' where B =b,b and a = a, a.

Now it’s easy to show that the map ¢ : X, = {Qn,Gnlnez — X5 such
that (o) = an and ¢(a,) = @, induce an embedding translation ¢ : (3,) —
(X2|R2). Since every word in ¢p(X.,) are in {ay, an)k, them are in normal form
in (X2|R2) and it’s possible to define i : L5 — X, inductively on the number N,
of a and @ in the word w: if Ny = 0 so ¢(w) = 1. Else w = B(b,b)aw’ where
a = a ora, B(b,b) is a word containing only occurrences of b and b, so (w) =
an(Bw") where n = (#occurence of b in B(b, b)) — (#occurence of b in B(b,b))
and Ny < Ny. That satisfy Yw € Xy, ¢¥(p(w)) = w. So F, = (E,) —

(22|R2) = (a,b) = FQ.
Lemma 4 Vp,q € Z,q # 0 the family {ap, b?} is free in F,

Proof: Because {a,b} is free in F; and ord(b) = o0, {a,b?} is free in F (if not it
means exists relations between a and b). So {a,, b7} have to be free since (a,, bq)
can be obtained from the free sub-group of F» generated by {a,b?} applying the
internal isomorphism x — bPxb~P.

Definition 28 (Word problem) Given a rewriting system (X|R), the word
problem consists to answer the following question:

Given v, w € ¥* are v &% w?

The word problem can be defined in the same way for monoids and groups which
admits a finite presentation. It can also be defined with —* at the place of <%,
the two formulation are equivalent. Some texts highlight the difference obetween
words probelem (as defined above) and word problem (where w = 1). Both
problems have the same answer.

1.3 Basic Computability Theory

In the world meeting of 1900 Hilbert proposed some mathematical problem to
work on in 20th century. One of them, the 2nd one, asked if the axiom of arith-
metics are consistent (i.e. not contradictory). To answer this question, the study
of logic was deepened bringing out new problem like the entscheidungsproblem
(decision problem) posed by Hilbert in 1928 which asks the existence of an al-
gorithm capable to test if a first-order logic statement is universallly valid. At
that time there was not a proper definition of algorithm which was formally
defined by Alonzo Church in 1936 and independently by Alan Turing respec-
tively in term of A-calculus and Turing machines. By the Church-Turing thesis
these two models of computation are equivalent and they can express all and
every computable function (for every computable function exists a A-term and
a Turing machine that can calculate it).

Here we’ll present also some other models of computation Turing complete
(i.e. they can compute the same class of functions of a Turing machine) that
we’ll use during the proofs.

For reasons related to the proofs we’ll study, we’ll focus on the Turing model
instead of the A-calcul (which has a more manageable definition). Moreover, the
definition of a computability with Turing machine permits to define the concept
of complexity of a computation in term of number of transitions that the machine
have to do to compute it.

1.3.1 Turing Machines

Definition 29 (Turing Machine) A Turing machine is a abstract machine
consisting of:

e An infinite tape containing cells in which are written symbol of a fized
alphabet;

e A head which can read and write symbols on the tape and move left (L)
or right (R) on it;

e A set of instruction for the head depending of the input and the current
state.

it can be visualized as above:
a;
— Yy —

. ‘aikﬂ ‘ ag ‘ Ap41 ‘

More formally a Turing machine M is a 5-tuple (Q, %, qo, L, d) where:

e () is the set of states;

e X an alphabet with special symbol o representing an empty cell (it is not
explicitly written in the list of symbols in X);

® qo € Q) is the initial state;

e | c @ is a set of final states;

10

e J: X xQ\L - X xQx{L,R} is the transition function.

Definition 30 (Configuration for a Turing machine) Given a Turing ma-
chine M, a configuration for M is a string s = a;, ...as,_,q;0, . ..a;, where
@iy - Qi 1G4, - .. A, 1S a word in the alphabet ¥ representing the content of the
tape and a state q; is positioned before the symbol read by the head.

An initial configuration s a configuration containing qo, a final configuration
is a configuration where g; € L.

A configuration sp+1 is derivable by s, = a;, ... ai,_, G, - - - G, if

! ! . _
N { Wiy - Qi @iy, @5 GGy -0y, ife=1L
n - T . _ .
Wiy« oo Qi WG, Q5 iy - - G, ife=R

where §(ai,, q;) = (a},qj,€). In that case we'll note s, —n Sp41 @ transition
of T.

Definition 31 (Computation) A computation of a Turing machine M is a
sequence of configurations Sg, S1, ... starting with an initial configuration such
that sy, = Spa1 for all m = 0. Intuitively is sequence of the configurations of
the machine during the computing started with the configuration sg. A compu-
tation terminate if it is in the form sy — ... — s, with s, such that there exist
not a configuration s, such that s, — s,. FElse we say that the computation
diverge.

Remark 4 If s| is a transition containing a final state (a final configuration),
there exists not s such that s; —p; S, so a computation can contain at most
one final configuration at the end of a terminating computation. Moreover form
a configuration sg there exists only one computation starting with sg.

With that definition of computation will so be possible to givean idea of
complezity of a terminating computation sg,...,s; of M in term of length
|so] = m of the initial configuration: we’ll say that M operate in time f(n)
if s§(y = sL or in space g(n) if it is the size of longer configuration of the
computation (i.e. g(n) = maz{|s;|}).

There exist some variant of Turing machine equivalent: multi-tape machine
(with dependent or independent heads) and machine where head can write with-
out moving. A non-deterministic Turing machine is a machine where § is not
a function but a relation: is so possible that the computation will “branch” at
some point of the computing. That defines different classes of complexity of
computation.

Like we have seen, every algorithm can be implemented by a Turing machine.
We’ll prove the next proposition (in the original formulation given by Turing)
using this fact, in order to to give the idea of what we are trying to build,
without loosing ourself in the mathematical rigorous formalism.

Proposition 3 (Existence of Universal Turing Machine [21]) [t is pos-
stble to invent a single machine which can be used to compute any computable
sequence. If this machine U is supplied with a tape on the beginning of which is
written the “standard description” of an action table of some computing machine
M, then U will compute the same sequence as M.

11

Proof: First of all we’ll need to explicit what is a “standard description”
of a Turing machine. The idea is to encode the machine in enother language
(for example the binary one) encoding like a list the alphabet (also the empty
symbol o of the machine), the set of states, L and R and the function ¢ in form
of 5-tuple.

Now is possible to build a Universal Machine U capable to contain on the
tape the encoding of the machine M we want to simulate and an initial config-
uration for this machine (encoded with the same encoding used for M) in two
different part of the tape. The computation will proceed on the part of the tape
containing the configurations, searching every time the transition to execute in
order to obtain the new one, in the part of the tape containing the machine
encoding.

Definition 32 (Decidability) A function is decidable if there is a Turing
machine which can compute it for any initial data. A property P is decidable if
the characteristic function the set representing P.

1.3.2 Some other model of computation
We’ll now present some model of computation we’ll need in the prove we’ll study.

Definition 33 (Register Machine) A register machine is an abstract ma-
chine M consisting of:

o Labeled unbounded integer-value register: any labeled register can hold a
single non-negative integer;

o A list of (labeled) sequential instructions s; (we’ll call them routine) in
the form:

— INC(r,sj) = increase v and go to s; ;
— JZDEC(r,sj,s,) = if r =0 go to s;, else decrease r and go to sj;
— HALT;

o A state register: which hold the label of the instruction to execute. A
configuration for a 2- register machine M is a triple (s,a,b) where a,b
represent the integers in registers and s a state. The writing 5 —aq &'
(s =%, §') denote that M transform a configuration s in a configuration
s' in one step (a finite number of steps). A state (0,a,b) will denote a
final state.

A non-deterministic register machine is a machine where there could be in-
structions labeled by the same letter, in that case the machine will branch the
computation executing one of them for every branch.

Remark 5 It’s possible to define different equivalent machine with different
form of instructions [17], for example if we build a machine without JZDEC in-
structions but with instructions DEC(r, sj) (decreaser go to s;) and ZeroTest(r, s;)
(if r = 0 do s; else execute the next instruction of the list) instead of the in-
struction JZDEC in the list of instruction we can express machines computing
the same functions, will refer to this particular formulation of register machine

as Minsky machine M = (Q,0,a1,...,a,) where Q is the set of labeling for
instruction, § the list of instruction of M and the a; the registers.

12

Lemma 5 There is a routine for a 2-register machine with the second register
empty which computes the multiplication by a fized k of the content of the first
register in it.

Proof: Let sg the initial state and the number a content in the register a. The
list instruction will be in the form:

so JZDEC(a,st,81);

s; INC(b,si41) foralli=1... k—1;
s INC(b,s0);

st JZDEC(b,s.,8.);

sc INC(a,s;);

si HALT.

It will need k + 4 states.

Lemma 6 There is a routine for a 2-register machine with the second register
empty which compute the division of the content « of the first register by k
(recording it in the first register), and if the remainder is different from 0 it will
preserve a.

Proof: Let sg the initial state and the number o content in the register a and
B in b. The machine will subtract if is possible i = k times 1 to o adding 1 to
B and, at the end this procedure, it will copy B in the empty register a, else will
re-add i < k times 1 to a (where i is the time it subtracted 1) and after 8 times
k times 1. The list instruction will be in the form:

s; JZDEC (a, sp(), Si1) foralli=0...,k—1;
sy JZDEC (a, sp,S+);
s+ INC(b,s0);
sp INC(b,sy);
sy JZDEC(b,s1,5c);
se INC(a,sy);
spiy INCla,spi—1y) foralli=1,... k—1;
sp0y JZDEC(b,51,54,);
sy, INC(a,s+i-1) fori=Fk,...,1;
Sto JZDEC(b,s1,8+,);
si HALT;

It will need 2k + 7 states.

13

Theorem 7 FEvery n-register machine R can be simulated by a 2-register ma-
chine Ra(R).

Proof: Let p1,...,p, be the first n prime numbers. Is so possible to encode the
string of the registers’ contents ay,...,an as y(a,...,an) = pi* -+ pr. In this
encoding add(subtract) 1 to the i-esim register correspond to multiply (divide)
for p; the number v(ay,...,a,). Will be so possible to simulate the computing
of R, by a 2-register machine Ro(R) since every configuration (s,aq,...,ay)
will correspond to the configuration (so(s),ps*,0) of Ra(R), where so(s) is the
first instruction of the routine used to simulate the instruction of s using the a
variant of Lemma 5 for the instruction INC and Lemma 6 for JZDEC.

Definition 34 (Modular machines [1]) A modular machine Mod is defined,
fized anm € N, by a “set of instruction” (a,b, ¢, €) of quadruples where 0 < a,b <
m, 0 < c<m?, e=R,L (at most one quadruple can begin with the same pair
a and b), and an integer 0 < n < m to define input and outpul functions. A
configuration for Mod is a pair (o, 8) where « = um +a, f =vm+b. If no
quadruple begins with a,b, («, 8) it’s called terminal, else (, 8) — amoa (¢, 8)
where (um? ', R
Y um” + c,v 1f € =
(o, 87 = { (u,vm? +¢) ife=1L

The computing function of A is the partial function upodGmodimod : N — N
defined by:

irmod : N — N2 | 7"—>(Zbini,n+1) wherer=2bini,0<bi<n
IMmod : N2 = N2 (@, 8) =% (o, 3), (a,B') terminal
k
Umod : N2 5> N, (o, 8) — Z bym' ™! where a = Z bm', 0<b; <n

1

where k = min{ilb; = 0}.

Remark 6 It is so possible, with a proper encoding, to utilize a modular ma-
chine to simulate a Turing machine: starting by a Turing machine T on the
alphabet {b;}o<i<m s possible to associate the coding of the two parts of the
a = Z?:h c(iym and B = Yo, c(1)mh+1=% respectively at left and right of
the head (c(i) is the content of the the it" cell of the tape), at every state of T
a quadruple of Mod.

Definition 35 (Affine machine [15]) An affine machine, fivzed an m € N,
is a finite set A € Z x Z* x Z x Z*. Every (p,q,p’,q') € A define an affine
transition p+ gz =4 p' + ¢z (2 € Z).

Remark 7 Every 2-register machines M can be simulated by an affine ma-
chine: let (s,a,b) a configuration for M, coding it in the integer [s,a,b] =
s +m223°, every transition will be in the form:

i +mk — i+ 2mk i+m2z+1) > j+m(2z+1) i+2mz > k+mz

i+mk — i+ 3mk i+mBz+1)—>j+m(3z+1) i+3mz—>k+mz

14

i+m(3z+2) > j+m(3z+2)

so if z,2" are two integer, z <% 2’ so z is the code of a configuration iff 2’ is.
Futhermore:

(s,a,b) = a (8',d', V) imply (s,a,b) &, (s',d',b) iff [s,a,b] &% [s',d’,V].

15

Chapter 2

Some Undecidability
Results

The negative answer to the decision problem corresponds to the existence of
uncomputable function. The first step was to answer the entscheidungsproblem
is due to Gédel: in his incompleteness theorems he proved that in sufficient
expressive theory T which can azxiomatize the arithmetic, if it is coherent, is
always possible to found a formula that ¢ such that booth ¢ and —¢ can’t be
proved in T . To prove this, he utilize the notion of primitive recursive function
to encode the syntax of logic by numbers. The same encoding was used by Church
to answer to generalize the results and answer to the problem.

Also Turing proved that a Turing machine which decide if a given Turing
machine will stop its computation starting by a given initial data, can’t exists:
this problem, the halting problem, is undecidable too. Using that results he
proved that the entscheidungsproblem is undecidable.

We’ll use this result to prove the undecidability of some other problems show-
ing a way to reduce their instance to an instance for the halting problem and so
showing this problem can’t be decidable.

2.1 Godel’s Theorems

In his work [13], Gédel give a method to associate to every formula its Godel
number (a natural number) which encode it. Moreover he gives a way to express
the logical derivation in the language Ly = {~, 0, +, X, s} of arithmetic. In that
system he shows the existence of a fixed point for any formula and, using it,
the existence of formulas which can’t be proved in theories.

Definition 36 (Primitive Recursive Function/Relation) The class of prim-
itive recursive function is the smallest class of function NP — N for some pe N
containing:

e Constant function: Cy(x1,...2p) =n for any n,pe N;
e The function successor: s(n) =n+ 1;

ot e P .
o The projections: T, (x1,...,Tp) = T;;

16

closed under:

e Composition o: let h: N¥ — N and g; : NP > N so f = ho(g,...,gp):
NP — N s defined f(x1,...xp) = h(g1(21,...2p),- ., gk(x1, ... Tp))

e Recursion schema p: let g: NP — N and h: NPT2 - N,
f =p(g,h) : NP*Y — N is defined f(0,z1,...2p) = g(x1,...7,) and
fly+1,z,...2p) = h(y, [y, 21, ... 2p),21,...Tp);

A relation is primitive recursive if its characteristic function is.

Proposition 4 Any primitive recursive function is decidable.

Proof: constant, successor and projection are decidable. There exist also Tur-
ing machines to compute the composition of two function executing the second
program on the output of the first and the recursion schema too.

Proposition 5 The following function and relation are primitive recursive:

e addiction;

multiplication;

e pseudo-sottraction (n=m=n—m ifn—m >0, else 0);

e mod(x,y), div(z,y) if © >y where x =y div(x,y) + mod(x,y);
e ar(z,y) =3(x+y)(x+y+1)+y;

o a,(x1,...xp) = ao(z1, (22, ..., 2p)).

Definition 37 (Recursive function) The class of recursive function is the
smallest class of function NP — N for some p e N containing:

e Constant function: Cy(x1,...2p) =n for anyn,peN;

o The projections: 78 (x1,...,xp) = ;;

e Addiction;

e Multiplication;

e The characteristic function of the binary relation <;
closed under:

e Composition;

o i schema: g(x1,...,x,) = py(f(x1,...,20,y) = 0) is the smallest z such
that f(x1,...,2n,2) =0 and for all 2/ < z f(x1,...,2n,2") is defined. If
such z doesn’t exist g(x1,...,x,) is not defined.

Since the function ay can encode the p-uple, we need a function capable to
do the revers encoding:

Proposition 6 There is a recursive function B : N> — N such that, for all
succession ay, . .., a, of natural number, it exists c € N such that 5(i,c) = a; for
allie {l,...,n}.

17

Theorem 8 (Representability of recursive function in PAy) Every recur-
sive total function is representable in PAgy by a formula.

We’ll be so possible to encode the set of terms and formulas with natural
number enumerating the set of variables and symbols of the syntax. The number
associated to a term t or a formula F with this encoding is called Géddel number

of t (F) noted #t (#F).
Notation: n is the term representing the number n € N in the language Lg i.e.
s™(0).

Definition 38 (Encoding of L)
Encoding of terms t:

o ift =0, #t =a3(0,0,0);
o ift = x, the n'" variable , #t = az(n + 1,0,0);
o ift = sty, #t = az(#t1,0,1);
o if t =11 +to, #t = az(#t1, #t2,2);
o ift=1t1xts, #t = az(#t1, #t2,3);
Encoding of formulas F:
o if F =1ty ~ty, #t = ag(#t1, #t2,0);
o if F'= =ty ~ty, #t = ag(F#t1, #t2,1);
o if F =F| AFy, #t = as(#F,, #F,2);
o if F=F| v Fy, #t=qas3(#F,#F,3);
o if F =VYa,G, #t = az(#G,n,4);
o if F =32,G, #t = as(#G,n,4).
Will be possible to encode the derivations and sets too.
Proposition 7 The following function, relations and sets are recursive:
o Terg,(n), n is the encoding of a term of Lo;
o Forg,(n), n is the encoding of a formula of Lo;
e ®(n), n is the encoding of a closed formula of Lo;
o Dim(x,#F), if x is the encoding of a derivation of the formula #F;
o Sub(n,#t,X) = #X|[t/z,] where X is the number of a formula or a term.

Definition 39 (Peano Axioms) We’'ll denote PAy the following set of ax-
10ms:

o VYr—(sx ~ 0);

o Vady(—(x ~ 0) - sy ~ a);

18

VaVy(sz ~ sy —» x ~ y);

Vo(r+0~ x);

VaVy(r+sy — v = s(x4y);

Va(rx0=~ 0);

VaVy(zxsy ~ (xxy)+y).

PA is the set PAy united with the following infinite set of axioms definite by
the variation of Flxo,...,xx] formula of Lo:

o Vrq,... Vo (F(0,x0,...xx) A (F(y,21,...,2k) — F(sy,z1,...,28)) —
VeoF(xo,x1,...,2k)

Theorem 9 (Fixzed point) For all A(x) closed formula with one free variable,
there exist a closed formula B such that APy + B < A(x).
Proof: Let © = xj the free variable of A, Num(n) is the function that
given n € N gives #n and S(v,n, #F) the formula in Ly who represents v ~
Sub(k, Num(n), #F). Since PAg - Yv(v ~ Sub(k.n,n) & S(v,n,n)) for all
n € N, we pose:

6(x) = Va(S(y,2,2) = A(y))

and m = #0O(x). Proving that PAy - O(m) « A(Sub(k,m.m)), we found that
B = 0O(m) is the searched formula.

Lemma 10 Let DIM (x,y) the formula of Lo to exprime (x,y) € Dim and
TH(x) = 3yDIM (y,x) the proposition that exprim the existence of a derivation
of the formula F, so:

o if PA-F so PA+ TH(#F);

PAv TH(#EF) > TH(#TH(#F));

PA v TH(#A) A TH(#A > B) - TH(#B);
if PA- A — B so PA | TH(#A) — TH(#B).

Theorem 11 (First Godel incompleteness theorem) In any coherent the-
ory containing PA there is a statement G such that booth G and —G cannot be
proved in the theory.

Proof: By Teor.9 we know there is the formula G, fizxed point of =T H (x) such
that PA+ G & —TH#G).

PAW G) if PA+ G so PA + TH(#G) by lemma 10 and, by hypotesis PA +
G & —TH(#G). Will so possible to deduce from PA + G and PA +
G < —=TH(#G) that PA+ —TH(#G) and so (by PA+~ TH(#GQ)) that
PA, i.e. PA is not coherent.

PAW —G) prove PA+ G & —TH(#G) is equal to prove
PARE (=G v -TH(#£G)) » (G v ~(-TH(#£G)))
that needs booth PA - =G v —TH(#G) and PA \+ Gv —(—-TH(#G)) can

be proved. To prove the second one it’s equivalent to prove PA + -G —

19

TH(#G) and so, by hypotesis PA - —G, we obtain PA + TH(#G) (by
modus ponens) and PA + TH(# — G) by lemma 10. Both statement
can’t be true since PA is coherent, otherwise we could take one proof of
G, one of =G to obtain a proof of the empty sequent.

Theorem 12 (Second Gdédel incompleteness theorem) Any coherent the-
ory T' containing PA cannot prove its own consistency.

2.2 Church’s Theorems

The first Gadel theorem can be simply extended to PAg by the following:

Theorem 13 Let T be a theory extending PAg, if T is consistent so T is un-
decidable®.

Proof: Let © = {(m,n)| m = #F[x¢] and T + F[n]}. By contradiction T
is decidable, so are © and B = {n € N|(n,n) ¢ O}. Let G[z] the formula
representing B (i.e. G[n] < B), so for any n € N:

e n € B implies PAy - G[n] and so T + G[n];
e n ¢ B implies PAy - —G[n] and so T — —G[n].

Let #G[z] =g sog¢ B: ifge B so (g,9) ¢ © and T t* G[g] while T + G[g] by
definition of G. Conversely if g ¢ B implies (g,g9) € © and T + G[z] but also
T+ —G[z] so T is not coherent.

In [9] Church utilize the Gddel’s results to proper answer to the decision
problem generalized for the propositional logic.

Theorem 14 (Church) First order logic expressed in the lenguage Ly is un-
decidable.
Proof: Let G the conjunction of the axioms in PAy:

PAO|—F<:>G—>F€TQ

where and Ty = {F|F is a closed formula of LoandPAy — F}.
By Theor.13, PAy is not decidable so Ty will be not recursive.

2.3 Undecidability of the halting problem for
Turing machines

The halting problem for Turing machines asks if, given a Turing machine M
and a configuration sg, the computation of M starting from sg terminates.

Theorem 15 (Undecidability of the halting problem) The halting problem
for Turing machine is undecidable.

Proof: by contradiction we suppose, by Theor.3, that exists a universal Turing
machine N, which given the number M™* encoding of a Turing machine M and
the number n, it computes:

1 if the computation of M starting with decy;(n)termines

o\
N(M?,n) _{ 0 else

1A theory is undecidable if the set of provable closed formula is undecidable

20

where without loosing of generality, we can suppose that decps(n) is a well defined
configuration for M for every n € N.

Let N be the machine such that, for every Turing machine M, it computes
N(M) = N(M*, M*) so:

N (M) = 1 if the computation of M starting with decps(M*)termines
" | 0 if the computation of M starting with decpr(M*) diverges

and D the machine such that:

_ | termines if N(M) =0
D(M) = { diverges if N(M) =1

The absurd follow by the facts:
e If D(D) diverges and N (D) =1, so N (D) = D(D) termines;
e If D(D) termines and N (D) =0, so N(D) = D(D) diverges.

2.4 Some other results

Theorem 16 (Undecidability of the halting problem for 2-register machine)
There exist a 2-register machine with undecidable halting problem

Proof: We can build a register machine R from a Turing machine T (on
binary alphabet) with one h register containing the letter canned by the head,
two register I and r which contain a number that express the content of the left
and right part of the tape (read from the center to the border).

q
Vv

a0 [[[a [ar [oo [an [ool

l= a0(2i71)+a1(2i72)+. . .+ai_1(20) ,h=a;, r= an(2n7i)+an_1(2n7i71)+. . .+ai+1(20)
Any transition of the turing machine will so be represented by a sequence of:
e to represent the head moving left:

— multiply for 2 the register r adding 1 if h = 1;
— if I =1mod 2 subtract 1, set h =1;

— ifl=1mod 2 set h =0;

divide [for 2 ;

e to represent the head moving left:

— multiply for 2 the register | adding 1 if h = 1;
— if r=1mod 2 subtract 1, set h = 1;

— ifr=1mod 2 set h =0;

— dwide r for 2 ;

e to represent the writing in the cell read by the head:

21

— set h =0;
— add 1 if needed;

With a proper list of instruction there will be possible to simulate the computing
of any Turing machine. The halting problem for such register machine R will be
equivalent to the relative halting problem for T. Using Theor. 7 the computing
for R can be simulated by a 2-register machine that will have undecidable halting
problem.

Theorem 17 (Undecidability of Halt problem for modular machines)
There exist an affine machine A such that Halt 4 is undecidable.

Proof: Let Ts a Turing machine computing an recursively enumerable set S.
Since is possible to encode its computing by a modular machine, so it exists a
modular machine Mod such that it computes S. Then Halt pmoa ~ Haltr, is
indecidable.

Theorem 18 (Undecidability of equivalence problem for affine machines)
There exists a machine affine A and an integer m such that the equivalence
problem it’s undecidable.

Proof: The equivalence problem ask if, given a z € Z, z <% m. Let M a
2-register machine and n instructin. If we pose m = n + 1 and if we encode
every configuration (i,axy) by the integer [i,x,y] = i + m2%3Y, every trasition
of M correstond to at most two transition affine. We obtain an affine machine
A wit the following properties:

o if 2 >4 2’ so z is the encoding of a cofiguration iff 2’ is;

o (Zv z, y) —M (ilv xla y) Zﬁ [Za z, y] —A [ila IL’/, yl];

L4 (7/7 :1?7 y) (—);k\/[(i’l :177/ y/) Zﬁ [Z’ :Z:’ y] _).A [7:/7 xl? yl]'
Since m = [0,0,0] and z = [s.,a.,b.] so z &% m iff (s.,a.,b.) <3, (0,0,0),
i.e. the problem of equivalence will correspond to the Halt problem for M (is
possible to suppose that the final state for M is (0,0,0)).

2.5 Undecidability of Propositional Linear Logic

The proof of undecidability of propositional linear logic? is proved in [16] reduc-
ing the halting problem for a form of and-branching 2-register machine to a
decision problem for linear logic.

For the theories of interest here, an axiom may be any linear logic sequent
in the form ~ C, pf‘l, e ,pt with C a MALL formula. Any finite set of axiom
is a theory. For any theory T, we say that the sequent — T is provable in T
when we are able to derive - T' using the standard set of linear logic proof rules
in combination with axiom t; € T. We’ll note an axiom rule of T with

n T
FC " ®@pa®pp®...®p-
2See Appendix B for detail.

22

A direct cut is where at least one premise is an axiom in T, a direct proof is
a proof where all cut are direct cut. When theories are added to linear logic the
cut elimination theorem no longer holds due to axioms which may participate
directly in cuts. However we have the following result:

Theorem 19 If there is a proof of = T in theory T, then there is a directed
proof of =T in theory T.

Proof: The proof is a variant of the cut elimination theorem for linear logic.
It will suffice modify the definition of degree of a derivation in order to consider
direct cuts’ value null.

We define the translation [T] of a theory T with azioms ty,...,t; into a
multiset of pure linear logic formulas by

[{t1,. .. te}] = ?[t1],- -, ?[tk]
where [t;] is defined for each axiom as follow:
[C.pz.pys- 7] = (CBpr Bppr, B ... Bpr)t =Cr @pa@pp® ... QP

Lemma 20 For any finite set of axioms T, the sequent - I' is provable in
theory T iff = [T],T is provable without non-logical axioms.
Proof:

= Given some proof of = I' in theory T', we have a linear logic proof tree
where each axiom leaf - A is in the form A = t; for some t; € T or
A = pj,pj. In the first case, we replace it with a proof of - [t;], A
(provable by definition of [-]) and then by application of dereliction rule to
F ?[t:], A. Anyway, since each formulas in [T] begin with ?, with a proper
number of weakening we can obtain a proof for - [T], A booth if A = t;
or A = pj7pj-. If we replacing every axiom leaf with a such proof, we’ll
obtain a new proof tree where every binary rules increase the number of
occurrence of [T]. Since every formula in T is in the form ?[t;], it will be
possible, with a proper number of contraction rules, to derive - [T],T.

< For any aziom [t;] we can may prove !([t;]1) = (C B p)at B ... B pt).By
cutting this proof against a proof of -+ [T'],T" we obtain — [T\{t;}],T. Thus
by induction on the number of axioms in T we can derive - I" in the theory
T.

Definition 40 (And-branching 2-register machine) An and-branching 2-
register machine is a non-deterministic Minsky machine without ZeroTest in-
struction adding the instuctions DEC (r,q) which decrease the register r and do
to q and the fork instruction representing the and-braching:

which allows a machine to continue the computation in both states. We’ll call
that kind of 2-counter machine with set of instruction Q, ACM.

An istantaneous description, or ID, for an ACM s a finite list of ordered
triples (g;,a,b) where q; € Q and a,b are the natural numbers in the registers.
Intuitively it’s the list of triples representing the configurations of the parallel

23

computation of the machine which terminates successfully only if all its concur-
rent computation fragments terminate successfully. The ACM will take an ID
s to an ID s applying one instruction on one of the triples according to the list
of instruction (the instruction DEC(r, q) will not be execute if r =0).

We define the accepting triple {q,,a,b) where ¢, = HALT. An accepting
ID is an ID where every elements are accepting triples, that is, every branch
of computation has reached the accepting triple. An ACM accepts form an ID
s = {{qo, a,b)} iff there is some computation form S to an accepting ID.

The reason to take ACM is that the zero-test instruction, which is the most
difficult to encode in linear logic but necessary to have an halting problem unde-
cidable, can be simulated by the more basic and-branching. Otherwise the halting
problem for a register machine without zero-test become equivalent to the word
problem for commutative semi-Thue system which is decidable by Theo 43.

Lemma 21 It is undecidable if an ACM accepts from a given ID.

Proof: We can suppose without loosing generality to have a Minsky machine
R with an unique final state g, with instructions INC', DEC and ZeroTest
(as seen in Oss. 5).

We can so build an ACM Apg replacing the instruction ZeroTest. We
first replace the instructions ZeroTest(r,q;) (with r = a,b) with the instruc-
tion FORK (zy,q;). The two instructions for z, and z, will simulate the test on
register a and b respectively. For z, (and in the same way for z,) we add two
instructions: DEC(b, z,) and FORK (qy,qy).

FEvery branching form a state z, is at once another z,. or q.. The idea is that
the computation will branch in two parallel computation: one will continue like
the test had succeeded, the other one will effectively verify if it is only decreasing
the other register. If a, is the value in the register a when branch of computation
that simulates the test, it will reaching only configuration (qi,a,0), so the
machine will accept only if a, was effectively 0.

A computation of Ar will so terminate only if the corresponding computation
of R will and so the decidability of halting problem for ACM is equivalent to
halting problem for Minsky machine.

Let M = (Q,6,a,b) be an ACM we define a set of formulas:

{%‘7 CIﬂQz € Q} U{a7 aLa b7 bl}

We then define the linear logic theory for the list of instruction & as the set of
azxioms determined as follows:

g =INC(a,q;) ~ +qi (¢ ®a)
¢ =INC(b,q;)) — +Fq,at.q;
¢ =DEC(a,q;) — +qf,at,q;
qz=DEC(b q) = g bhg
= FORK(qj,qx) — + ¢,q;,q

Using the linear implication a transition like ¢; = INC(a, ¢;) may viewed as
F ¢ — (g; ®a) i.e. the state ¢; move to the state ¢; and add 1 to a. Denoting
with C™ the sequence

cn=0C,...C

24

is possible to define a translation © converting a configuration for an ACM into
a linear logic sequent

z Yy
®(<Ql7x7y>) =k Qij_an_ abL yqf

containing an occurrence of q¢, a negative occurrence of a q; and a number of
negative occurrence of a and b equal to the value of the corresponding register.
The translation of an ID s is the set of sequent translation of the configuration

of s.

Lemma 22 An ACM accepts form an ID s iff every sequent in O(s) is prov-
able in the theory derived from M.

Proof: we’ll not give a proof of the lemma but we’ll show an example to un-
derstand how LL simulate the computing or the register machine.

e O({(gs,0,0)) =+ qjc‘7al0,bl0,qf is provable since

—1
- ar,qr
is a logical axiom.

e O({¢gj,z+1,y)) =+ qjl, aﬂﬁﬂ7 b+Y gy obtained by an instruction
¢ = INC(a, q;) will be provable iff it will be ©({g;, z,y)) = + g, a+",b+" q;:

1
. F a0 g
- g (¢ ®a) - (g B at), ot 0H gy

F gt att ot qp

Cut

and in a similar way for ¢; = INC(b, ¢;);

e O((gj,x,y)) =+ qj{alm, b-Y gy obtained by an instruction ¢; = DEC\(a, q;)
will be provable iff it will be O({g;,x + 1,y)) = qf‘,almﬂ,bJ-y,qf:

— T .y
- qit, g5, at Fqi,at” bt gy

1 o1z+l oy
=g ,a ,b

Cut
yqf

and in a similar way for ¢; = DEC(b, ¢;);

e O((gj,2,9)) = + ¢, ", b ¢ and O((qr, z,y)) = + q,a*", 0" g5
obtained by an instruction ¢; = FORK (q;,qr) will be provable iff it will
be @(<Q7Axay>) = Q$’alx7bLy7qf"

25

x y x 7
. - qi ot b gy g a0t gy
l_qilaqj ®Qk = (q]‘l&q]%%avablyvqf

F gt att bt qp

Cut

So an ID is accepted by an ACM if it represents the branching of an halting
computation corresponding to a direct proof of q}, qs-

26

Chapter 3

The

Higman-Neuman-Neuman
Extension Theorem

In order to build groups’ extensions with particular combinatorial propriety, it
will be useful to use the HNN-theorem for the groups.

3.1 HNN extension theorem

Theorem 23 (HNN extension associated with a subgroup) Let G be a
group, VH < G,3F > G and b € F such that H = Cg(b).

3.1.1 HNN extension theorem proof
Part I: A non convergent presentation of I

In order to demonstrate the theorem, we’ll build an “ad hoc” extension F of G
and we’ll show that exist an element b € F such that H = Cg/(b).

Let F = G:—S,f) where <% is the smallest equivalence relation containing the

set C' = {(bh(,jhb)|h € H}. The free product G = (b) can be presented, given the
standard presentation of G and the minimal presentation of Z as monoid®, by
(Xg u {b,b}|Rc v {(bb, 1), (bb,1)}), so we have a presentation of F

(2r =Yg U {b,b}|Rr = Rg u Ry uRy})
where Ry = {(Ban,anB)|h € H,B € {b,b}}.
Remark 8 The presentation (Xp|Rp) is not convergent.
Proof: We just need to observe all the critique peaks:

e if the critique pick it’s a word of the alphabet of G, it’s soluble because it’s
in the standard presentation of G

lsee 1.2 pag. 4

27

e if the critique pick it’s a word of the alphabet of (b,b), it is solvable:

bbb bbb
/ O\ / O\
b = b b =

b

e if the critique peak contain only the letters of ¥y and ap with h,k € H,
it’s solvable:

bbay, bbay, bapax banay,
\ \ N N
banb banb apbay, anbay,
| } | o
ahbi) ath banay banay,
J J v Rd
ap, ap, bank ban

e all the non-solvable peak are all in the form (B € Xy, he H, x € G\H) :

Baham
N

B # apBa,

3.1.2 HNN extension theorem proof
Part II: A convergent presentation of F'

Using the Lemmal is possible to give another presentation of F adding new
superfluous generators and new relation. Let fix an H+ with 1 € H*, we define
the superfluous generators b, = ba, and b, = ba, (X1 = {b,, b, |v e H+}).2
Using the relation of Rr and the fact that, by the Prop.1, is possible to derivate
the following set Ry of relations:

Vvoe H: bib, — a, Vib, — a,

byay — apby ke Hywe H such that ve = hw

Y a, — apbl, Ihe Hywe HE such that ve = hw
Proposition 8 The presentation (¢ U X1 |Rg U R1) is convergent.

Proof: Like in 8, a critique peak of the alphabet ¥ or {b1,b}} is solvable. The
others critique peak are all in the form fyaga, or biblay or bib,a,. These three
kind of critique peak are solvable:

2p, = ba, and b; = bay essentially means that b, and b; are abbreviation respectively for
the words ba, and ba,

28

Bugay

/ \ ve = kw', ke Hw' e H-

Bvamy akﬁw’ay

| wy=kuw keHuw ent
v(zy) = hw,he Hywe H* Qg By
ah/Bw = akk’ﬂw”

because hw = v(xy) = (va)y = (kw')y = k(w'y) = k(K'w”) = (kk")w” and by
the lemma 1 w = w” and h = kK.

blb;az
vz =hw,he Hwe H-
blahbﬁﬂ
|
ahblbiv

|

Ay Gy Ap Gy

| |

Qyy = Ahw

the same for the pick b} b,a, changing by with b} and b with b,.

Remark 9 Every reduced words of this presentation of F' are in the form
afy...0n with a € ¥gu{l}, n=20and B € ¥ (n # 1 = Vi, B; # b
and B; #V').

Proposition 9 F/ = (Xp =3¢ UX||Rpr =RgURL) ~F.
Proof: By Prop.2 , it suffices to show that exists an iso-translation from F' to
F'. Let ¢ : ¥ — Y% such that ¢(a;) = az, ¢(b) = by and #(b) = b} we can
define ¢ and so:

o Vre R, p(r) ek,

e cxists a control function 1 given by ¥(az) = az, ¥(by) = ba, and P(b,) =
ba, ;

/

o since ¢ is always defined ¢p(y(v')) ok, v'.

Sinced is an iso-translation so F ~ F".

3.1.3 HNN extension theorem proof
Part III: Concluding

1t’s easy to prove by prop.2 that F' = G and F' = (b) because the functions idg :
Y — X% andidy : {b,b' = b} — L% are embedding translation. It’s also evident
for construction that Cq(b) = H. To prove the equality it suffices to show that
only the elements of H commutes with b. Let x = hw with he H and we H*,

29

we have biay —x,, apby and so ba, = Y(biay) = P(P(bas)) —=ry Y(anby).
But apby, is reduced and so ¥(apby) = apbay is. So Vx € G xb = hbw = xb iff
x € H(i.e. w=1) that mean Cg(b) = H.

3.2 HNN extention theorem application

Corollary 24 If G is finitely presented and H is finitely generated in G, then
the HNN-extension F' of G associated with H is finitely presented.

Proof: It just needs to change a little bit the construction of F used in the
demonstration of Th.23. Let uy,...u, € g such that H = (uy,...,u,) since
YVhe H, h =u; ...u;,, Im > 0 and i; € {1,...,n}. F will be presented by
(X U {b,b}|Rc U Rgen) where Ryen, = {bb — 1,bb — 1,bu; — u1b, ..., bu, —
unb}. By the transitive and operation-compatible closure of Ryen, Vh € H the re-
lation (apb, bay,) €ORen 50 CRLECRGUR,., Where Rp = Ra U {(hb,bh)|h €
H}. Moreover every u; are elements of H so Rger, € Ry and H%guR g‘_);k%p'

gen

Theorem 25 (HNN extension associated with an local isomorphism)
Let G be a group, V¢ : H — H' local isomrphism, 3F > G and b € F such that:

1. b represents ¢ ;
2. (K,b)p n G =K for all K ¢-invariant ;
3. if G is finitly presented and H finitely generated F is finitely presented .

Proof: Let F = G:—;w where < is the smallest equivalence relation containing

C
the set C' = {(bh, ¢(h)b)|h € H}. Fized H+, H'" transversal sets respectively of
cosets of H and H' (1 € H+ and 1 € H'") is possible to give the following
convergent presentation of F' = (L4|Re) built in the similar way of 3.1.2 (b, =
ba,, and b, = ba,):

Yy ={az}rec U {bufuent U {03, foert
and the following rewriting rules R :
AzQy — Oy a; — 1 b, — a, biby = ay
byaz — ag(nybw he H,v,we H* such that vz = hw
biyae = ag(nyby, A e H ,v,we H" such that va = h'w

Like in Th.23 (X4|Re) is a convergent presentation and F is an extension of G
and (b).

1) b represents ¢ since Yu € H, bya,by = ag(y)-

2) For every K < G is possible to choose the elements of H+ and H'* such
that for every k € K, k = hv where he K n H and v e K n H*, under that
conditions if K is ¢-invariant if a word is written in the alphabet

2¢>|K = {ak}keK Y {bu}ueHLmK v {b;}vEH’lmK

so it is a normal form since every K is a subgroup. That means (K,b)pnG € K
and so the equality while K € (K, b)r n G.
3) Follow from Cor.24.

30

Theorem 26 (HNN extension associated with several local isomorphism)
Let G be a group, Y¢1 : Hy — Hy,...,¢n : H, — H! local isomorphism,

dF > G and b € F such that:
1. b; represents ¢; Vi

2. (K,by,...,bn)r n G =K for all K invariant for all ¢;

3. if G is finitely presented and all H; finitely generated F' is finitely presented

Proof: Induction on the number of local isomorphism n using Th.25

31

Chapter 4

Novikow-Boone’s groups

Independently of Higman, Neumann and Neumann’s work oriented to a purely
algebraic and topological application, Novikow in [19] discovered the HNN-extension
and approach the subject in a more constructive way. With Boone [7] they con-
nect it to algorithmic and combinatorial algebra demonstrating the undecidability
of the word problem for the groups.

4.1 A Novikov-Boone’s group zoo

Here will be presented some Novikov-Boone’s groups, stating some their proper-
ties that permits to demonstrate the undecidability of some of their property.

4.1.1 Novikow group 2, ,,

Let K a Post system! [X4;R] on the alphabet ¥, = {ai,...,a,} and R =
{(Ai, B;),1 < i < A}, A, B; nonempty, is possible to build the Novikow group
Ap, p, associated with K on the alphabet ¥ consisting of:

al,...,an,ql,...,q>\,7“1,...,7">\,l1,...,l>\

one of his copy, namely:

+ + o+ + .+ + g+ +
N N N UL TR ERE o U S

and two supporting letters pi,ps. It’s defined by the following relations:

P - +oF o+ - T
1. ¢ia = aqiq; , ¢, ¢ a” =a"gq;;
. Tiria = ar; , rfat =atrfr;
cal; =la, atll =lra*;

2

3

4. af 1T prliqi = A prAs;
5. r piri = pi;

6

- rilipal ey = Bipa B ;

lsee. Appendix A

32

7. qipaq; = p2;
forl<i<AaeX, and (asy,...,as,) T =at ... at

g1 Wy

Proposition 10 (Novikow property) The words p1Xp2 X' and p1Yp Y '
are conjugate in the group A, p, iff X ~x Y in the associated Post system? K
where X, Y € X,.

4.1.2 Novikow group 2,
Let Xy = {a1,...,a,} and (A;, B;) pairs of nonempty X,-word for 1 < i < m.
Aguip = (X U A{p, P, 1i, f1is 123 1245 lais dif1<i<m |[R)

where R is the set of the following relation:

1. pia = ap} , pia = ap;;

2. bly; = l4;b;

3. apyilai = p,a, afiy;lai = fiy;a;
4. algipo; = posa, alqifio; = floia;
5. fnipidifio; = firipidifini A; ' By;

6. ad; = d;a;

forl<i<)anda,beX,.

+
3 Adguip * Ad,u,lp #D
P — *
«>
Rp

where Ajﬂlp is an antiisomorphic copy of Aau, given by the antiisomorphism ®
z -zt and R, = {EpE* — p} where E € Agu,.
4.1.3 Boone group

Let T = (X1 = {54, qc}deD,cee|RT = {Ai = B, }1<i<n) with 1 = q, a monoid
with A;, B; special words in the alphabet ¥, (i.e. word in the form sq.s’ with
s, 8" words of the alphabet {sq}), the Boone group G(T,q) with corresponding
monoid T is given by the alphabet:

Y ={54,qe, T, Y, li; i, k, t}aeD ccp, 1<i<N

and the following relations:

1. yzsd = 549, TS = Sqr2;

2. sal; = yliysa, SqTTiT = T;S4;
3. lszrz = Ai,'

2see App.A

3an antiisomorphisme ¢ : G — G’ is a map such that ¢(1g) = 1 and ¢(zy) = d(y)d(x)

33

4. Lit =t , yt = ty;

5. rik =kr; , rk = kx;

6. ¢ 'tqgk = kq~tq;
Proposition 11 (Boone property) Let S, S’ special words of ¥, than S <%
ST iff AV (1L, y), W(rs, x) such that S =V (l;,y)S'W (ri, x) in G(T,q).

4.1.4 Borisov group

Let 3, = {s;}i<j<n and R = {(F;, G;),1 < i < m} a set of pairs of nonempty
words of Xo and P a fized arbitrary word of X,. The Borisov group G(II, P)
can be presented by the alphabet:

Y=X,u{dect k}

and the following relation:

1. d™tls = sd, es = semtl;

2. sc=cs;

3. d'Fietc = cd'G;e’;
4. ct = tc, dt = td;
5. ck = ke, ek = ke;
6. PPk = kP~'tP;

for every 1 <i < m, seX,. Let Il = (3,|Rn) the monoid associated with
G(IL P).

Proposition 12 (Borisov property) Let Q) be a ¥,-word then Q = P in the
associated monoid iff Q~1tQk = kQ™'tQ in G(II, P).
4.1.5 Aandrea group

In [6] its presentation is linked with Aandrea’s modular machine instruction set
[1]. 1t’s presented by an integer m > 0 and a set of triples of integer M =
{(si,ai,b:) }ier {(s5,a;5,b5)}jes where 0 < ag, by < m and 0 < ¢ < m? for
everykel uJ.

G(M) = (ri,lj,z,y,t,r, ki€ I, je JRum)
where, denoting t(a, B) = 2~y Ptx®y® for a, B = 0, the relation of Ras are:
1. 2y = yx;
2. x™r; = ri:vmz, Yy =1y,
3. t(az, b)r; = rit(si, 0);
oa™y =L,y =Ly
5. t(ajb)l; = 1;t(0, s5);
wherete I, je J.

Proposition 13 For every modular machine Mod, it exists an Aandrea group
G(Mpoa) associated.

34

4.1.6 Valiev group

Differentrly form the previous groups, the Valiev group [22] does not depend on
a monotd, Post system or a Turing or Modular machine, it can interpretate any
recursively enumerable set of natural number. It’ll be presented by the alphabet:

Y ={ai, bi, Ciy tiy Gijks AYogicm, o<k<ij<m

and the relations:

S omo W e

. tglboto = ao_lboao,'

it = aibie; (1 <i<m);
tia; = ajt; , tic; = cjt; (0<i,7 <m);
apmd = da?, | Cmd = dc?, bm—1dam_1bm_1Cm_1;
a;d = da;(i #m) , bd; = d;ib(i #m — 1) cid = dc;(i #m);
bitijr = tijraibic; , citijr = tijpticy , Lijtr = titije,

tijk@s = Qstiji(s # 1), tijrbs = betiju(s # 1), tijucs = cstiju(s #J) .

35

4.2 Group with standard basis

Definition 41 (Group with stable letters) Let G = (21)|7A2> be a group, the
group with a system of stable letters {p} and base group G is defined by:

G=(E=SU{p}|R=RUR, = {Aip— pBi}ier)

where p ¢ ¥ and Yi € I A;, B; € ¥*. A pair of corresponding or twin words
will be in the form:

Ay =AF AT B, =T 8T

11) 11)

thus, for e = £1, the equality Ap-p® = p*Bye where A;l =B, and B,-1 = A,.

The extended system of relation of the group G is the system of rule R, UR,, 1
where T\’,;l = {Bi_lp’1 —]D’IA;1 such that A;p — pB; € Rp}icr. In that sys-
tem it’s possible to define the individuality of a letter: since every transforma-
tion is in the form:

wwo — ww'u with (w = A;p, w' = pB;) or (w = B 'p, w' =p A7), u,ve X*
the individuality of the letter p and all the letters in u and v will be preserved.

Definition 42 (Regular system) A system of stable letters is called regular
if Ape H;kz 1< B, H;‘z 1 for any corresponding words Ap,B,.

Proposition 14 If {p} is a regular system for G, so G is an HNN-extension
of G.

Proof: See Cor.30.

Definition 43 (Insertion/cancellation) An insertion is a transformation
in the form 1 — pp~! or 1 — p~1p. Its inverse it’s called cancellation.

Lemma 27 Let WpU — WipUy — ... > W,pU, be a chain of extended
transformations, where the individuality of pc is preserved. Then there exists
twin words Ape and Bpe such that:

W =W, A, U=3.U,.

If there are insertion of stable letters in the chain then the words W and U can
be respectively transformed into the words Wy, Ay and %;51 U,, without applying
such transformations.

Proof: Proved by induction on the length n of the chain. For n = 0 is trivial.
If a transformation of the chain does not apply on p° than the lemma is clear,
else it is in the form W;AipU; — W;pB,U; + 1 or W;B;p~U; — Wip~ ' A U;
s0 Wiy1 = WiAipe and Ujpq = %;Z},Ui. Moreover in passing from the words
Wi, U; to Wip1,U;11 there is not insertion of stable letters.

Lemma 28 (The Novikov lemma) Let {p} be a regular system of stable let-
ters and W a word in G satisfying W = 1. Than W can be rewrited in 1 by
a chain of extended transformation, each of them is not an insertion of stable
letters.

36

Proof: Let consider a step of a chain of an extended transformation W —
. — 1 in which there is an insertion of the letter p:

Wo...o>W,_4=VV > W, =Vpp V' - ... 1

since the letters p¢ and p~¢ should be cancelled during the transformation, there
are two cases:

e the cancellation involves only the this two letters:
W-o...->W, Ileep_EVll—n..—>Vkp€p_EVk’—>Vka/ =W, —...>1

50 by the Lemma 27 there exist twin words Aqpe, Aope Bipe, Bope such that
the words V1,1, V] can be transformed into the words VkA1p67%Ip£%2pe

and Az_plst'. without insertion of stable letters. Since {p} is regular in

G holds %fpi%zpe =1 4ff AlpeAz_ple = 1. So W; can be transformed in
Wi without insertion of stable letters, then is possible to obtain the same
transformation eliminating this insertion of stable letters;

e clse the chain is in the form:
W —...> W, =VipVip~pV/' — ...

o Vipp Vip VY > ViVip V! =W > ... > 1

by lemma 27 there exists pairs of twin words Aipe,Bipe,i = 1,2,3 such
that the words V1, V{,1 and V{ can be transformed respectively in Vi Aspe,
B Aoy, %;pl,er’Agpe and By, V), hence the word W; can be trans-
formed into

Vk.A1pspE%1_ple Agp—e %3_; Vv

and applying the transformations in the extended system W,; become
VkAlp Alp A2p A3pep
which can be transformed in
Vi Aope A3p<p = V;Bg,- e.Agpr

By the insertion of 1 = %;pl,st’Agpe (which doesn’t contain stable letters),
we have:
Vk%2p Agpgp I i Vk%gp 51A3pep

— ViBop— By L Vi Aspe A3 p Vi =2 ViVip VY = W

This permits to decrease the number of insertions in the chain.

2p_‘

The lemma follows by induction on the number of insertion in the chain.

Lemma 29 (The Britton’s lemma) Let {p} be a regular system of stable let-
ters for the group G over G and W a word in G such that W =1 in G. Than
W is a word in G and W =4 1 or W includes the subword p=¢Ap® where A € G
and A =4 Ape.

37

Proof: By Novikov’s lemma, the word W can be transformed in 1 without
insertion of stable letters, so if the chain

W—>W1—>...—>Wn==1

contain no stable letters then W € G and W =a 1. If W contains the letter
p, then it should be cancelled during the transformation. Considering the first
cancellation of a stable letters occurring in the chain

W=Vp VpV" ... >W, = Vkpiﬁpevkl. — Vka/ = W11

where V' does not contain the stable letters. By lemma 27 there exists a pair of
twin words Aipe, Bipe,i = 1,2 such that the words V,V', V" can be transformed
into the words VkAlpfg%;pl_eAgpf and SB;;V,; without insertion of stable let-

o O,
ters. Hence V' € G since V' = %lp_EAgpe = A—11peAgpe = Ape.

Corollary 30 If {p} is a reqular system of stable letters of the group G over G
than G < G.

Definition 44 A word W of a group with stable letters {p} is called p-reducible
if W includes a subword in the form p~Ap® where A€ G and A =4 Ape.

With this definition is possible to reformulate the Britton’s lemma: if W =g 1
and W contains stable letters, so for some stable letters W is p-reducible.

Introducted by Bokut’ in [3] a standard basis or standard normal form per-
mits to have a canonical form to write an element of a Novikov-Boone group
given one of its presentation.

4.2.1 The definition of groups with standard normal form

Let’s consider a sequence of HNN-extension Go, G, ..., Gy, where Gg is a free
group and the group G;y1 is obtained adjoining to the group G; letters {p} and
defining relation

Aip =pB

where p € {p} it’s called letter of weight i + 1 and A;, B € G; contain ezxactly
one letter of the highest weight. So in the group G;,1 an arbitrary relation can
be represented in the form

A/xA/Ip :pB/yBI/

where x and y are the letters of highest weight (if the power of these letters
are different from 1 will be considered its first or last occurrence). For every
relation will be associated four types of prohibited words:

‘T%IA”]? I’il%m—lA/ilp y%yB”]fl yil%y—lBlilpil

Is so possible to define by induction on i the notion of canonical word: every
reduced word of Gg are in canonical form, an irreducible word

U =Up*Usp® ... Upgp™Ugy1
in the group Gizq1 where U; € G and p; are letters of weight i +1 k = 0 is

canonical if, for every j:

38

o U; are canonical words in the group G;;
e U doesn’t include subword of an any prohibited types in G 1.

Is so possible to reduce a word U = UypUs...U,_1p°U, in canonical C(U) by
the following algorithmic process:

1. reduce every word U; to canonical form in the group Gy;
2. perform all possible cancellation of letters of weight i + 1;

3. eliminate the first occurrence (from the right) of a prohibited word follow-
ing the following role*:

B, A"p — A, A" 'pB 1B, Ay > B, A"pB !
y%yBI/pfl N AylelflpflA yil%y—lBlilpil N %yBl/p71A71
where A, and B, (with z = x or y) are twin words;

4. return to step 1 .

Definition 45 The group G;41 is called group with standard normal form or
group with standard basis if every word U can be reduced to canonical form
C(U) in a finite number of steps. If that condition it’s satisfy for every i the
group G is a group with standard normal form.

Lemma 31 Let G; a group with standard normal form then the canonical for
of an arbitrary word of the group G;y1 is unique iff the following condition are
met:

e p is a system of stable letters;

o [f the word Up® and Vp© are canonical U,V € G;, p letter of weight i + 1
and U = V Ay then the equality Ape =g, 1 holds.

Lemma 32 Let G; be a group with standard normal form and {p} a regular
system of stable letters. Suppose that any word A, #¢, 1 with the letter p of
weight i + 1 is representable as:

Ape =G, Viz1VaxaVs

where x1, o are letters of highest weight and the word is x-irriductible for every
letter x of higher weight. If an arbitrary word of the form

22C(BaaVa)pt , ay'O(Bay vy e

is prohibited or includes a prohibited subword (with respect to the letter p) then
the second condition of Lemma 31 are satisfied.

4Every of these role derive by the relation A’ AgxB,A"p = pB' AyyB,B”, where B =
B'yB"andA = A’z A"

39

Chapter 5

Undecidibility of the word
problem for the groups

5.1 Bokut’ proof

In [3] Bokut gives the proofs of Novikov-Boone’s theorem proving that Boone’s
groups G(T,q) has standard basis. It make it easyer (Bokut’ [{]) to prove that
exists a finitely presented group in which the word problem for the group G(T,q)
can have any fixed Turing degree of unsolvability.

5.1.1 The Boone group

To introduce the Boone group G(T,q) is needed to extend the concept of stable
letters to system with more than one letter. A set P = {p,} is a system of
stable letters of a group G over G if the group G can be presented by

G = <E(§ Y {pm}|RG Y {Aipmi = pniBi|Ai7 B; e é}>

The letters involved in the same relation are called contiguous. Completing this
definition with transitivity and reflexivity is obtained a partition of P given by
Uner{iPm}tmep, where all the p,, € P, are contiguous to a fixed py, for every
n € I. Since exist Al, , Bl such that Ay, p,, = pnBj, s0 by pn, = Al 'p, B,
is possible to eliminate all the p,, with m ¢ I and so present the group in the
form:

G = <Z@ U {pm}m€I|A$”pn = pnFnL>

Definition 46 The system P of stable letters is regular if every p,, € I are
stable letters. For py,,pn; contiguous is possible to define

Y ’ _ /
Apni Pnj T AnjAPnAni %Pni Pnj T Bn]’ %pan‘L

where A;, Ay, By, and By, are words participating in the relation which links
letters pn;7pn_7. to pyn. It is also valid the following notational equality:

40

In the same manner of Chap.4.2 is possible to define the individuality of
a letter and extended system of transformation to reformulate the lemmas 27,
Britton’s and Novikov’s lemmas. For example the analogous of lemma 27 tell
that, given a chain of extended transformation

Wpy U — WipUs — ... — Wyp;, Uy

where pj,. have the same individuality, there exists twin words Ape e and
Bpe pe such that:

—1
W = W”‘Ap%p%l and U = %pfnpfw Un
while Britton lemma tells that given a regular system of stable letters P of a
group G over G and a word W =¢ 1 than either W € G and W =5 1 or W
includes subword of the form pg;Ap; pe D,
iP5

Let’s now build the Boone group like a succession of HNN extension, for every
extension will be given them additional generators and relations, the letters of
maximal weight that will appear in the definition of prohibiten words will be
highlited and there will be explicitated the twin words form.

Definition 47 (Boone group) Let T be a special semigroup!, i.e. a sem-
group generated by {Sd,qe}dep.cex and relations A; = B;,1 < ¢ < N where
A;, B; special words (A;, B; = Sq.S" where S,5" are {sq}-words).

e Gop= <x,y>;

G1: {s4|ld e D} | YYSd = 84y, X84 = SqTX ,
Asy =Vi(z,y?), B, =V(@2y);

Ga: {l;,mi]1 < i< N} | sal; = ylyysq, sqrrix = r;Sq ,
'Ali = V(y_lsd)7 B = V(ysd)7 -An' = V(de)v %7‘1 = V(de_l);

Gs: {gele € E} | Ay =LBiri, A; = Ajgn, A}, Bi = Bigm, B] |
where AL, AY, Bl, Bl are {sp}-words and
AQnLiqni = V(A;_lllBi)? %Qnipm,i = V(A;/Ti_lB’;I_l);

Ga: {t} | it = th;, yt =ty ,
At = V(lzay) = %t;

fizred a q € {qc}, Gs: {k} | ik = kri, xk = kx,q 'tqk = kq 'tq ,
Ay =V (ri,z,q 'tq) = By.

Theorem 33 The Boone group G(T,q) = G5 have a standard basis.

Proof: Let’s build the set C; of the words in standard normal form for every

o Cy is equal to the set of all irreducible words on the alphabet {x,y} (also
negative letters), by definition Ay = B, = A, =B, = 1;

TApp.A

41

o the set Cy it’s constituited by words in the form
C(W) =U154,Us ... Uisq, Uk+1
where U; € Cy and C(W) does not contain subword in the form:
aB,A"p, a 1B, A, BBsB"p !, BBy B p

Since A =yy,B=y (A = 1,A" = yB' = B" =1) or A =x,B = ax
(A= A" = 1,B' = x,B" = 1), the prohibiten words wil be in the form:

WA sa, y VA se, yV(y)B's;t, yT V()BT s
2V (x)A"sq, eV (x) A sy, xV(z)B"s; ", eV (z)B" st

so them have to contain a subword in the form:

2 —1 —1
y Sd; y Sd; ysd ’ Z/ Sd)

IS4, x84, xsgl, T sq.

In that simple case is possible to see that in a normal form word in G
before a positive sq there could be:

1. the word before a positive sq have to terminate with a single occur-
rence of an y;

2. the word before a negative sq have to terminate with a single occur-
rence of a negative x.

o the set Cy it’s consists of reduced word in the form
Ulozil Ug . UkaikUk+1
where U; € C1, oy, € {r;, l;]i <1 < N} containing no subword in the form.:
saV (@ y)ls, sqVI(a,y?)yels,

saV(@? y)zrf, sy V(a,y?)re,

where V., Va© Vy¢ (whereV = V(x%,y) or V(x,y?)) are reduced, d €
D, 1<i< N. Since a word A; can be in the form ySy~" with S reduced
word in {sq}, elimination rule could not and the word in the form

sqV (2%, y)ls or sy, vyl

are prohibited, lemma 32 is verified for that kind of word (choosing x1 the
first letter of S and xo the last one), else lemma 31 holds.

e To verify the existence of the standard basis for Gs will suffice to use the
lemma 31: since a word Ag,, q..,Bq,.q, are equal to 1 iff his projection on
the alphabet {l;,1;} is equal to 1. It follows that the letters q. are regoular
and as above is possible to apply the lemma 32, so Gs is a gruop with
standard basis;

42

e In G4 the prohibited word are in the form
vt LOWTISyV) 1 IC(ySyT V()

where § = +1 and S a reduced {sq}-word. Since every elimination of
prohibited word reduce the number of l; or y. The lemma 31 is proved
because if two reduced word Ut, Wt where U = WA, = WV (l;,y) than

e Finally a normal form word contains no subword of form:
T?ke) zéke ’ téc(V(l“y)qW(T’“z))ke

where 6 = 1. The presence of W(r;,x) in the last class of prohibited
words is due to the fact that W (r;, z) commute with k and by the fact that,
if ¥ is a special word of T such that X = q, then X=Xk =¢, kX1,

Lemma 34 The word problem for the group G4 is solvable.

Proof: Let us verify that, for every word X € Gy, the canonical word C(X)
equal to X is effectively calculable. As observed, the problem reduction to canon-
ical form it depends of the recognition of prohibited words. The last one is related
to the recognition problem for the subwords in the form A,,B, where z is a sta-
ble letter of the group G;, i < 4, but also Ay 51, By o where x,x are contiguous
stable letters (in the case of i = 3). For the groups G1,Ga to recognize prohibited
words is trivial. For example in Go we need to recognize a word V (z,y?) among
the word of the group Go and an irreducible word equal to V(x,y?) coincides
with it.

In the group G3 we have to solve the membership problem for words of G
and each of the following subgroup

A= (y 'sy), Az = (ysp), Az = (spx), Ay = (spz).

In the case of Ay, for example, an arbitrary element is representable in the form
ySy~t where S is an irreducible word in {sy|b € B}. Then a word U € Gy is
equals of a word in the subgroup Ay iff U = C(ySy™1).

For the group G4 we have to recognize, for example, the word in the form
V(ytsp)yt = ySy~'y! among the words of the group Gy. If a canonical word
U equals a word, of the form tackled, in the group G then the word S is the
projection of the word U on the alphabet {sy} and C(yS~'y~'U) = y', which
can be recognized by reducing to canonical form in the group Gi.

Lemma 35 Let S, S’ special word inT then S =1 S’ iff there exist V(I;,y), W(r;,)
such that:
S =g, V(li,y)S'W (r;,).

Proof:

< Let S, S’ be special words in T such that S =7 S’. Inductively it suffice to
consider the case S — S': if S = U(sp)A;U'(sp) and S’ = U(sp)B;U'(sp)
exist U(sp), U'(sp). Since A; = 1;B;r;, for some V(I;,y) and W(r;,x), the
equality S =V (1;,y)S'"W (r;,x) holds in the group G(T,q).

43

= Let S = U(sp)A;U'(sp), S" = Ul(sp) BiU'(sp) and V (li,y) = y™°l;} ---lfl’:y”)’“
with V' reduced and C(y™ 1! -+ - 15 S1qm) = S1¢,U with U € G. However,
the normal form of
Yol 15 S am
given by the standardization process will give us
YL TS = S 1)

where A(l5! -+ 15F) = Ay,.q, and Ay, 4, is reduced.

It follows that B(r; " ---r; *)S;W (7“1, x) = Sy and by Britton’s lemma
we have W (r;, z) = xmkr ceelfin

By induction if k = 0, then S =9 Ifk > 1 an , for example €, = 1 than
we have

Ly S1qm,, = Ly~ SYBig1m,,

where S is a positive {sq}-word, From a first reduction of the right side
we obtain

!, my N G)
To— 1 zk252x T' lrlx

noj€ €k—1 n 1
S=y"i - PSS A G, Aigary,

. Mk €k , .. J€1 M
and by W (r;,x) = g™rrt -« [11xmo

ISI me _.Z‘S/.’I}_l

Zk2

where S’ is a positive word, so S =T, 25", In this way we obtain

_ ,nojeL , . . €k1nk1 . Mik—1,.€k ...]€1.,.m0
S = Yy Zii l,“C 1 SA1k1QnikAzk2x Tik_l lrlx

and S" = SBiqumk B;2S" inT and so S =7 S’ as required.

Lemma 36 The problem for a word U of the group Gs to equal to a word in
the form V(1;,y)SW (r;, z) with S a special word is solvable.

Proof: By induction, it is possible to define B(ri!,...,ri*) for k>
B(1) =1, B(rs) = (Algrlezl)e, B(ril,...,r5f) = %(rfi,...,rf::)%(r;’:).

Suppose that Q is a canonical word for Gs in the form V(l;,y)SW(r;,z)
where V., W are in canonical word and S special. Among all the word inthe form
V(l;,y)SW(ry, z) equal to Q, if we take the one with the minimum number
of l; we have Q@ = C(VSW) = Q1(Li,y,54)¢nC(Byq,.q,, "W (ri, x)) where S =
S’ ¢ S" ,the word Q1 does not contain sgl and By, q,. s an rj-irriductible word.
In particolar we conclude that

C(QlAqn(I'm) = C(VSI)

therefore this word does not contain s;*. If a word By, ,,. ends with the word

7lBl2 or r;B5Y then the wrod S” does not begin with the word By or A
respectively; otherwzse the word Q is representable the form V (l;,y)SW (r;, x)
having less l; letters than V. This imply that during the process to reduce the
word B, q,.S"W to a canonical form, no letters r; are cancelled.

44

So Q is in the form V(l;,y)SW (ri,z) iff Q = Q1(li,y,34)qnQ2(7i, ¢, $a)qn
where Q1 does not contain sgl and if Q2 = Rori!, . .. ,rfl’: Ry, with k = 0, where
Rj does not contain 5, then there exists h € {0, ..., k} such that B(ri!, ..., ri")
is a word in the form By, 4. for a suitable g, and all the words C(Q1Aq,.q,);
C(%qinlme2) do not contain the letters 5;1. All these conditions are algorith-
mically recognizable.

Theorem 37 The decidability of the word problem for the group G(T,q) coin-
cides with the decidability of the problem to verify the equality of special word
of a monoid T to a word q.

Proof: By lemma 34 and Theor.33 is possible, for all words W € G, to calculate
its normal form C(W) = UikUsk ... U, kUp11 in a finite number of reduction.
Since the word problem of G4 is solvable the problem is deduced determinate if a
word Q in Gs is equal or not to a word V (I;,y)gW (x,r;). By lemma 36 is possi-
ble to determinate if a word @ is equal to a word in the form V (I;,y)XW (z,7;).
So lemma 31 the decidability of word problem for G(T,q) can be reduced to
decidability of word problem for the monoid T'.

Corollary 38 (Undecidability of word problem for the groups) There ex-
ists a finitely presented gruop with undecidable word problem.

Proof: By Theo.42 exists a finite presented monoid T with defining relation
given by special words and undecidable word problem, so by Theo.37 the associ-
ated Boone group will have undecidable word problem.

5.2 Lafont proof

Using the affine machines Lafont in [15] give another proof of the theorem,
sitmilar to the proof given in [1] by Cohen Aandrea, in a simply way. We’ll use
the same notation of Theor.3 : Fy = (a,b) and a, = b"ab™ ™.

Lemma 39

For all p,p',q,¢',z € Z, q,q' # 0, there is an isomorphism ¢ : Fo — Fy such
that ¢(ap+qz) = apryqr-)

Proof: By Lem. 4 (a,,b?) = F» = (a,,b?) so it exists an isomorphism ¢ such
that ¢(a,) = ay and ¢(b?) = b? and so:

Hlapraz) = S((1)7ap(b7)7) = S((5)*)d(ap)$((b™)7) = (b7)?ap (57)" = apr2gr-

Notation: Let I c Z, [P]g, is the subset of Fy generated by the set {a,|z € Z}.

Lemma 40 Let p,q € Z, so {(ap,b?) n [Z]p, = [p + ¢Z]F,.
Proof: Let K = [p+ qZ]p,. Every reduced word w in {(a,,b?) can be written in
the form uv with uw € K and v € (b?), because there are k; € Z and 6; € {—1,1}
such that:

w = bkoqaglpbqua52p e a(;npbk"q =

= pmo=koa+oip pmi=kig+(62=61)p, . .. opmn=knq—0np

> m;
= - ; - _ i=1"i
QmoGmq+mg Ay _omi ay » Dlmib :

45

Let m : Fy — (b) the projection of Fy on (b) (i.e. w(a) = 1,7(b) = b), so
K < [Z]p, € ker(m) and Yz € {(ap, by), m(x) = m(uww) = w(u)mw(v) = w(v) = v so
[Z]F, N {ap,b?) € K. By K C [Z]p, and k < {ay, by) follows the equality.

Proof: [Undecidability of word problem for the groups| Let m € Z and A ma-
chine affine. It’s possible to associate for every transition of A a local iso-
morphism ¢;. By the Theor.26 is possible to obtain an extension of F 4 of F
with stable letters ty .. .t, which represents the local isomorphism ¢1 ... ¢,. Let
P ={z€Z|z =% m} and H = (am,t1,...1n). By Lemma 39 follow:

o if 2z > 42 s0ay = ¢ila,) = tiazti_l exist ani € {1,...,n}

1

o if 2% 2 s0a = ¢, 0...0¢;(a,) =uau" exist an u € (t1,...t,)

so K € H because a,, € K and for every z <% m, an <% a, and K =
K n[Z]lp, = H 0 [Z]g,. Moreover K it’s invariant for every local isomorphism
¢; because

<apabq> NK= <ap7bq> N [Z]F2 NK = [p+ qZ]F2 N [P]F2 = [(p+ qZ) N P]F2

and so (see Theo. 26) K = H n F.
So is possible to see that exists an extension F4 finitely presented of Fs and
u € F such that

au=uay, nFgea,eHea,€K=[Plpezehm

Therefore the word problem for group F4 is reducible to the Halt problem for
the machine affine A which can be undecidable (see Prop.18).

46

Chapter 6

Conclusion

Now that we have analyzed the two proofs, we can find out the differences of the
use of rewriting:

e Bokut’ starts from the definition of Boone group to create a convergent
rewriting system on its elements. Using it, he shows that any elements
will have a canonical representative and so the word problem will be re-
duced to the verification if two different elements have the same canonical
representative.

This process will be equivalent to every implementable test on words to
verify the equivalence since this new rewriting system is derived by the
presentation and can be viewed as an order on the equivalence classes of
words in G(T, q), where the normal forms are the minimums, so it is just
a test on two representatives of the equivalence classes. This rewriting
system will work progressively on the alphabets used to build G(T,q) com-
puting its normal form. This computation will be decidable iff the word
problem of the monoid T is since, during the computation, the rewriting
system needs to know if an elements of T is equivalent to q and so, by the
construction of T', if an element of the monoid T represents a configuration
of a Turing machine contained in a terminating computation;

e The Lafont’s idea is to consider a copy of F, contained in Fs to simulate
the natural numbers and, usind the affine machines A, to consider a subset
of n € N “equivalent” to a fired m € N. With HNN theorem will be
possible to extend Fy with elements that will simulate the affine transition
of A. In this new group L(A) there will be some elements corresponding
to natural numbers and some others to affine transitions, so there will
be some elements capable to represent a computation of A. To test if
an element which represent a computation of A is equal to the element
representing the number m will be decidable if and only if the equivalence
problem for A is. Taking an affine machine with undecidable equivalence
problem, L(A) will be a group with undecidable word problem.

47

6.1 Word problem and Propositional linear logic

The results of the undecidability of word problem for monoids can be used to
prove the undecidability of non commutative propositional linear logic (NCL,
see App.B) even in the multiplicative fragment [16]. We’ll encode the word
problem for monoids in a similar way of Chap.2.5 encoding axioms capable to
represent derivation correspondig to computation of rewriting systems.

We’ll define the translation of the word [ab...z] as list of NCL formulas
plopi, . pl, [ab.. 2]t aspl @pl ®...®pL and of the rulesv — we R as
an aziom [v — w] interpreted so + [v], [w]*.

For any rewriting system (X|R) we’ll be possible to associate a set of formula
{pai,pi Yaies and a theory Tisiry = {[v = w]}vswer-

With this encoding, a “pair of words” problem P(v,w) : v —% w? for two
words v and w it’s equivalent to prove the sequent

= [o][w]*
in the relative NCL theory encoding the rewriting system.

Proposition 15 A “pair of words” problem P(v,w) is solvable in (X|R) iff
- [v][w]* is provable in the theory Tisyr)-

Proof: we’ll not give a proper proof of the lemma but we’ll show an example
to understand how NCL simulate a rewriting system. First we note that if
U = uq...ur we have:

I
F P, Puy F P, Pus
Fpil P, (Puy @, Puy) F Py Pus
b Dy Py Py s (Puy @ Pus®, Pus)

FDiys Py (Puy @ -+ @ Puy)
[
= [U], [U]*

soif U=V, [U],[V]* is provable.
The sequent calculus to simulate the application of the rule W — W’ on the
word UWV to obtained the word UW'V s the following:

- [, W], [V]

%
TwwE D E oA

=[] W] [V]

Cut

where v([W']) is the formula derived by [W] applying all the possible % rules.
The following concrete example simulates the application of the rule cd — xy
on the word UcdV to obtained the word UxyV :

48

- 507, (P @ py) = (U], (0 B py), [V] Cut
u

+[U),pt,pg, [V]

In such proofs, the application of Cut rules correspond to an application of a
rewriting rule in the rewriting system.

49

Appendix A

Combinatorial system

Rewriting system, Post system, Thue system are different system of substitution
of substrings in strings with the same base concept:

Definition 48 (production) [11] Fized an alphabet X, a rewrite rule, semi-
Thue productionor simply production is an expression

uU— v
if P is a semi-Thue production u — v, A, B € ¥*
A —p B

mean that exists A', A", B, B" € ¥* such that A = A'uA” and B = B'vB" A
normal production s a produictin in the form uv — vu’. Two word in u,w € X*.

Definition 49 A combinatorial system consists of an alphabet and a set of pair
of words callad production.

A semi-Thue system or string rewrite system S = (X|R) is given by an
alphabet and a finite set of rewriting rule. A Thue system is a semi-Thue system
where for every rewriting rule u — v exists its inverse v — u. A Post system
P = [%; @] is a combinatorial system with a finite set of normal production. Two
word are called equivalent in P (written u ~p w) if there exists a sequence of
normal production which transform u in w.

A.1 Undecidability of word problem for monoids

Proposition 16 Every non deterministic Turing machine can be simulated by
a semi-Thue system.

Proof: Let ¥ the alphabet of T and QQ = {q;} the states of T. Is so possible
([12]) code the configurations of a Turing machine T writing the contents of the
tape as a word on the alphabet 2 and placing the letter q; before the letter read
by the head. We’ll call a word on a bipartite alphabeth ¥ U Q special if in it
there will be a single occurrence of letters in Q. To understand the intuition
we’ll give the following:

50

Exzample: the special word ag . ..a;_1qa; . ..a, will correspond to the following
configuration of the machine:

q
Vv

Tao [[as [[ami [[an ...

So every transition given by § will correspond a rewriting rule in the form:
qa; — a;q’ if daiq) = (a5, ¢, R)

a;i—1qa; — a;_1a;q if 8(ai, q) = (aj,q', L)

Let R be the set of rule corresponding to the set of 5-tuple describing §, so the
presentation (X0 Q|R) of the monoid M(T) can simulate every computation of
T. If w is a special word corresponding to a final configuration (i.e. the letters
in @ isin L), to test if a word v is equal to w we need to verify if a computation
starting from the configuration v will terminate with w, so in particular, if T
terminate some of its computation. This problem is exactly the halting problem.

Corollary 41 Semi-thue system are a Turing complete computation model.
This proves the following:

Theorem 42 (Post-Markov ([20],[18]) Exists a finite semigroup with un-
decidable word problem.

More preciselly it exists a monoid finitely presented with rewriting rule expressed
by special words.

The following example is given by Ceitin in [8].
Exzample: The semigroup {(a,b,c,d|R)" where R are the relations:
ac = ca, ad = da, bd = db, ce = eca, dc = edb, cca = ccae

has unsolvable word problem.

A.2 Why undecidability of word problem for groups

is more difficult

We’ll give an example to show why to prove the undecidability of word problem
for groups we can’t use the same methods used to prove the same results for
monoid.

Example: Let M be a 2-register machine given by the following instruction
set:

s1 JZDEC(a,s.,53);
So INC((I, 33);

o1

s3 JZDEC(b,s1,53);
S1 HALT.

All the transition of M will be in the form:
(L0,y) »am (L,0,y), (La+ly) »m (2,2,9) . (2,2,9) >m (3,241, y),

(3’ ‘r7 0) _)M (J_7:I;7 0)) (3’ x7 y + 1) _)M (37 x? y)'

If we encode the configuration (i,x,y) of M as [i,z,y] = aa®s;bYw we can build
a monoid
MM = <EM = {aa w,a, b, S1, 52,83, SJ_}|R>+

where R is the set of rules applied on word in the form aa®s;bYw represent the
transition of M:

asy = as], asy — So, S9 — ass, S3wW — S, 83b — S3.

In this monoid sy # s3 but in the group G = (X pm|R) we have a tas; — s
and a*1a31 — 017182 e a’1a03 — S3 SO0 S1 =@ S3.

This is not coherent with the register machine computing since:
(1707 1) _)7\/[(J-3 170) and (170’ 1) (—/—)7\/1 (L707 0)

while in G we have [1,0,1] = as1bw =¢ aszbw =¢ aszw =g as;w = [1,0,0].

The presence of the inverse element for every element of G create interfer-
ences which doesn’t respect the derivation of a model of computation, because,
in general, transitions don’t admit an inverse transition capable to restore the
changes done.

Theorem 43 (Word problem for commutative rewriting system)

Let (X|R) a presentation of a commutative monoid, so the word problem for
(S|RYT is decidable. (i.e.)

Proof: since {(a;a;,a;a;), (a;a;,a;05)}a, q,ex S5 letters commute, so it only
matters the number of occurrence of any letters to know if it is possible to apply
a rule. It will be possible to compute, form any word v, the set S, of words in
which it can be rewritten and verify if for some of word in S, and S, contain
the same number of occurrence of the same letters.

52

Appendix B

Linear Logic

A linear logic sequent is a & followed by a multiset of linear logic formulas. We
assume a set of proposition p; given, along with their associated negation pi.
Below we give the inference rules for the linear sequent calculus, along with the
definition of negation and implication. The negation is a defined concept, not an
operator. We’ll note with p;,p; propositional literal, A, B,C, ... for formulas
and X, T, A for multisets of formulas.

e [dentity
—1I
A AL
e Cut
X, A FT, AL o
ST ut
e Tensor
X, A — B, T ®
FX,(A® B),T
o Par
XA B 3
X, A®B
o Plus
XA —XB
FY,A®B ® X, A®B ®
o With
XA >, B
&

-3, (A%B)

53

Weakening

)

2 9
Fy.7a W
e Contraction
= X,74,7A)
X, 7A
e Dereliction
H3X,A
L
Fy.74 D
e Of course / Bang
o
F73,A IS
73, 1A
e Botton
X
SN
o |
1
o True
S

There also is an exchange rule usually omitted in linear logic:

A, ..., Ay
F A1) - Ao

(TESk

The principal formula of an inference rules is any formula introduced by that
rule, we say that a formula is active in a Cut if it appear in one of premises
but not in the conclusions.

With the term multiplicative fragment (MLL) is denoted the calculus with
inference rules I, Cut,®, % and with MALL the multiplicative-additive fragment
with rules I, Cut,®,%,&,®. The non-commutative linear logic NCL is given
prohibiting the use of the exchange rules.

54

B.1 Cut Elimination

Like in classical sequent calculus, also in linear logic we have an analogous cut
elimination theorem:

Theorem 44 If A is provable in linear logic , there exists a prove of A without
Cut rules.
Proof: We have to give a procedure to eliminate Cut rules form derivation:

e if both formulas active in the cut are not principal, it will be possible to
simply switch the position of the cut going up in the proof tree;

e if at least one of the formulas active in the cut is not principal, it will be
possible to simply switch the position of the cut:

— In the case of binary rules (different from cut):

XA —X.C,B . :
Fo(%,%),C, (Ao B) T, Cc+

oz %), (A0 B) cu
became
: —Y.C, B FT,C*t
; Cut
XA > T,B)
F¢(%,%X),I, (A0 B)
where
n_ | B ifo=@®
¢(Z’z)_{2 X =%,Cando=%&
— In case of unary rules:
FX,C,BA . :
H¢(%, B),C, ¢(4, B) -T,C+
Cut

F (5, B). T, ¢(B, A)

became

FX,C, B, A FT,Ct
-2, B, A
Fo(X, B),#(A, B)

Cut

55

where

(3;A% B) ifo=72%
(3,B;A®D) ifo=@
(6(%,B);¢(B,A)) =3 (%,B,A;?D) ifo=7W
(3,B,A;?D) ifo=7?C and ¥ =%',7D,?D
(2, B; 7A) ifo=7A

e if both formulas active in the cut are principal, it will be possible to simply
switch the position of the cut: In the case of binary rules (different from

cut):
® vs W
XA - B,Y —T,AL Bt
FY,A®B,Y -T,A % B-
7 Cut
X I,Y
became
= B,Y FT,A, Bt
i 1 ; CUt
XA FT,AL S Cut
FX, 1,5 w
& vs @
F$A ESB o LA
X, A& B HT,A+® B+ c
3,7 ut
became
3, A T, AL c
-, T ut
W ws 1S
' T, AL
S e EhA
HX,74 - 7T, 1A C
>, T ut

56

became

)

™W
-9
Eyor W
C vs 1S
- S.74,74 , - T, A+
—x24 C ol ;
.70 ut
became
X W
-9
Eyor W
D vs 1S
Lwsl

The theorem is still valid also in NCL fragment:

Theorem 45 If A is provable in NCL , there exists a prove of A without Cut
rules.

As seen in Ch.2.5, we may need work in a fragment of linear logic with some
non-logical axioms i.e. rules in the form:

T
= Capi‘ia-'wpalj

where C' is a formula in MALL and péj negative literals. If we define a direct
cut an application of a cut rule where one of the premises is consequence of a
non-logical axiom and a direct proof is a proof without non-direct cut, the cut
elimination theorem is still valid as enunciated in Teor.19.

All the proofs of these theorem can be founded on [16], App.A.

57

Bibliography

[1] S. Aandreaa & E. Cohen, Modular machines, the word problem for finitely
presented groups, Collins’ theorem, Word Problems II. (1980) p.1-16

[2] V.M. Abrusci, L. Tortora de Falco, Appunti del corso di logica, (2009)

[8] L.A. Bokut’, Groups with a relative standard basis, Sibirskii matematichan
Z. 9, N.3 (1968) p.4-52, 1980, p.29-53

[4] L.A.Bokut’, The degrees of unsolvability for the conjugacy problem for
finitely presented groups, Algebra and Logic7 , N.5 (1968) p.4-70, N.6
(1968) p.4-52

[5] L.A. Bokut’, Malcev’s problem and groups with a normal form, Word Prob-
lems IT (1980) p.29-53

[6] L.A. Bokut’, Algorithmic and Combinatorial Algebra, Kluwer Academic
Publisher (1994), chap.6-7

[7] W.W. Boone The word problem, Annals of mathematics (1959), vol.70,
N.2, p.207-265

[8] G.S.Ceitin, Associative calculus with undecidable equivalence problem,
Dokl. Akad. Nauk SSSR (1956), vol.107, N. 3, p.370-371(in russian)

[9] A.Church, A note on the entscheidungproblem, The journal of Symbolic
Logic Vol.1, Numberl, March 1936

[10] R.Cori and D.Lascar Logique mathématique, Masson, Paris, 1993

[11] M.D.Davis, Computability & unsolvability, McGraw-Hill Book Com-
pany(1958), ch.6

[12] M.D.Davis and E.J. Weyuker, Computability, complexity and lenguages,
Accademic Press (1983), p.118-146

[13] K.Gédel, Uber formal unentscheidbare Sitze der Principia Mathematica
und verwandter Systeme I, Monatshefte fir Mathematik und Physik, 38
(1931), pp.173-198.

Translated by Martin Hirzel, 2000: On Formally undecidable proposition
of Principia Mathematica and related systems

[14] G.Higman, B.H. Neumann, H. Neumann Journal of the London Mathe-
matical Society s1-24 (4): 24725/

58

[15] Y.Lafont, Réécriture et problem du mot, Gazette des mathématiciens 120
(2009) p.27-38

[16] Patrick Lincoln, Kohn Mitchell, Andre Scedrov, Natarajan Shankar, De-
cision Problems for Propositional Linear Logic, Foundations of Computer
Science, 1990. Proceedings., 81st Annual Symposium on

[17] M.L.Minsky, Recursive unsolvability of Post problem of “Tag” and other
topics in theory of Turing machines , Annals of math. (1961), Vol.74,N.3,
D.437-455

[18] A.A.Markov, On the impossibility of certain algorithm in the theory of
associative systems, Dokl. Akad. Nauk SSSR (1947), vol.55, p.587-590(in
russian). English translation, Compte rendus de ’academie des sciences de
I’'U.R.S.S., n.s, vol. 55, p. 583-586

[19] P.S. Novikov On algorithmic undecidability of the word problem, Dokl.
Akad. Nauk SSSR (1952), vol.85, N.4, p.485-524 (in russian)

[20] E.L. Post, Recursive unsolvability of a problem of Thue, The journal of
sybolic logic(1947), vol.12, p.1-11

[21] A.Turing, On computable numbers, with an application to the entschei-
dungsproblem, Proceedings of the London Mathematical Society. 2 42 :
p230-265. 1937

[22] M.K.Veliev’, On a problem of G. Higman, Algebra i logika, 1968, Vol7,
N.3, 0.9-22 (in russian)

59

