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“There once was a king, Sitting on the sofa,
He said to his maid, Tell me a story, And the maid began:

There once was a king, Sitting on the sofa,
He said to his maid, Tell me a story, And the maid began:

There once was a king, Sitting on the sofa,
He said to his maid, Tell me a story, And the maid began:

There once was a king, Sitting on the sofa,

.
.
.

”
Italian nursery rhyme

Even if you don’t know this tale, it’s easy to understand that this could
continue indefinitely, but it doesn’t have to. If now we want to know if the nar-
ration will finish, this question is what is called an undecidable problem: we’ll
need to listen the tale until it will finish, but even if it will not, one can never
say it won’t stop since it could finish later. . . those things make some people
loose sleep, but usually children, bored, fall asleep.

More precisely a decision problem is given by a question regarding some data
that admit a negative or positive answer, for example: “is the integer number
n odd?” or “ does the story of the king on the sofa admit an happy ending?”.
The concept of algorithm, mathematically “well-defined”, was introduced at
the beginning of 20th century by Church ([9],1936) and Turing ([21],1937) who
introduced two models of computation: λ-calculus and Turing machines re-
spectively. This two model of computation are capable, with a succession of
simple and mechanizable instructions, to compute functions: it’s the birth of
theoretical computer science since by the Turing-Church thesis, both these two
models are equivalent and capable to represent any computable function (this
property is called Turing completeness). A problem is decidable if there exists
a computable function giving an exact answer for any instance of a problem,
undecidable when no computable function that can give an answer to every in-
stance there exists.

The answer to the word problem refers to rewriting systems. A rewriting
system is the data of a finite set of symbols called alphabet used to write finite
sequences of letters called words and a finite set of rules to rewrite some words
into others. Given a rewriting system and two words of its alphabet, the word
problem asks: “can i write one of the two words starting from the other using
only the given rewriting rules ?”. Rewriting systems are used in algebra and
geometry in order to give partial descriptions of objects without giving explicit
exhaustive description. In fact we are capable to rebuild complete descriptions
of objects that could be infinite or with very complex interaction between its
element by rewriting systems that report complex interactions to more simpler
ones regarding only some particular elements (called generators). On the other
hand, rewriting systems are related with logic and theoretical computer science
since they are a Turing complete model of computation.

Rewriting systems are naturally linked with some algebraic structures called
monoids: the orientation of the rewriting rules impede to reverse the equality
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in order to obtain the initial element. This impossibility to reverse some inter-
actions between elements is typical of the monoid structures which, in general,
have not inverse elements. The first results on the word problem for monoid are
from 1947 by Markov [18] and Post [20], showing the possibility to encode the
computation of a Turing machine by a rewriting system. This encoding allow to
prove the undecidability of the word problem for monoids. Unfortunately, the
same argumentation cannot be used in the case of the word problem for groups:
the existence of inverses for every element, characteristic of groups, can produce
“interferences” during the rewriting process since every element followed by its
inverse, even if equal to the empty word, can interact with adjacent letters by
some rule. The first results are from 1954 (Novikov [19]) and 1955 (Boone[7]),
that prove independently the existence of an explicit procedure to build groups
for which they prove that the word problem is undecidable.

The central part of this thesis is a comparison of two proofs of the Novikov-
Boone theorem, one by Bokut[5] and the other by Lafont[15], suggested me by
Prof. Lafont in order to check the differences between the two proofs, both
based on the use of rewriting systems.

The thesis is organized as follows:

• Chapter 1 contains some background: some basic monoid and group the-
ory, rewriting theory and presentation of monoids and groups, a proof of
the existence of an embedding F8 ãÑ F2 of the free group with a denumer-
able number of generators into the free group with two generators (Theor.
3), some notions of computability theory defining the Turing machines,
some of their properties and some other models of computation which will
be used in the sequel;

• In chapter 2 we present some classical undecidability results: the Gödel’s
incompleteness theorems, Church’s theorem on the undecidability of pred-
icate calculus, the undecidability of the halting problem for Turing ma-
chines and some similar results for other models of computation;

• The whole chapter 3 is dedicated to a detailed proof of the Higman-
Neuman-Neumann extension theorem [14]. We present here the proof
given in [15] using rewriting systems as a tool to extend groups in order
to have a suitable combinatorial property;

• Chapter 4 is devoted to present a family of groups introduced by Novikov
in term of groups with stable letters [3], called Novikov-Boone groups.
This groups have a particular combinatorial property useful to prove some
results of undecidability for groups. In the second part we prove some
properties for such type of groups like the fact that they are a particular
case of HNN-extension;

• In chapter 5 the proofs of Bokut’ and Lafont are analyzed step by step;

• In chapter 6 we present an application of the undecidability of the word
problem to prove the undecidability of non-commutative linear logic after
a summary of the differences between the two proofs:
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– Bokut’s proof [5] [6] is based on a rewriting system induced by the
relations of the defining presentation of the Boone group GpT, qq.
This new infinite rewriting system is built to be convergent. So,
in order to test if a word W is equal to the letter q, it will suffice
to compute the normal form of the word W and compare it with q
(since q is in normal form). The undecidability of the word problem
for GpT, qq will follow from the undecidability of the word problem
for a special monoid T encoding of a Turing machine;

– Lafont’s proof [15] is inspired by Aandreaa and Cohen’s [1]. It also
uses rewriting, but the only essential point is the notion of convergent
rewriting system and not the study of a particular system. It uses
the undecidability of the halting problem for a particular class of
abstract machines called affine machines. Using some properties of
the free group F8, it is possible to associate a local isomorphism of
an extension of F2 with every transition of an affine machine A. By
the HNN embedding theorem, the configurations of the machine live
in some group GA, where transitions are represented by elements of
GA. In that group, the word problem is equivalent to accessibility
for the affine machine of a fixed configuration, a problem which is
proven to be undecidable ([15]).

• Appendix A gives an overview of combinatorial systems showing some
properties for string rewriting systems; we then prove the undecidability
of the word problem for monoids and we explain why the results for groups
can’t be given in the same way;

• Appendix B gives an overview of linear logic sequent calculus and presents
some classical results.

iii



Contents

Introduction i

1 Some backgrounds 1
1.1 Basic Group and Monoid Theory . . . . . . . . . . . . . . . . . . 1

1.1.1 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Monoid theory . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Monoid presentations . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Basic Computability Theory . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Turing Machines . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Some other model of computation . . . . . . . . . . . . . 12

2 Some Undecidability Results 16
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Chapter 1

Some backgrounds

1.1 Basic Group and Monoid Theory

A group is an algebraic structure consisting of a set together with a binary
operation that with two given elements of the set, associates a third one. The
set with an operation, to be a group, have to satisfy a four of axioms: closure,
associativity, identity and invertibility. A group is surely one of the simplest
algebraic structures and it was the first one studied with this modern point
of view. The concept of group arose from Évariste Galois’ studies (1830’s) on
polynomial equations: he linked their solubility to some particular property of a
group associated to each polynomial. The study of the group was also developed
in other field of math: Felix Klein in 1872 in his Erlagen program classify the
new geometries discovered in the 19th century (non-euclidean and projective)
considering them groups of symmetries. Moreover, in number theory, in order to
solve the last Fermat’s problem, this new notion was used to generalize results
to class of object with similar numerical property.

Even though the notion of monoid is differs from group’s one for the absence
of the invertibility axiom, it started to be studied later at the beginning of 20th
century. Eliminating the notion of inverse elements is obtained a structure
which can better represents the concept of function composition and computing
process: even if we know a result and what kind of transformation we have done
to obtain it, we can’t always find out the initial data since such transformation
could be not reversible. For this reason monoids are used every time there is
an irreversible process and so it found large application in theoretical computer
science, category theory but also probability.

1.1.1 Group Theory

Definition 1 (Group) A group G � pS, �q is given by a set S (support of G)
and a binary operation � on S:

�G : S � S Ñ S

satisfying the following axioms (group axiom):

• (Closure): @g, g1 P G, g � g1 P G;
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• (Associativity): @g, g1, g2 P G, g � pg1 � g2q � pg � g1q � g2;

• (Identity): De P G such that @g P G, e � g � g � g � e;

• (Invertibility): @g P G Dg�1 P G such that g � g�1 � e � g�1 � g

where is used to write g P G to note G � pS, �q and g P S.

Notation: Since every operation on a set induce an unique group, in case of
ambiguity in presence of different group operations, we’ll write �G to note the
operation of the group G.

Definition 2 (Order of a group’s element) Let G � pS, �q be a group, the
order of G or cardinality of G is the number of elements of S. If g P G the
order of g :� ordpgq is the minimum n P N such that gn � g � . . . � gloooomoooon

n

� 1. If

there is not n P N such that gn � 1 that will be noted ordpgq � 8.

Definition 3 (Subgroup) If H � G is a subset of elements of G, H is a
subgroup of G (noted H ¤ G) if H satisfies the group axiom under the binary
operation of G.

Definition 4 (Subgroup generated by a subset of a group G) If S a sub-
set of a group G, the subgroup generated by S is 〈S〉G � tsε11 . . . sεkk |si P Su. A
subgroup H ¤ G is finitely generated if there is a finite S � G, such that
H � 〈S〉G.

Definition 5 (Coset, Normal Subgroup) If H ¤ G are defined the follow-
ing subset of G:

• gH � tgh|h P Hu the left coset of H

• Hg � thg|h P Hu the right coset of H.

Remark 1 Two elements g and g1 define the same left (right) coset gH � g1H
(Hg � Hg1) iff g�1g1 P H (iff g1g�1 P H). That induce a partition on the
elements of the group given by the left (right) cosets.

Definition 6 (Transversal set) If H ¤ G, we can define a transversal set
HK of H by choosing1 a random elements of each coset.

Given a subgroup H of G and a set HK of representatives of right cosets, we
have a unique decomposition of each element of G:

Proposition 1 For every g P G, there is a unique decomposition g � hv with
h P H and v P HK.

Proof: Because H induces a partition on G (given by its right cosets) and
g P Hg, there exists a unique v P HK such that Hg � Hv. So h � gv�1 is an
element of H and g � hv.

Definition 7 (Normal Subgroup) A subgroup H of G is normal if Hg � gH
for all g P G. It is noted by H � G.

1We need the axiom of choice if [G:H] is not finite.
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Definition 8 (Centralizer of x) If H ¤ G and x P G, the centralizer of
x in H is the subgroup of H consisting of elements which commute with x:
CHpxq � th P H|xh � hxu.

Definition 9 (Quotient Group) A quotient group Q � G
R is a group ob-

tained identifying together elements of a group G using an equivalence relation
R compatible with the group operation. The elements of Q (class of equivalence)
are usually noted by rgs. Furthermore the set N :� r1sR of elements equivalent
to 1G is a normal subgroup: for every x P G, Nx � xN . Vice versa every
N � G induce an equivalence relation on G given by g � g1 ô gg1�1 P N .

Definition 10 (Group Homomorphism) Let G,G1 be groups an group ho-
momorphism φ is a map φ : GÑ G1 such that: φpg �G g

1q � φpgq �G1 φpg
1q

Definition 11 (Group Isomorphism) If φ : G Ñ G1 is a group homomor-
phism, φ is an isomorphism if it is bijective.

Definition 12 (Local isomorphism) A local isomorphism of G is an iso-
morphism φ : H Ñ H 1 between two subgroups H and H 1 of G. An element
t P G represents φ if @x P H, φpxq � txt�1. A subgroup K of G is φ-invariant
if φpH XKq � φpH 1 XKq.

1.1.2 Monoid theory

Definition 13 (Monoid) A monoid M � pS, �q is given by a set S and a
binary operation � on S:

� : S � S Ñ S

satisfying the following axioms:

• (Closure): @g, g1 P G, g � g1 P G;

• (Associativity): @g, g1, g2 P G, g � pg1 � g2q � pg � g1q � g2;

• (Identity): De P G such that @g P G, e � g � g � g � e.

Definition 14 (Submonoid) A subset N � M is a submonoid of M if it
contains the unity and it is closed under the binary operation induced by that of
M (i.e. for every x, y P N , xy P N).

Definition 15 (Quotient Monoid) If M is a monoid and � an equivalence
realtion on M , the quotient monoid M

� is the monoid with elements the equiv-
alene class of M relative to � and the operation is derived by the M ’s one.

Definition 16 (Monoid Homomorphism/Isomorphism) If M and N are
two monoids, a map f : M Ñ N is an homomorphism if fpxyq � fpxqfpyq for
all x, y PM . An homomorphism f is an isomorphism if it is bijective.
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1.2 Monoid presentations

Monoid’s and groups’ presentation are strictly related with algebra, geometry
and model of computation. Them was introduced in the end of 19th century
by Walter von Dyck to study groups in term of generators and relation. Study
groups in this way permits to analyze some property without know exactly the
group: algebraic geometry use them to compute fundamental groups of topo-
logical spaces groups’ amalgams arising from the Seifert-Van Kampen theorem.
The link with the computer since is due to the fact that semi-Thue system are a
Turing-complete model of computation (see Chapt. 1.3 and Appendix A) with
interesting behaviors about convergence linked with the monoid’s homology and
finiteness propert.

Definition 17 (Monoid Presentation) Let Σ be an alphabet, Σ� the set of
word on Σ (i.e. the set of all possible finite concatenation of symbols of the
alphabet including the empty word 1) and R � Σ��Σ� a set of rules on Σ. A
presentation P is a couple pΣ|Rq given by an alphabet and a set of rule on the
alphabet. A presentation is called finite if Σ and R are finite sets.

Notation: In order to view a presentation as a string rewriting system2, the
pair pw,w1q will be also denoted as a reduction rule w Ñ w1.

Notation: M � 〈Σ|R〉� means that M is equal to the quotient of Σ� by the
congruence Ø�

R generated by R (the smallest equivalence relation containing R
and compatible with the multiplication). Similarly, a presentation of a group
is given by an alphabet Σ and a set of pair of words on the alphabet Σ Y Σ̄
where Σ̄ � tσ̄|σ P Σu. G � 〈Σ|R〉 means that G it’s equal to the monoid
〈ΣY Σ̄|RY IΣ〉� where IΣ � tpσσ̄, 1qpσ̄σ, 1q|σ P Σu.

Notation: Given a presentation pΣ|Rq and two words v, w P Σ�, v � w means
that v and w are the same word (written with the same letters in the same
order), while v �M w means that they are equivalent in the quotient M (if
there is no ambiguity it will be denoted �).

Example: Z � 〈b|H〉 �: F1 has a canonical presentation 〈b〉 :� 〈b|H〉 as a
group and a canonical presentation ptb, b̄u|Rb � tpb̄b, 1q, pbb̄, 1quq like monoid. If
w � bb̄, w1 � b̄b so ww1 � bb̄2b � 1.

Notation: Words on an alphabet Σ will be noted by small or capital letters. If
w1, . . . , wn P Σ�, then W pw1, . . . , wnq is a word W P Σ� such that every word
is written in therm of w1, . . . , wn i.e. W � W1 . . .Wk with Wj � wi,@1 ¤ j ¤
kD1 ¤ i ¤ n .

It’s preferable to continue to distinguish the two equivalences � and Ø�
R

since there is a subtle difference between � and Ø�
R: the first is the equality

in the semantics of M , the abstract algebraic object, while the second is the
equality in the syntax of the quotient, so this equality depends from the rewriting
system chosen. If there is not ambiguity (a single system is given) or if all

2see. Appendix A
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systems have the same property booth notation will be used with the same
meaning.

Remark 2 A group is finitely presented if it can be is finitely presented as
monoid.

Proof: Given a finite presentation pΣ|Rq of a group G, we get

G � 〈ΣY Σ̄|RY IΣ〉�

where, if Σ is finite and so Σ̄ � tσ̄|σ P Σu and IΣ � tpσσ̄, 1q, pσ̄σ, 1q|σ P Σu are
finite too.

Definition 18 (Reductions) If u, v P Σ� and pr, sq P R, we get an elemen-
tary reduction urv ÑR usv. If there is a sequence u0, u1 . . . un in Σ� such that
ui ÑR ui�1 for i � 0 . . . n�1 we get a composed reduction u0 Ñ

�
R un . A word

w is reduced if there is no v such that w ÑR v. If a word u admits a single
reduced word pu such that uÑ�

R pu, then pu is called its normal form.

Definition 19 (Convergent presentation) A presentation pΣ|Rq is noethe-
rian if there are not infinite sequence tuiuiPN such that ui ÑR ui�1@i P N. A
presentation is convergent if, moreover, it have the confluence propriety: for
every u, v, v1 such that uÑ�

R v and uÑ�
R v1 there is some w such that v Ñ�

R w
and v1 Ñ�

R w.

u

v v1

w

� �

� �

Figure 1.1: Confluent diagram

Definition 20 A subword of a word v is a word w such that v � uwu1 for some
u, u1 P Σ� (u u1 can be empty). The overlap of two subword u and w of v is
the longest word v1 such that u � u1v1, w � v1w1 and u1v1w1 is a subword of v.
If w is a subword of v we say that v contains w, moreover if v � wu (v � uw)
Du P Σ�, w it’s a prefix (suffix) of v.

Notation: We write subpvq for the set of subwords of v.

Definition 21 (Critical Peak) Given a presentation pΣ|Rq, a critical peak
is a word w containing two subwords v and v1 with non-empty overlap such that
v and v1 are respectively the prefix and the suffix of w (or v � w and v1 P subpwq)
and pv, uq, pv1, u1q P R for some u, u1. We’ll say that a critical peak w is solvable
if booth path of reduction starting from the word w converge to some word w1.

5



Definition 22 (Standard presentation of a group) If G is a group, its stan-
dard presentation pΣG|RGq is given by ΣG � tax| x P Gu and

RG � ta1 Ñ 1, axay Ñ axy|x, y P Gu.

Remark 3 The standard presentation of G is convergent.

Proof: The confluence follows from the associativity of the group operation
(i.e. @x, y, z P G, xpyzq � pxyqz. Indeed, critical peaks are of the following
forms:

axayaz

axyaz axayz

apxyqz � axpyzq

Figure 1.2: Critical peaks for the standard presentation of a group G

The termination, instead, is guaranteed by the fact that every reduction reduces
the length of a word by one, and so, the reduced words are the letters and the
empty word:

ax1ax2 . . . axn Ñ
�
RG

ax1...xn , a1 Ñ
�
R 1

Definition 23 (Free Product) Let G � 〈ΣG|RG〉� and H � 〈ΣH |RH〉�.
Then the free product F � G �H has a presentation, as monoid, given by the
disjoint union of the presentations of G and H: F � 〈ΣG Z ΣH |RG ZRH〉�.

Notation: we’ll note F1 the free group with one generato (i.e. F1 � Z). Fn
will note the free group on n generators Fn � 〈a1, . . . , an〉 � F11

� � � � � F1n and
Fω the free group of ℵ0 generators tαnunPN.

Definition 24 (Translation) Let pΣ|Rq and pΣ1|R1q two presentation of monoids.
A translation it’s a function φ̄ : pΣ|Rq Ñ pΣ1|R1q obtained extending a map
φ : Σ Ñ Σ1� on presentation such that:

1. @w P Σ, φ̄pwq � φpwq;

2. @r � pu, vq P R, φ̄prq � pφpuq, φpvqq PØ�
R1 .

Lemma 1 (Lafont embedding lemma) Let pΣ|Rq and pΣ1|R1q be two pre-
sentations such that:

• Σ � Σ1;

• pΣ1|R1q is convergent;

• R � tpu, vq P R1|u P Σ�u.

Then the inclusion φ : Σ ãÑ Σ1 defines a translation φ̄ : pΣ|Rq Ñ pΣ1|R1q and φ̂
is injective.
Proof: Let rvsR be the equivalence classes of v with respect to Ø�

R, it suffice to
prove that rvsR � rvsR1 X Σ�

6



�) Since R � R1 if w P Σ� and w Ø�
R v then w Ø�

R1 v;

�) Let w P Σ1� such that w Ø�
R1 v. Then, since pΣ1|R1q is convergent, there

is u P Σ1� such that w Ñ�
R1 u and v Ñ�

R1 u. For every v P Σ�, applying a
rewriting rule of R1, we get a word in Σ�, so that u P Σ�. If also w P Σ�

then w Ø�
R v.

Since φ̄ is well defined and for every v, w P Σ�, v Ø�
R1 w iff v Ø�

R, φ̂ is an
injective homomorphism.

Definition 25 (Embedding Translation) An embedding translation
φ̄ : pΣ|Rq Ñ P 1 � pΣ1|R1q is a translation such that:

• P 1 is convergent on φpΣ�q;

• D a control function3 ψ : Σ1� á Σ� compatible with Ø�
R1 , i.e. such that

@v P Σ�, ψpφpvqq Ø�
R v.

Lemma 2 (Extended embedding lemma) If exists a embedding translation

φ̄ : pΣ|Rq Ñ P 1 � pΣ1|R1q, so exist an homomorphism φ̂ : 〈Σ|R〉� ãÑ 〈Σ1|R1〉�.

Proof: We define φ̂prwsRq � rφpwqsR1 and ψ̂prvsR1q � rψpvqsR. Like in Lemma
1 will be necessary to demonstrate φ̄prvsRq � rφ̄pvqsR1 :

�) since φ̄pRq �Ø�
R1 if w P Σ� and w Ø�

R v then φ̄pwq Ø�
R1 φ̄pvq

�) let w P Σ� if φ̄pwq Ø�
R1 φ̄pvq then w Ø�

R v. Since pΣ1|R1q is convergent,
exists an unique v̂ P Σ� such that φ̄pvq Ñ�

R1 φ̄pv̂q and w Ñ�
R1 φ̄pv̂q. Since

ψ is compatible with Ø�
R1 and if z P Σ� every rewriting rule in the path

of reduction from a φ̄pzq to φ̄pv̂q is in φ̄pRq, so φ̄pzq Ø�
R1 φ̄pv̂q iff z Ø�

R
ψφ̄pzq Ø�

R ψφ̄pv̂q Ø�
R v̂.

Definition 26 (Iso-translation) An iso-translation between two presentation
φ̄ : pΣ|Rq Ñ pΣ1|R1q is an embedding translation such that for every equivalence
class rv1sR1 of Σ1� exists at least a v P Σ� such that φpvq P rv1sR1 .

Proposition 2 If exists a iso-translation φ̄ : pΣ|Rq Ñ pΣ1|R1q, so M � 〈Σ|R〉�
and M 1 � 〈Σ1|R1〉� are isomorph.
Proof: By lemma 2 M ãÑ M 1. Moreover φ̄pΣ�q � Σ1� is a bijection with the
property φ̄pww1q � φ̄pwqφ̄pw1q, so an isomorphism.

Definition 27 (Lexico-metric order) Given an alphabet Σ equipped with an
order  Σ (α �Σ β means α ¤ β ^ β ¤ α), v � αi1 � � �αin and w � αj1 � � �αjm ,
it’s possible to extend it to a lexicografic order on the set of words on Σ:

v  Σ w ô Dk@h   kpαih �Σ αjh^pk � n   m _ pk ¤ m^k   n^αik  Σ αjkq

and also to lexico-metric order:

v �pΣ, Σq w ô n   m or Dk ¤ n@h   kpαih �Σ αjh ^ αik  Σ αjkq

Example: Let Σ � ta, b, cu and with the order a �Σ b  Σ c so abc  Σ bca,
and abc� bca but aabca  Σ bca and bca� aabca.

3it can be a partial function
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Theorem 3 It exists an embedding of Fω into F2.
Proof: Like in [15], showing that the family tbnab�nunPZ is free4 in the group
F2 � 〈a, b〉, it’s possible to have the embedding translation of φ̄ : Fω Ñ F2 given
by φpαnq � bnab�n and so the proof by Lemma 2. In order to founf the control
function of the translation, we’ll build a new convergent presentation of

F2 � 〈Σ � ta, ā, b, b̄u|R � taāÑ 1, āaÑ 1, bb̄Ñ 1, b̄bÑ 1u〉�

it suffices to add, for every n ¡ 0, the superfluous generators5 given by the
relation:

an � bnab̄n ān � bnāb̄n a�n � b̄nabn ā�n � b̄nābn.

The following relation will be derivable for every n P Z (nominally a0 :� a):

anān � 1 ānan � 1

ban � an�1b bān � ān�1b b̄an � an�1b̄ b̄ān � ān�1b̄.

Let Σ2 � tb, b̄u Y tan, ānunPZ, a new presentation of F2 is given by 〈Σ2|R2〉
where R2 consists of the following reduction rules (varying n P Z):

anān Ñ 1 ānan Ñ 1 bb̄Ñ 1 b̄bÑ 1

ban Ñ an�1b bān Ñ ān�1b b̄an Ñ an�1b̄ b̄ān Ñ ān�1b̄.

Defining the order on Σ2 by @n, an �Σ2 an�1 �Σ2 ān  Σ2 b �Σ2 b̄, is
possible to define a lexico-metric order �Σ2 on Σ�2 . The rewriting system is so
noetherian since for every reduction w ÑR2

w1, w1 � w and � it’s a well-order
on Σ�2 . By this order every reduced word will be in the form α1 . . . αnβ

k
i with

αi P tan, ānu and β P tb, b̄u. Moreover all the critical picks are solvable:

• For every pγ, γ1q P tpan, ānq, pān, anq, pb, b̄q, pb̄, bqu

γγ1γ

γ � γ

• For every pαn, α
1
nq P tpan, ānq, pān, anqu

b̄αnα
1
n

αn�11b̄α
1
n

αn�1α
1
n�1b̄

b̄

bαnα
1
n

αn�1bα
1
n

αn�1α
1
n�1b

b

4i.e. there are not relations between the elements
5them can be viewed like some abbreviation of some word in F2

8



• For pγ, γ1, δq P tpb, b̄,�1q, pb̄, b,�1qu

γγ1αn

γαn�δγ

αnγγ
1

γ

The equivalence of the two presentation is provable showing the existence
of an iso-translation φ̄1 : pΣ|Rq Ñ pΣ2|R2q given by φ̄1paq � a0, φ̄1pāq � ā0,
φ̄1pβq � β where β � b, b̄. The control function ψ1 is defined by ψ1pβq � β and
ψ1pαnq � bnαbn�1 where β � b, b̄ and α � a, ā.

Now it’s easy to show that the map φ : Σω � tαn, ᾱnunPZ Ñ Σ�2 such
that φpαnq � an and φpᾱnq � ān induce an embedding translation φ̄ : 〈Σω〉 Ñ
pΣ2|R2q. Since every word in φpΣωq are in tan, ānu

�
nPN, them are in normal form

in pΣ2|R2q and it’s possible to define ψ : Σ�2 Ñ Σω inductively on the number Nw
of a and ā in the word w: if Nw � 0 so ψpwq � 1. Else w � Bpb, b̄qαw1 where
α � a or ā, Bpb, b̄q is a word containing only occurrences of b and b̄, so ψpwq �
anψpβw

1q where n � p#occurence of b in Bpb, b̄qq�p#occurence of b̄ in Bpb, b̄qq
and Nw1   Nw. That satisfy @w P Σω, ψpφpwqq � w. So Fω � 〈Σω〉 ãÑ
pΣ2|R2q � 〈a, b〉 � F2.

Lemma 4 @p, q P Z, q � 0 the family tap, b
qu is free in F2

Proof: Because ta, bu is free in F2 and ordpbq � 8, ta, bqu is free in F2 (if not it
means exists relations between a and b). So tap, b

qu have to be free since 〈ap, bq〉
can be obtained from the free sub-group of F2 generated by ta, bqu applying the
internal isomorphism xÑ bpxb�p.

Definition 28 (Word problem) Given a rewriting system pΣ|Rq, the word
problem consists to answer the following question:

Given v, w P Σ� are v Ø�
R w?

The word problem can be defined in the same way for monoids and groups which
admits a finite presentation. It can also be defined with Ñ� at the place of Ø�

R,
the two formulation are equivalent. Some texts highlight the difference obetween
words probelem (as defined above) and word problem (where w � 1). Both
problems have the same answer.
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1.3 Basic Computability Theory

In the world meeting of 1900 Hilbert proposed some mathematical problem to
work on in 20th century. One of them, the 2nd one, asked if the axiom of arith-
metics are consistent (i.e. not contradictory). To answer this question, the study
of logic was deepened bringing out new problem like the entscheidungsproblem
(decision problem) posed by Hilbert in 1928 which asks the existence of an al-
gorithm capable to test if a first-order logic statement is universallly valid. At
that time there was not a proper definition of algorithm which was formally
defined by Alonzo Church in 1936 and independently by Alan Turing respec-
tively in term of λ-calculus and Turing machines. By the Church-Turing thesis
these two models of computation are equivalent and they can express all and
every computable function (for every computable function exists a λ-term and
a Turing machine that can calculate it).

Here we’ll present also some other models of computation Turing complete
(i.e. they can compute the same class of functions of a Turing machine) that
we’ll use during the proofs.

For reasons related to the proofs we’ll study, we’ll focus on the Turing model
instead of the λ-calcul (which has a more manageable definition). Moreover, the
definition of a computability with Turing machine permits to define the concept
of complexity of a computation in term of number of transitions that the machine
have to do to compute it.

1.3.1 Turing Machines

Definition 29 (Turing Machine) A Turing machine is a abstract machine
consisting of:

• An infinite tape containing cells in which are written symbol of a fixed
alphabet;

• A head which can read and write symbols on the tape and move left (L)
or right (R) on it;

• A set of instruction for the head depending of the input and the current
state.

it can be visualized as above:

qj
Ð 5Ñ

. . . aik�1
ak ak�1 . . .

More formally a Turing machine M is a 5-tuple pQ,Σ, q0,K, δq where:

• Q is the set of states;

• Σ an alphabet with special symbol � representing an empty cell (it is not
explicitly written in the list of symbols in Σ);

• q0 P Q is the initial state;

• K � Q is a set of final states;
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• δ : Σ�QzK Ñ Σ�Q� tL,Ru is the transition function.

Definition 30 (Configuration for a Turing machine) Given a Turing ma-
chine M , a configuration for M is a string s � ai1 . . . aik�1

qjaik . . . ain where
ai1 . . . aik�1aik . . . ain is a word in the alphabet Σ representing the content of the
tape and a state qj is positioned before the symbol read by the head.

An initial configuration is a configuration containing q0, a final configuration
is a configuration where qj P K.

A configuration sn�1 is derivable by sn � ai1 . . . aik�1
qjaik . . . ain if

sn�1 �

"
ai1 . . . aik�2

q1jaik�1
a1ikaik . . . ain if ε � L

ai1 . . . aik�1
a1ikq

1
jaik�1

. . . ain if ε � R
.

where δpaik , qjq � pa
1
i, q

1
j , εq. In that case we’ll note sn ÑM sn�1 a transition

of T .

Definition 31 (Computation) A computation of a Turing machine M is a
sequence of configurations s0, s1, . . . starting with an initial configuration such
that sn ÑM sn�1 for all n ¥ 0. Intuitively is sequence of the configurations of
the machine during the computing started with the configuration s0. A compu-
tation terminate if it is in the form s0 Ñ . . .Ñ sn with sn such that there exist
not a configuration sx such that sn Ñ sx. Else we say that the computation
diverge.

Remark 4 If sK is a transition containing a final state (a final configuration),
there exists not s such that sK ÑM s, so a computation can contain at most
one final configuration at the end of a terminating computation. Moreover form
a configuration s0 there exists only one computation starting with s0.

With that definition of computation will so be possible to givean idea of
complexity of a terminating computation s0, . . . , sK of M in term of length
|s0| � n of the initial configuration: we’ll say that M operate in time fpnq
if sfpnq � sK or in space gpnq if it is the size of longer configuration of the
computation (i.e. gpnq � maxt|si|u).

There exist some variant of Turing machine equivalent: multi-tape machine
(with dependent or independent heads) and machine where head can write with-
out moving. A non-deterministic Turing machine is a machine where δ is not
a function but a relation: is so possible that the computation will “branch” at
some point of the computing. That defines different classes of complexity of
computation.

Like we have seen, every algorithm can be implemented by a Turing machine.
We’ll prove the next proposition (in the original formulation given by Turing)
using this fact, in order to to give the idea of what we are trying to build,
without loosing ourself in the mathematical rigorous formalism.

Proposition 3 (Existence of Universal Turing Machine [21] ) It is pos-
sible to invent a single machine which can be used to compute any computable
sequence. If this machine U is supplied with a tape on the beginning of which is
written the “standard description” of an action table of some computing machine
M , then U will compute the same sequence as M .

11



Proof: First of all we’ll need to explicit what is a “standard description”
of a Turing machine. The idea is to encode the machine in enother language
(for example the binary one) encoding like a list the alphabet (also the empty
symbol � of the machine), the set of states, L and R and the function δ in form
of 5-tuple.

Now is possible to build a Universal Machine U capable to contain on the
tape the encoding of the machine M we want to simulate and an initial config-
uration for this machine (encoded with the same encoding used for M) in two
different part of the tape. The computation will proceed on the part of the tape
containing the configurations, searching every time the transition to execute in
order to obtain the new one, in the part of the tape containing the machine
encoding.

Definition 32 (Decidability) A function is decidable if there is a Turing
machine which can compute it for any initial data. A property P is decidable if
the characteristic function the set representing P .

1.3.2 Some other model of computation

We’ll now present some model of computation we’ll need in the prove we’ll study.

Definition 33 (Register Machine) A register machine is an abstract ma-
chine M consisting of:

• Labeled unbounded integer-value register: any labeled register can hold a
single non-negative integer;

• A list of (labeled) sequential instructions si (we’ll call them routine) in
the form:

– INCpr, sjq � increase r and go to sj ;

– JZDECpr, sj , skq � if r � 0 go to sj, else decrease r and go to sk;

– HALT ;

• A state register: which hold the label of the instruction to execute. A
configuration for a 2- register machine M is a triple ps, a, bq where a, b
represent the integers in registers and s a state. The writing s ÑM s1

(s Ñ�
M s1) denote that M transform a configuration s in a configuration

s1 in one step (a finite number of steps). A state p0, a, bq will denote a
final state.

A non-deterministic register machine is a machine where there could be in-
structions labeled by the same letter, in that case the machine will branch the
computation executing one of them for every branch.

Remark 5 It’s possible to define different equivalent machine with different
form of instructions [17], for example if we build a machine without JZDEC in-
structions but with instructions DECpr, sjq (decrease r go to sj) and ZeroTestpr, siq
(if r � 0 do si else execute the next instruction of the list) instead of the in-
struction JZDEC in the list of instruction we can express machines computing
the same functions, will refer to this particular formulation of register machine
as Minsky machine M � pQ, δ, a1, . . . , anq where Q is the set of labeling for
instruction, δ the list of instruction of M and the ai the registers.
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Lemma 5 There is a routine for a 2-register machine with the second register
empty which computes the multiplication by a fixed k of the content of the first
register in it.
Proof: Let s0 the initial state and the number α content in the register a. The
list instruction will be in the form:

s0 JZDECpa, st, s1q;

si INCpb, si�1q for all i � 1 . . . , k � 1;

sk INCpb, s0q;

st JZDECpb, sK, scq;

sc INCpa, stq;

sK HALT .

It will need k � 4 states.

Lemma 6 There is a routine for a 2-register machine with the second register
empty which compute the division of the content α of the first register by k
(recording it in the first register), and if the remainder is different from 0 it will
preserve α.
Proof: Let s0 the initial state and the number α content in the register a and
β in b. The machine will subtract if is possible i � k times 1 to α adding 1 to
β and, at the end this procedure, it will copy β in the empty register a, else will
re-add i   k times 1 to α (where i is the time it subtracted 1) and after β times
k times 1. The list instruction will be in the form:

si JZDECpa, sbpiq, si�1q for all i � 0 . . . , k � 1;

sk JZDECpa, sp, s�q;

s� INCpb, s0q;

sp INCpb, sf q;

sf JZDECpb, sK, scq;

sc INCpa, sf q;

sbpiq INCpa, sbpi�1qq for all i � 1, . . . , k � 1;

sbp0q JZDECpb, sK, s�kq;

s�i INCpa, s�i�1q for i � k, . . . , 1;

s�0
JZDECpb, sK, s�kq;

sK HALT ;

It will need 2k � 7 states.
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Theorem 7 Every n-register machine R can be simulated by a 2-register ma-
chine R2pRq.
Proof: Let p1, . . . , pn be the first n prime numbers. Is so possible to encode the
string of the registers’ contents a1, . . . , an as γpa1, . . . , anq � pa1

1 � � � pann . In this
encoding add(subtract) 1 to the i-esim register correspond to multiply (divide)
for pi the number γpa1, . . . , anq. Will be so possible to simulate the computing
of Rn by a 2-register machine R2pRq since every configuration ps, α1, . . . , αnq
will correspond to the configuration ps0psq,Πp

αi
i , 0q of R2pRq, where s0psq is the

first instruction of the routine used to simulate the instruction of s using the a
variant of Lemma 5 for the instruction INC and Lemma 6 for JZDEC.

Definition 34 (Modular machines [1]) A modular machineMod is defined,
fixed an m P N, by a “set of instruction” pa, b, c, εq of quadruples where 0 ¤ a, b ¤
m, 0 ¤ c ¤ m2, ε � R,L (at most one quadruple can begin with the same pair
a and b), and an integer 0   n   m to define input and output functions. A
configuration for Mod is a pair pα, βq where α � um � a, β � vm � b. If no
quadruple begins with a, b, pα, βq it’s called terminal, else pα, βq ÑMod pα

1, β1q
where

pα1, β1q �

"
pum2 � c, vq if ε � R
pu, vm2 � cq if ε � L

The computing function of A is the partial function uModgModiMod : N Ñ N
defined by:

iMod : NÑ N2 , r Ñ p
¸
bin

i, n� 1q where r �
¸
bin

i, 0 ¤ bi   n

gMod : N2 Ñ N2 , pα, βq Ñ�
A pα

1, β1q, pα1, β1q terminal

uMod : N2 Ñ N , pα1, β1q Ñ
ķ

1

bim
i�1 where α �

¸
bim

i, 0 ¤ bi   n

where k � minti|bi � 0u.

Remark 6 It is so possible, with a proper encoding, to utilize a modular ma-
chine to simulate a Turing machine: starting by a Turing machine T on the
alphabet tbiu0¤i m is possible to associate the coding of the two parts of the

α �
°0
i�h cpiqm

i and β �
°
i¥h�1 cpiqm

h�1�i respectively at left and right of

the head (cpiq is the content of the the ith cell of the tape), at every state of T
a quadruple of Mod.

Definition 35 (Affine machine [15]) An affine machine, fixed an m P N,
is a finite set A � Z � Z� � Z � Z�. Every pp, q, p1, q1q P A define an affine
transition p� qz ÑA p1 � q1z (z P Z).

Remark 7 Every 2-register machines M can be simulated by an affine ma-
chine: let ps, a, bq a configuration for M, coding it in the integer rs, a, bs �
s�m2a3b, every transition will be in the form:

i�mk Ñ i� 2mk i�mp2z � 1q Ñ j �mp2z � 1q i� 2mz Ñ k �mz

i�mk Ñ i� 3mk i�mp3z � 1q Ñ j �mp3z � 1q i� 3mz Ñ k �mz
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i�mp3z � 2q Ñ j �mp3z � 2q

so if z, z1 are two integer, z Ø�
A z1 so z is the code of a configuration iff z1 is.

Futhermore:

ps, a, bq ÑM ps1, a1, b1q imply ps, a, bq Ø�
M ps1, a1, b1q iff rs, a, bs Ø�

A rs
1, a1, b1s.
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Chapter 2

Some Undecidability
Results

The negative answer to the decision problem corresponds to the existence of
uncomputable function. The first step was to answer the entscheidungsproblem
is due to Gödel: in his incompleteness theorems he proved that in sufficient
expressive theory T which can axiomatize the arithmetic, if it is coherent, is
always possible to found a formula that φ such that booth φ and  φ can’t be
proved in T . To prove this, he utilize the notion of primitive recursive function
to encode the syntax of logic by numbers. The same encoding was used by Church
to answer to generalize the results and answer to the problem.

Also Turing proved that a Turing machine which decide if a given Turing
machine will stop its computation starting by a given initial data, can’t exists:
this problem, the halting problem, is undecidable too. Using that results he
proved that the entscheidungsproblem is undecidable.

We’ll use this result to prove the undecidability of some other problems show-
ing a way to reduce their instance to an instance for the halting problem and so
showing this problem can’t be decidable.

2.1 Gödel’s Theorems

In his work [13], Gödel give a method to associate to every formula its Gödel
number (a natural number) which encode it. Moreover he gives a way to express
the logical derivation in the language L0 � t�, 0,+,�, su of arithmetic. In that
system he shows the existence of a fixed point for any formula and, using it,
the existence of formulas which can’t be proved in theories.

Definition 36 (Primitive Recursive Function/Relation) The class of prim-
itive recursive function is the smallest class of function Np Ñ N for some p P N
containing:

• Constant function: Cnpx1, . . . xpq � n for any n, p P N;

• The function successor: spnq � n� 1;

• The projections: πpi px1, . . . , xpq � xi;
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closed under:

• Composition �: let h : Nk Ñ N and gi : Np Ñ N so f � h � pg1, . . . , gpq :
Np Ñ N is defined fpx1, . . . xpq � hpg1px1, . . . xpq, . . . , gkpx1, . . . xpqq

• Recursion schema ρ: let g : Np Ñ N and h : Np�2 Ñ N,
f � ρpg, hq : Np�1 Ñ N is defined fp0, x1, . . . xpq � gpx1, . . . xpq and
fpy � 1, x1, . . . xpq � hpy, fpy, x1, . . . xpq, x1, . . . xpq;

A relation is primitive recursive if its characteristic function is.

Proposition 4 Any primitive recursive function is decidable.
Proof: constant, successor and projection are decidable. There exist also Tur-
ing machines to compute the composition of two function executing the second
program on the output of the first and the recursion schema too.

Proposition 5 The following function and relation are primitive recursive:

• addiction;

• multiplication;

• pseudo-sottraction ( n�m � n�m if n�m ¡ 0, else 0 );

• modpx, yq, divpx, yq if x ¡ y where x � y divpx, yq �modpx, yq;

• α2px, yq �
1
2 px� yqpx� y � 1q � y;

• αppx1, . . . xpq � α2px1, αpx2, . . . , xpqq.

Definition 37 (Recursive function) The class of recursive function is the
smallest class of function Np Ñ N for some p P N containing:

• Constant function: Cnpx1, . . . xpq � n for any n, p P N;

• The projections: πpi px1, . . . , xpq � xi;

• Addiction;

• Multiplication;

• The characteristic function of the binary relation  ;

closed under:

• Composition;

• µ schema: gpx1, . . . , xnq � µypfpx1, . . . , xn, yq � 0q is the smallest z such
that fpx1, . . . , xn, zq � 0 and for all z1   z fpx1, . . . , xn, z

1q is defined. If
such z doesn’t exist gpx1, . . . , xnq is not defined.

Since the function αp can encode the p-uple, we need a function capable to
do the revers encoding:

Proposition 6 There is a recursive function β : N2 Ñ N such that, for all
succession a1, . . . , an of natural number, it exists c P N such that βpi, cq � ai for
all i P t1, . . . , nu.
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Theorem 8 (Representability of recursive function in PA0) Every recur-
sive total function is representable in PA0 by a formula.

We’ll be so possible to encode the set of terms and formulas with natural
number enumerating the set of variables and symbols of the syntax. The number
associated to a term t or a formula F with this encoding is called Gödel number
of t (F ) noted #t p#F ).
Notation: n is the term representing the number n P N in the language L0 i.e.
snp0q.

Definition 38 (Encoding of L0)
Encoding of terms t:

• if t � 0, #t � α3p0, 0, 0q;

• if t � xn the nth variable , #t � α3pn� 1, 0, 0q;

• if t � st1, #t � α3p#t1, 0, 1q;

• if t � t1+t2, #t � α3p#t1,#t2, 2q;

• if t � t1�t2, #t � α3p#t1,#t2, 3q;

Encoding of formulas F :

• if F � t1 � t2, #t � α3p#t1,#t2, 0q;

• if F �  t1 � t2, #t � α3p#t1,#t2, 1q;

• if F � F1 ^ F2, #t � α3p#F1,#F2, 2q;

• if F � F1 _ F2, #t � α3p#F1,#F2, 3q;

• if F � @xnG, #t � α3p#G,n, 4q;

• if F � DxnG, #t � α3p#G,n, 4q.

Will be possible to encode the derivations and sets too.

Proposition 7 The following function, relations and sets are recursive:

• TerL0pnq, n is the encoding of a term of L0;

• ForL0
pnq, n is the encoding of a formula of L0;

• Φpnq, n is the encoding of a closed formula of L0;

• Dimpx,#F q, if x is the encoding of a derivation of the formula #F ;

• Subpn,#t,Xq � #Xrt{xns where X is the number of a formula or a term.

Definition 39 (Peano Axioms) We’ll denote PA0 the following set of ax-
ioms:

• @x psx � 0q;

• @xDyp px � 0q Ñ sy � xq;
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• @x@ypsx � sy Ñ x � yq;

• @xpx+0 � xq;

• @x@ypx+sy Ñ x � spx+yq;

• @xpx�0 � 0q;

• @x@ypx�sy � px�yq+yq.

PA is the set PA0 united with the following infinite set of axioms definite by
the variation of F rx0, . . . , xks formula of L0:

• @x1, . . .@xkpF p0, x0, . . . xkq ^ pF py, x1, . . . , xkq Ñ F psy, x1, . . . , xkqq Ñ
@x0F px0, x1, . . . , xkq

Theorem 9 (Fixed point) For all Apxq closed formula with one free variable,
there exist a closed formula B such that AP0 $ B Ø Apxq.
Proof: Let x � xk the free variable of A, Numpnq is the function that
given n P N gives #n and Spv, n,#Fq the formula in L0 who represents v �
Subpk,Numpnq,#F q. Since PA0 $ @vpv � Subpk, n, nq Ø Spv, n, nqq for all
n P N, we pose:

Θpxq � @xpSpy, x, xq Ñ Apyqq

and m � #Θpxq. Proving that PA0 $ Θpmq Ø ApSubpk,m,mqq, we found that
B � Θpmq is the searched formula.

Lemma 10 Let DIMpx, yq the formula of L0 to exprime px, yq P Dim and
THpxq � DyDIMpy, xq the proposition that exprim the existence of a derivation
of the formula F , so:

• if PA $ F so PA $ THp# Fq;

• PA $ THp#F q Ñ THp#THp#F qq;

• PA $ THp#Aq ^ THp#AÑ Bq Ñ THp#Bq;

• if PA $ AÑ B so PA $ THp#Aq Ñ THp#Bq.

Theorem 11 (First Gödel incompleteness theorem) In any coherent the-
ory containing PA there is a statement G such that booth G and  G cannot be
proved in the theory.
Proof: By Teor.9 we know there is the formula G, fixed point of  THpxq such
that PA $ GØ  TH#Gq.

PA & G) if PA $ G so PA $ THp#Gq by lemma 10 and, by hypotesis PA $
G Ø  THp#Gq. Will so possible to deduce from PA $ G and PA $
GØ  THp#Gq that PA $  THp#Gq and so (by PA $ THp#Gq) that
PA $, i.e. PA is not coherent.

PA &  G ) prove PA $ GØ  THp#Gq is equal to prove

PA $ p G_ THp#Gqq ^ pG_ p THp#Gqqq

that needs booth PA $  G_ THp#Gq and PA $ G_ p THp#Gqq can
be proved. To prove the second one it’s equivalent to prove PA $  G Ñ
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THp#Gq and so, by hypotesis PA $  G, we obtain PA $ THp#Gq (by
modus ponens) and PA $ THp#  Gq by lemma 10. Both statement
can’t be true since PA is coherent, otherwise we could take one proof of
G, one of  G to obtain a proof of the empty sequent.

Theorem 12 (Second Gödel incompleteness theorem) Any coherent the-
ory T containing PA cannot prove its own consistency.

2.2 Church’s Theorems

The first Gödel theorem can be simply extended to PA0 by the following:

Theorem 13 Let T be a theory extending PA0, if T is consistent so T is un-
decidable1.
Proof: Let Θ � tpm,nq| m � #F rx0s and T $ F rnsu. By contradiction T
is decidable, so are Θ and B � tn P N|pn, nq R Θu. Let Grxs the formula
representing B (i.e. Grns ô B), so for any n P N:

• n P B implies PA0 $ Grns and so T $ Grns;

• n R B implies PA0 $  Grns and so T $  Grns.

Let #Grxs � g so g R B: if g P B so pg, gq R Θ and T & Grgs while T $ Grgs by
definition of G. Conversely if g R B implies pg, gq P Θ and T $ Grxs but also
T $  Grxs so T is not coherent.

In [9] Church utilize the Gödel’s results to proper answer to the decision
problem generalized for the propositional logic.

Theorem 14 (Church) First order logic expressed in the lenguage L0 is un-
decidable.
Proof: Let G the conjunction of the axioms in PA0:

PA0 $ F ô GÑ F P T0

where and T0 � tF |F is a closed formula of L0andPA0 $ F u.
By Theor.13, PA0 is not decidable so T0 will be not recursive.

2.3 Undecidability of the halting problem for
Turing machines

The halting problem for Turing machines asks if, given a Turing machine M
and a configuration s0, the computation of M starting from s0 terminates.

Theorem 15 (Undecidability of the halting problem) The halting problem
for Turing machine is undecidable.
Proof: by contradiction we suppose, by Theor.3, that exists a universal Turing
machine N , which given the number M� encoding of a Turing machine M and
the number n, it computes:

NpM�, nq �

"
1 if the computation of M starting with decM pnqtermines
0 else

1A theory is undecidable if the set of provable closed formula is undecidable
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where without loosing of generality, we can suppose that decM pnq is a well defined
configuration for M for every n P N.

Let N be the machine such that, for every Turing machine M , it computes
N pMq � NpM�,M�q so:

N pMq �
"

1 if the computation of M starting with decM pM
�qtermines

0 if the computation of M starting with decM pM
�q diverges

and D the machine such that:

DpMq �
"

termines if N pMq � 0
diverges if N pMq � 1

The absurd follow by the facts:

• If DpDq diverges and N pDq � 1, so N pDq � DpDq termines;

• If DpDq termines and N pDq � 0, so N pDq � DpDq diverges.

2.4 Some other results

Theorem 16 (Undecidability of the halting problem for 2-register machine)
There exist a 2-register machine with undecidable halting problem

Proof: We can build a register machine R from a Turing machine T (on
binary alphabet) with one h register containing the letter canned by the head,
two register l and r which contain a number that express the content of the left
and right part of the tape (read from the center to the border).

q
5

. . . a0 . . . ai�1 ai ai�1 . . . an . . .

l � a0p2
i�1q�a1p2

i�2q�. . .�ai�1p2
0q , h � ai , r � anp2

n�iq�an�1p2
n�i�1q�. . .�ai�1p2

0q

Any transition of the turing machine will so be represented by a sequence of:

• to represent the head moving left:

– multiply for 2 the register r adding 1 if h � 1;

– if l � 1 mod 2 subtract 1, set h � 1;

– if l � 1 mod 2 set h � 0;

– divide l for 2 ;

• to represent the head moving left:

– multiply for 2 the register l adding 1 if h � 1;

– if r � 1 mod 2 subtract 1, set h � 1;

– if r � 1 mod 2 set h � 0;

– divide r for 2 ;

• to represent the writing in the cell read by the head:
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– set h � 0;

– add 1 if needed;

With a proper list of instruction there will be possible to simulate the computing
of any Turing machine. The halting problem for such register machine R will be
equivalent to the relative halting problem for T . Using Theor. 7 the computing
for R can be simulated by a 2-register machine that will have undecidable halting
problem.

Theorem 17 (Undecidability of Halt problem for modular machines)
There exist an affine machine A such that HaltA is undecidable.

Proof: Let TS a Turing machine computing an recursively enumerable set S.
Since is possible to encode its computing by a modular machine, so it exists a
modular machine Mod such that it computes S. Then HaltMod � HaltTs is
indecidable.

Theorem 18 (Undecidability of equivalence problem for affine machines)
There exists a machine affine A and an integer m such that the equivalence
problem it’s undecidable.

Proof: The equivalence problem ask if, given a z P Z, z Ø�
A m. Let M a

2-register machine and n instructin. If we pose m � n � 1 and if we encode
every configuration pi, axyq by the integer ri, x, ys � i �m2x3y, every trasition
of M correstond to at most two transition affine. We obtain an affine machine
AM wit the following properties:

• if z ÑA z1 so z is the encoding of a cofiguration iff z1 is;

• pi, x, yq ÑM pi1, x1, yq iff ri, x, ys ÑA ri
1, x1, y1s;

• pi, x, yq Ø�
M pi,1 x,1 y1q iff ri, x, ys ÑA ri

1, x1, y1s.

Since m � r0, 0, 0s and z � rsz, az, bzs so z Ø�
A m iff psz, az, bzq Ø

�
M p0, 0, 0q,

i.e. the problem of equivalence will correspond to the Halt problem for M (is
possible to suppose that the final state for M is p0, 0, 0q).

2.5 Undecidability of Propositional Linear Logic

The proof of undecidability of propositional linear logic2 is proved in [16] reduc-
ing the halting problem for a form of and-branching 2-register machine to a
decision problem for linear logic.

For the theories of interest here, an axiom may be any linear logic sequent
in the form $ C, pKi1 , . . . , p

K
in

with C a MALL formula. Any finite set of axiom
is a theory. For any theory T , we say that the sequent $ Γ is provable in T
when we are able to derive $ Γ using the standard set of linear logic proof rules
in combination with axiom ti P T . We’ll note an axiom rule of T with

T
$ CK b pa b pb b . . .b pz

2See Appendix B for detail.
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A direct cut is where at least one premise is an axiom in T , a direct proof is
a proof where all cut are direct cut. When theories are added to linear logic the
cut elimination theorem no longer holds due to axioms which may participate
directly in cuts. However we have the following result:

Theorem 19 If there is a proof of $ Γ in theory T , then there is a directed
proof of $ Γ in theory T .
Proof: The proof is a variant of the cut elimination theorem for linear logic.
It will suffice modify the definition of degree of a derivation in order to consider
direct cuts’ value null.

We define the translation rT s of a theory T with axioms t1, . . . , tk into a
multiset of pure linear logic formulas by

rtt1, . . . , tkus � ?rt1s, . . . , ?rtks

where rtis is defined for each axiom as follow:

rC, pKa , p
K
b , . . . , p

K
z s � pC ` pKa ` pKb ,` . . .` pKz q

K � CK b pa b pb b . . .b p
1
z.

Lemma 20 For any finite set of axioms T , the sequent $ Γ is provable in
theory T iff $ rT s,Γ is provable without non-logical axioms.
Proof:

ñ Given some proof of $ Γ in theory T , we have a linear logic proof tree
where each axiom leaf $ ∆ is in the form ∆ � ti for some ti P T or
∆ � pj , p

K
j . In the first case, we replace it with a proof of $ rtis,∆

(provable by definition of r�s) and then by application of dereliction rule to
$ ?rtis,∆. Anyway, since each formulas in rT s begin with ?, with a proper
number of weakening we can obtain a proof for $ rT s,∆ booth if ∆ � ti
or ∆ � pj , p

K
j . If we replacing every axiom leaf with a such proof, we’ll

obtain a new proof tree where every binary rules increase the number of
occurrence of rT s. Since every formula in T is in the form ?rtis, it will be
possible, with a proper number of contraction rules, to derive $ rT s,Γ.

ð For any axiom rtis we can may prove !prtis
Kq � !pC ` pqaK` . . .` pKz q.By

cutting this proof against a proof of $ rT s,Γ we obtain $ rT zttius,Γ. Thus
by induction on the number of axioms in T we can derive $ Γ in the theory
T .

Definition 40 (And-branching 2-register machine) An and-branching 2-
register machine is a non-deterministic Minsky machine without ZeroTest in-
struction adding the instuctions DECpr, qq which decrease the register r and do
to q and the fork instruction representing the and-braching:

FORKqi qj

which allows a machine to continue the computation in both states. We’ll call
that kind of 2-counter machine with set of instruction Q, ACM .

An istantaneous description, or ID, for an ACM is a finite list of ordered
triples 〈qi, a, b〉 where qj P Q and a, b are the natural numbers in the registers.
Intuitively it’s the list of triples representing the configurations of the parallel
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computation of the machine which terminates successfully only if all its concur-
rent computation fragments terminate successfully. The ACM will take an ID
s to an ID s1 applying one instruction on one of the triples according to the list
of instruction (the instruction DECpr, qq will not be execute if r � 0).

We define the accepting triple 〈qK, a, b〉 where qK � HALT . An accepting
ID is an ID where every elements are accepting triples, that is, every branch
of computation has reached the accepting triple. An ACM accepts form an ID
s � t〈q0, a, b〉u iff there is some computation form S to an accepting ID.

The reason to take ACM is that the zero-test instruction, which is the most
difficult to encode in linear logic but necessary to have an halting problem unde-
cidable, can be simulated by the more basic and-branching. Otherwise the halting
problem for a register machine without zero-test become equivalent to the word
problem for commutative semi-Thue system which is decidable by Theo 43.

Lemma 21 It is undecidable if an ACM accepts from a given ID.
Proof: We can suppose without loosing generality to have a Minsky machine
R with an unique final state qK with instructions INC, DEC and ZeroTest
(as seen in Oss. 5).

We can so build an ACM AR replacing the instruction ZeroTest. We
first replace the instructions ZeroTestpr, qiq (with r � a, b) with the instruc-
tion FORKpzr, qiq. The two instructions for za and zb will simulate the test on
register a and b respectively. For za (and in the same way for zb) we add two
instructions: DECpb, zaq and FORKpqf , qf q.

Every branching form a state zr is at once another zr or qK. The idea is that
the computation will branch in two parallel computation: one will continue like
the test had succeeded, the other one will effectively verify if it is only decreasing
the other register. If az is the value in the register a when branch of computation
that simulates the test, it will reaching only configuration 〈qK, az, 0〉, so the
machine will accept only if az was effectively 0.

A computation of AR will so terminate only if the corresponding computation
of R will and so the decidability of halting problem for ACM is equivalent to
halting problem for Minsky machine.

Let M � pQ, δ, a, bq be an ACM we define a set of formulas:

tqi, q
K
i |qi P Qu

¤
ta, aK, b, bKu

We then define the linear logic theory for the list of instruction δ as the set of
axioms determined as follows:

qi � INCpa, qjq ÞÑ $ qKi , pqj b aq
qi � INCpb, qjq ÞÑ $ qKi , a

K, qj
qi � DECpa, qjq ÞÑ $ qKi , a

K, qj
qi � DECpb, qjq ÞÑ $ qKi , b

K, qj
qi � FORKpqj , qkq ÞÑ $ qKi , qj , qk

Using the linear implication a transition like qi � INCpa, qjq may viewed as
$ qi ( pqj b aq i.e. the state qi move to the state qj and add 1 to a. Denoting
with Cn the sequence

Cn �

nhkkkikkkj
C, . . . C
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is possible to define a translation Θ converting a configuration for an ACM into
a linear logic sequent

Θp〈qi, x, y〉q � $ qKi , a
Kx, bK

y
, qf

containing an occurrence of qf , a negative occurrence of a qj and a number of
negative occurrence of a and b equal to the value of the corresponding register.
The translation of an ID s is the set of sequent translation of the configuration
of s.

Lemma 22 An ACM accepts form an ID s iff every sequent in Θpsq is prov-
able in the theory derived from M .
Proof: we’ll not give a proof of the lemma but we’ll show an example to un-
derstand how LL simulate the computing or the register machine.

• Θp〈qf , 0, 0〉q � $ qKf , a
K0
, bK

0
, qf is provable since

I
$ qKf , qf

is a logical axiom.

• Θp〈qj , x� 1, y〉q � $ qKj , a
Kx�1

, bK
y
, qf obtained by an instruction

qi � INCpa, qjq will be provable iff it will be Θp〈qi, x, y〉q � $ qKi , a
Kx, bK

y
, qf :

T
$ qKi , pqj b aq

...

$ qKj , a
Kx�1

, bK
y
, qf `

$ pqKj ` aKq, aK
x
, bK

y
, qf

Cut
$ qKi , a

Kx, bK
y
, qf

and in a similar way for qi � INCpb, qjq;

• Θp〈qj , x, y〉q � $ qKj , a
Kx, bK

y
, qf obtained by an instruction qi � DECpa, qjq

will be provable iff it will be Θp〈qi, x� 1, y〉q � $ qKi , a
Kx�1

, bK
y
, qf :

T
$ qKi , qj , a

K

...

$ qKj , a
Kx, bK

y
, qf

Cut
$ qKi , a

Kx�1
, bK

y
, qf

and in a similar way for qi � DECpb, qjq;

• Θp〈qj , x, y〉q � $ qKj , a
Kx, bK

y
, qf and Θp〈qk, x, y〉q � $ qKk , a

Kx, bK
y
, qf

obtained by an instruction qi � FORKpqj , qkq will be provable iff it will
be Θp〈qi, x, y〉q � $ qKi , a

Kx, bK
y
, qf :
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T
$ qKi , qj ` qk

...

$ qKj , a
Kx, bK

y
, qf

...

$ qKk , a
Kx, bK

y
, qf

&
$ pqKj & qKk q, a

Kx, bK
y
, qf

Cut
$ qKi , a

Kx, bK
y
, qf

So an ID is accepted by an ACM if it represents the branching of an halting
computation corresponding to a direct proof of $ qKf , qf .
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Chapter 3

The
Higman-Neuman-Neuman
Extension Theorem

In order to build groups’ extensions with particular combinatorial propriety, it
will be useful to use the HNN-theorem for the groups.

3.1 HNN extension theorem

Theorem 23 (HNN extension associated with a subgroup) Let G be a
group, @H   G, DF ¡ G and b P F such that H � CGpbq.

3.1.1 HNN extension theorem proof
Part I: A non convergent presentation of F

In order to demonstrate the theorem, we’ll build an “ad hoc” extension F of G
and we’ll show that exist an element b P F such that H � CGpbq.

Let F � G�〈b〉
Ø�

C

where Ø�
C is the smallest equivalence relation containing the

set C � tpbh, hbq|h P Hu. The free product G � 〈b〉 can be presented, given the
standard presentation of G and the minimal presentation of Z as monoid1, by
pΣG Y tb, b̄u|RG Y tpbb̄, 1q, pb̄b, 1quq, so we have a presentation of F

pΣF � ΣG Y tb, b̄u|RF � RG YRb YRHuq

where RH � tpβah, ahβq|h P H,β P tb, b̄uu.

Remark 8 The presentation 〈ΣF |RF 〉 is not convergent.

Proof: We just need to observe all the critique peaks:

• if the critique pick it’s a word of the alphabet of G, it’s soluble because it’s
in the standard presentation of G

1see 1.2 pag. 4
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• if the critique pick it’s a word of the alphabet of 〈b, b̄〉, it is solvable:

bb̄b

b � b

b̄bb̄

b̄ � b̄

• if the critique peak contain only the letters of Σb and ah with h, k P H,
it’s solvable:

bb̄ah

bahb̄

ahbb̄

ah

b̄bah

b̄ahb

ahb̄b

ah

bahak

ahbak

bahak

bahk

b̄ahak

ahb̄ak

b̄ahak

b̄ahk

• all the non-solvable peak are all in the form (β P Σb, h P H, x P GzH) :

βahax

βahx � ahβax

3.1.2 HNN extension theorem proof
Part II: A convergent presentation of F

Using the Lemma1 is possible to give another presentation of F adding new
superfluous generators and new relation. Let fix an HK with 1 P HK, we define
the superfluous generators bv � bav and b1v � b̄av ( ΣK :� tbv, b

1
v|v P H

Ku).2

Using the relation of RF and the fact that, by the Prop.1, is possible to derivate
the following set RK of relations:

@v P HK b1b
1
v Ñ av b11bv Ñ av

bvax Ñ ahbw D!h P H,w P H
K such that vx � hw

b1vax Ñ ahb
1
w D!h P H,w P H

K such that vx � hw

Proposition 8 The presentation pΣG Y ΣK|RG YRKq is convergent.

Proof: Like in 8, a critique peak of the alphabet ΣG or tb1, b
1
1u is solvable. The

others critique peak are all in the form βvaxay or b1b
1
vax or b11bvax. These three

kind of critique peak are solvable:

2bv � bav and b1v � b̄av essentially means that bv and b1v are abbreviation respectively for
the words bav and b̄av
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βvaxay

βvaxy akβw1ay

akak1βw2

ahβw � akk1βw2

vx � kw1, k P H,w1 P HK

vpxyq � hw, h P H,w P HK

w1y � k1w2, k1 P H,w2 P HK

because hw � vpxyq � pvxqy � pkw1qy � kpw1yq � kpk1w2q � pkk1qw2 and by
the lemma 1 w � w2 and h � kk1.

b1b
1
vax

b1ahb
1
w

ahb1b
1
w

avax ahaw

avx � ahw

vx � hw, h P H,w P HK

the same for the pick b11bvax changing b1 with b11 and b1v with bv.

Remark 9 Every reduced words of this presentation of F 1 are in the form
αβ1 . . . βn with α P ΣG Y t1u, n ¥ 0 and βi P ΣK (n � 1 ñ @i, βi � b1
and βi � b1).

Proposition 9 F 1 � 〈ΣF 1 � ΣG Y ΣK|RF 1 � RG YRK〉 � F .

Proof: By Prop.2 , it suffices to show that exists an iso-translation from F to
F 1. Let φ : ΣF Ñ Σ1F such that φpaxq � ax, φpbq � b1 and φpb̄q � b11 we can
define φ̄ and so:

• @r P R, φ̄prq PØ�
R1 ;

• exists a control function ψ given by ψpaxq � ax, ψpbvq � bav and ψpb1vq �
b̄av;

• since ψ is always defined φ̄pψpv1qq Ø�
R1 v1.

Sinceφ̄ is an iso-translation so F � F 1.

3.1.3 HNN extension theorem proof
Part III: Concluding

It’s easy to prove by prop.2 that F 1 ¥ G and F 1 ¥ 〈b〉 because the functions idG :
ΣG Ñ Σ1�F and idb : tb, b1 � b̄u Ñ Σ�F are embedding translation. It’s also evident
for construction that CGpbq ¥ H. To prove the equality it suffices to show that
only the elements of H commutes with b. Let x � hw with h P H and w P HK,
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we have b1ax ÑRF 1
ahbw and so bax � ψpb1axq � ψpφpbaxqq ÑRF

ψpahbwq.
But ahbw is reduced and so ψpahbwq � ahbaw is. So @x P G xb � hbw � xb iff
x P H(i.e. w � 1) that mean CGpbq � H.

3.2 HNN extention theorem application

Corollary 24 If G is finitely presented and H is finitely generated in G, then
the HNN-extension F of G associated with H is finitely presented.

Proof: It just needs to change a little bit the construction of F used in the
demonstration of Th.23. Let u1, . . . un P ΣG such that H � 〈u1, . . . , un〉 since
@h P H, h � ui1 . . . uim , Dm ¡ 0 and ij P t1, . . . , nu. F will be presented by
〈ΣG Y tb, b̄u|RG Y Rgen〉 where Rgen � tbb̄ Ñ 1, b̄b Ñ 1, bu1 Ñ u1b, . . . , bun Ñ
unbu. By the transitive and operation-compatible closure of Rgen, @h P H the re-
lation pahb, bahq PØ

�
Rgen

so Ø�
RF
�Ø�

RGYRgen
where RF :� RGYtphb, bhq|h P

Hu. Moreover every ui are elements of H so Rgen � RF and Ø�
RGYRgen

�Ø�
RF

.

Theorem 25 (HNN extension associated with an local isomorphism)
Let G be a group, @φ : H Ñ H 1 local isomrphism, DF ¡ G and b P F such that:

1. b represents φ ;

2. 〈K, b〉F XG � K for all K φ-invariant ;

3. if G is finitly presented and H finitely generated F is finitely presented .

Proof: Let F � G�〈b〉
Ø�

C

where Ø�
C is the smallest equivalence relation containing

the set C � tpbh, φphqbq|h P Hu. Fixed HK, H 1K transversal sets respectively of
cosets of H and H 1 (1 P HK and 1 P H 1K) is possible to give the following
convergent presentation of F � pΣφ|Rφq built in the similar way of 3.1.2 (bu �
bau and b1v � b̄av):

Σφ � taxuxPG Y tbuuuPHK Y tb1vuvPH1K

and the following rewriting rules Rφ:

axay Ñ axy a1 Ñ 1 b1b
1
v Ñ av b11bu � au

bvax Ñ aφphqbw D!h P H, v,w P HK such that vx � hw

b1vax Ñ aφph1qb
1
w D!h1 P H 1, v, w P HK such that vx � h1w

Like in Th.23 pΣφ|Rφq is a convergent presentation and F is an extension of G
and 〈b〉.
1) b represents φ since @u P H, b1aub

1
1 � aφpuq.

2) For every K   G is possible to choose the elements of HK and H 1K such
that for every k P K, k � hv where h P K X H and v P K X HK, under that
conditions if K is φ-invariant if a word is written in the alphabet

Σφ|K � takukPK Y tbuuuPHKXK Y tb
1
vuvPH1KXK

so it is a normal form since every K is a subgroup. That means 〈K, b〉FXG � K
and so the equality while K � 〈K, b〉F XG.
3) Follow from Cor.24.
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Theorem 26 (HNN extension associated with several local isomorphism)
Let G be a group, @φ1 : H1 Ñ H 1

1, . . . , φn : Hn Ñ H 1
n local isomorphism,

DF ¡ G and b P F such that:

1. bi represents φi @i

2. 〈K, b1, . . . , bn〉F XG � K for all K invariant for all φi

3. if G is finitely presented and all Hi finitely generated F is finitely presented

Proof: Induction on the number of local isomorphism n using Th.25
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Chapter 4

Novikow-Boone’s groups

Independently of Higman, Neumann and Neumann’s work oriented to a purely
algebraic and topological application, Novikow in [19] discovered the HNN-extension
and approach the subject in a more constructive way. With Boone [7] they con-
nect it to algorithmic and combinatorial algebra demonstrating the undecidability
of the word problem for the groups.

4.1 A Novikov-Boone’s group zoo

Here will be presented some Novikov-Boone’s groups, stating some their proper-
ties that permits to demonstrate the undecidability of some of their property.

4.1.1 Novikow group Ap1,p2

Let K a Post system1 rΣa;Rs on the alphabet Σa � ta1, . . . , anu and R �
tpAi, Biq, 1 ¤ i ¤ λu, Ai, Bi nonempty, is possible to build the Novikow group
Ap1,p2

associated with K on the alphabet Σ consisting of:

a1, . . . , an, q1, . . . , qλ, r1, . . . , rλ, l1, . . . , lλ

one of his copy, namely:

a�1 , . . . , a
�
n , q

�
1 , . . . , q

�
λ , r

�
1 , . . . , r

�
λ , l

�
1 , . . . , l

�
λ

and two supporting letters p1, p2. It’s defined by the following relations:

1. qia � aqiqi , q�i q
�
i a

� � a�q�i ;

2. riria � ari , r�i a
� � a�r�i r

�
i ;

3. ali � lia , a�l�i � l�i a
�;

4. q�i l
�
i p1liqi � A�i p1Ai;

5. r�i p1ri � p1;

6. rilip2l
�
i r

�
i � Bip2B

�
i ;

1see. Appendix A
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7. qip2q
�
i � p2;

for 1 ¤ i ¤ λ, a P Σa and pas1 , . . . , askq
� � a�s1 , . . . , a

�
sk

.

Proposition 10 (Novikow property) The words p1Xp2X
� and p1Y p2Y

�

are conjugate in the group Ap1p2
iff X �K Y in the associated Post system2 K

where X,Y P Σa.

4.1.2 Novikow group Ap

Let Σa � ta1, . . . , anu and pAi, Biq pairs of nonempty Σa-word for 1 ¤ i ¤ m.

Adµlρ � 〈Σa Y tρ, ρ̃, µ1i, µ̃1i, µ2i, µ̃2i, lai, diu1¤i¤m|R〉

where R is the set of the following relation:

1. ρia � aρ2
i , ρ̃ia � aρ̃2

i ;

2. blai � laib;

3. aµ1ilai � µ1ia, aµ̃1ilai � µ̃1ia;

4. alaiµ2i � µ2ia, alaiµ̃2i � µ̃2ia;

5. µ̃1iρ̃idiµ̃2i � µ̃1iρidiµ̃2iA
�1
i Bi;

6. adi � dia;

for 1 ¤ i ¤ λ and a, b P Σa.

Ap �
Adµlρ �A

�
dµlρ � p

Ø�
Rp

where A�dµlρ is an antiisomorphic copy of Adµlρ given by the antiisomorphism 3

xÑ x� and Rp � tEpE� Ñ pu where E P Adµlρ.

4.1.3 Boone group

Let T � pΣT � tsd, qeudPD,ePE |RT � tAi Ñ Bi, u1¤i¤N q with q1 � q, a monoid
with Ai, Bi special words in the alphabet Σa (i.e. word in the form sqes

1 with
s, s1 words of the alphabet tsdu), the Boone group GpT, qq with corresponding
monoid T is given by the alphabet:

Σ � tsd, qe, x, y, li, ri, k, tudPD,ePE, 1¤i¤N

and the following relations:

1. y2sd � sdy, xsd � sdx
2;

2. sdli � yliysd, sdxrix � risd;

3. liBiri � Ai;

2see App.A
3an antiisomorphisme φ : GÑ G1 is a map such that φp1Gq � 1G1 and φpxyq � φpyqφpxq
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4. lit � tli , yt � ty;

5. rik � kri , xk � kx;

6. q�1tqk � kq�1tq;

Proposition 11 (Boone property) Let S, S1 special words of Σa, than S Ø�
RT

S1 iff DV pli, yq,W pri, xq such that S � V pli, yqS
1W pri, xq in GpT, qq.

4.1.4 Borisov group

Let Σa � tsju1¤j¤n and RΠ � tpFi, Giq, 1 ¤ i ¤ mu a set of pairs of nonempty
words of Σa and P a fixed arbitrary word of Σa. The Borisov group GpΠ, P q
can be presented by the alphabet:

Σ � Σa Y td, e, c, t, ku

and the following relation:

1. dm�1s � sd, es � sem�1;

2. sc � cs;

3. diFie
ic � cdiGie

i;

4. ct � tc, dt � td;

5. ck � kc, ek � ke;

6. P�1tPk � kP�1tP ;

for every 1 ¤ i ¤ m, s P Σa. Let Π � pΣa|RΠq the monoid associated with
GpΠ, P q.

Proposition 12 (Borisov property) Let Q be a Σa-word then Q � P in the
associated monoid iff Q�1tQk � kQ�1tQ in GpΠ, P q.

4.1.5 Aandrea group

In [6] its presentation is linked with Aandrea’s modular machine instruction set
[1]. It’s presented by an integer m ¡ 0 and a set of triples of integer M �
tpsi, ai, biquiPI Y tpsj , aj , bjqujPJ where 0 ¤ ak, bk   m and 0 ¤ ck   m2 for
every k P I Y J .

GpMq � pri, lj , x, y, t, r, , k; i P I, j P J |RM q

where, denoting tpα, βq � x�αy�βtxαyβ for α, β ¥ 0, the relation of RM are:

1. xy � yx;

2. xmri � rix
m2

, ymri � riy;

3. tpai, biqri � ritpsi, 0q;

4. xmlj � ljx, ymlj � ljy
m2

;

5. tpajbjqlj � ljtp0, sjq;

where i P I, j P J .

Proposition 13 For every modular machine Mod, it exists an Aandrea group
GpMModq associated.
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4.1.6 Valiev group

Differentrly form the previous groups, the Valiev group [22] does not depend on
a monoid, Post system or a Turing or Modular machine, it can interpretate any
recursively enumerable set of natural number. It’ll be presented by the alphabet:

Σ � tai, bi, ci, ti, iijk, du0¤i¤m, 0 k i,j m

and the relations:

1. t�1
0 b0t0 � a�1

0 b0a0;

2. t�1
i biti � aibici p1 ¤ i ¤ mq;

3. tiaj � ajti , ticj � cjti , p0 ¤ i, j ¤ mq;

4. amd � da2
m , cmd � dc2m bm�1dam�1bm�1cm�1;

5. aid � daipi � mq , bdi � dibpi � m� 1q cid � dcipi � mq;

6. bitijk � tijka1bici , citijk � tijktkcj , tijktk � tktijk,
tijkas � astijkps � iq, tijkbs � bstijkps � iq, tijkcs � cstijkps � jq .
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4.2 Group with standard basis

Definition 41 (Group with stable letters) Let Ĝ � 〈Σ̂|R̂〉 be a group, the
group with a system of stable letters tpu and base group Ĝ is defined by:

G � 〈Σ � Σ̂Y tpu|R � R̂YRp � tAipÑ pBiuiPI〉

where p R Σ and @i P I Ai, Bi P Σ̂�. A pair of corresponding or twin words
will be in the form:

Ap � A�1
i1
, . . . ,A�ik Bp � B�1

i1
, . . . ,B�

ik

thus, for ε � �1, the equality Apεpε � pεBpε where A�1
p � Bp and Bp�1 � Ap.

The extended system of relation of the group G is the system of rule RpYR�1
p

where R�1
p � tB�1

i p�1 Ñ p�1A�1
i such that Aip Ñ pBi P RpuiPI . In that sys-

tem it’s possible to define the individuality of a letter: since every transforma-
tion is in the form:

uwv Ñ uw1u with pw � Aip, w
1
� pBiq or pw � B�1

i p, w1 � p�1A�1
i q, u, v P Σ̂�

the individuality of the letter p and all the letters in u and v will be preserved.

Definition 42 (Regular system) A system of stable letters is called regular
if Apε Ø�

R̂
1 ô Bpε Ø

�
R̂

1 for any corresponding words Ap,Bp.

Proposition 14 If tpu is a regular system for Ĝ, so G is an HNN-extension
of Ĝ.

Proof: See Cor.30.

Definition 43 (Insertion/cancellation) An insertion is a transformation
in the form 1 Ñ pp�1 or 1 Ñ p�1p. Its inverse it’s called cancellation.

Lemma 27 Let WpεU Ñ W1p
εU1 Ñ . . . Ñ Wnp

εUn be a chain of extended
transformations, where the individuality of pε is preserved. Then there exists
twin words Apε and Bpε such that:

W �WnApε U � B�1
pε Un .

If there are insertion of stable letters in the chain then the words W and U can
be respectively transformed into the words WnApε and B�1

pε Un without applying
such transformations.

Proof: Proved by induction on the length n of the chain. For n � 0 is trivial.
If a transformation of the chain does not apply on pε than the lemma is clear,
else it is in the form WiAlpUi Ñ WipBlUi � 1 or WiBlp

�1Ui Ñ Wip
�1AlUi

so Wi�1 � WiAipε and Ui�1 � B�1
ipεUi. Moreover in passing from the words

Wi, Ui to Wi�1, Ui�1 there is not insertion of stable letters.

Lemma 28 (The Novikov lemma) Let tpu be a regular system of stable let-
ters and W a word in G satisfying W � 1. Than W can be rewrited in 1 by
a chain of extended transformation, each of them is not an insertion of stable
letters.
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Proof: Let consider a step of a chain of an extended transformation W Ñ
. . .Ñ 1 in which there is an insertion of the letter p:

W Ñ . . .ÑWi�1 � V V 1 ÑWi � V pεp�εV 1 Ñ . . .Ñ 1

since the letters pε and p�ε should be cancelled during the transformation, there
are two cases:

• the cancellation involves only the this two letters:

W Ñ . . .ÑWi � V1p
εp�εV 11 Ñ . . .Ñ Vkp

εp�εV 1k Ñ VkV
1
k �Wk Ñ . . .Ñ 1

so by the Lemma 27 there exist twin words A1pε ,A2pεB1pε ,B2pε such that
the words V1, 1, V

1
1 can be transformed into the words VkA1pε ,B

�1
1pεB2pε

and A�1
2pεV

1
k without insertion of stable letters. Since tpu is regular in

G holds B�1
1pεB2pε � 1 iff A1pεA�1

2pε � 1. So Wi can be transformed in
Wk without insertion of stable letters, then is possible to obtain the same
transformation eliminating this insertion of stable letters;

• else the chain is in the form:

W Ñ . . .ÑWi � V1p
εV 11p

�εpεV 21 Ñ . . .

. . .Ñ Vkp
εp�εV 1kp

εV 2k Ñ VkV
1
kp
εV 2k �Wk Ñ . . .Ñ 1

by lemma 27 there exists pairs of twin words Aipε ,Bipε , i � 1, 2, 3 such
that the words V1, V

1
1 , 1 and V 21 can be transformed respectively in VkA1pε ,

B�1
1pεA2p�ε , B�1

2p�ε
V 1kA3pε and B�1

3pεV
2
k , hence the word Wi can be trans-

formed into
VkA1pεp

εB�1
1pεA2p�εB

�1
3pεV

2
k

and applying the transformations in the extended system Wi become

VkA1pεA�1
1pεA2pεA�1

3pεp
εV 2k

which can be transformed in

VkA2pεA�1
3pεp

εV 2k � VkB2p�εA�1
3pεp

εV 2k .

By the insertion of 1 � B�1
2p�ε

V 1kA3pε (which doesn’t contain stable letters),
we have:

VkB2p�εA�1
3pεp

εV 2k Ñ VkB2p�ε1A�1
3pεp

εV 2k Ñ

Ñ VkB2p�εB
�1
2p�ε

V 1kA3pεA�1
3pεp

εV 2k Ñ
2 VkV

1
kp
εV 2k �Wk.

This permits to decrease the number of insertions in the chain.

The lemma follows by induction on the number of insertion in the chain.

Lemma 29 (The Britton’s lemma) Let tpu be a regular system of stable let-
ters for the group G over Ĝ and W a word in G such that W � 1 in G. Than
W is a word in Ĝ and W �Ĝ 1 or W includes the subword p�εApε where A P Ĝ
and A �Ĝ Apε .
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Proof: By Novikov’s lemma, the word W can be transformed in 1 without
insertion of stable letters, so if the chain

W ÑW1 Ñ . . .ÑWn � 1

contain no stable letters then W P Ĝ and W �Ĝ 1. If W contains the letter
p, then it should be cancelled during the transformation. Considering the first
cancellation of a stable letters occurring in the chain

W � V p�εV 1pεV 2 Ñ . . .ÑWk � Vkp
�εpεV 1k Ñ VkV

1
k �Wk�1

where V 1 does not contain the stable letters. By lemma 27 there exists a pair of
twin words Aipε ,Bipε , i � 1, 2 such that the words V, V 1, V 2 can be transformed
into the words VkA1p�ε ,B

�1
1p�ε
A2pε and B�1

2pεV
1
k without insertion of stable let-

ters. Hence V 1 P Ĝ since V 1 � B�1
1p�ε
A2pε � A�11pεA2pε � Apε .

Corollary 30 If tpu is a regular system of stable letters of the group G over Ĝ
than Ĝ   G.

Definition 44 A word W of a group with stable letters tpu is called p-reducible
if W includes a subword in the form p�εApε where A P Ĝ and A �Ĝ Apε .

With this definition is possible to reformulate the Britton’s lemma: if W �G 1
and W contains stable letters, so for some stable letters W is p-reducible.

Introducted by Bokut’ in [3] a standard basis or standard normal form per-
mits to have a canonical form to write an element of a Novikov-Boone group
given one of its presentation.

4.2.1 The definition of groups with standard normal form

Let’s consider a sequence of HNN-extension G0, Gi, . . . , Gn where G0 is a free
group and the group Gi�1 is obtained adjoining to the group Gi letters tpu and
defining relation

Alp � pBl

where p P tpu it’s called letter of weight i � 1 and Al, Bl P Gi contain exactly
one letter of the highest weight. So in the group Gi�1 an arbitrary relation can
be represented in the form

A1xA2p � pB1yB2

where x and y are the letters of highest weight (if the power of these letters
are different from �1 will be considered its first or last occurrence). For every
relation will be associated four types of prohibited words:

xBxA
2p x�1Bx�1A1�1p yByB

2p�1 y�1By�1B1�1p�1

Is so possible to define by induction on i the notion of canonical word: every
reduced word of G0 are in canonical form, an irreducible word

U � U1p
ε1U2p

ε2 . . . Ukp
εkUk�1

in the group Gi�1 where Uj P Ĝ and pj are letters of weight i � 1 k ¥ 0 is
canonical if, for every j:
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• Uj are canonical words in the group Gi;

• U doesn’t include subword of an any prohibited types in Gi�1.

Is so possible to reduce a word U � U1p
εU2 . . . Un�1p

εUn in canonical CpUq by
the following algorithmic process:

1. reduce every word Uj to canonical form in the group Gi;

2. perform all possible cancellation of letters of weight i� 1;

3. eliminate the first occurrence (from the right) of a prohibited word follow-
ing the following role4:

xBxA
2pÑ AxA1�1pB x�1Bx�1A1�1pÑ BxA

2pB�1

yByB
2p�1 Ñ A�1

y B1�1p�1A y�1By�1B1�1p�1 Ñ ByB
2p�1A�1

where Az and Bz (with z � x or y) are twin words;

4. return to step 1 .

Definition 45 The group Gi�1 is called group with standard normal form or
group with standard basis if every word U can be reduced to canonical form
CpUq in a finite number of steps. If that condition it’s satisfy for every i the
group G is a group with standard normal form.

Lemma 31 Let Gi a group with standard normal form then the canonical for
of an arbitrary word of the group Gi�1 is unique iff the following condition are
met:

• p is a system of stable letters;

• If the word Upε and V pε are canonical U, V P Gi, p letter of weight i� 1
and U � VApε then the equality Apε �Gi 1 holds.

Lemma 32 Let Gi be a group with standard normal form and tpu a regular
system of stable letters. Suppose that any word Apε �Gi 1 with the letter p of
weight i� 1 is representable as:

Apε �Gi V1x1V2x2V3

where x1, x2 are letters of highest weight and the word is x-irriductible for every
letter x of higher weight. If an arbitrary word of the form

x2CpBx2V3qp
ε , x�1

1 CpBx�1
1 V �1

1 qpε

is prohibited or includes a prohibited subword (with respect to the letter p) then
the second condition of Lemma 31 are satisfied.

4Every of these role derive by the relation A1AxxBxA2p � pB1AyyByB2, where B �

B1yB2andA � A1xA2
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Chapter 5

Undecidibility of the word
problem for the groups

5.1 Bokut’ proof

In [3] Bokut gives the proofs of Novikov-Boone’s theorem proving that Boone’s
groups GpT, qq has standard basis. It make it easyer (Bokut’ [4]) to prove that
exists a finitely presented group in which the word problem for the group GpT, qq
can have any fixed Turing degree of unsolvability.

5.1.1 The Boone group

To introduce the Boone group GpT, qq is needed to extend the concept of stable
letters to system with more than one letter. A set P � tpmu is a system of
stable letters of a group G over Ĝ if the group G can be presented by

G � 〈ΣĜ Y tpmu|RĜ Y tAipmi � pniBi|Ai, Bi P Ĝu〉.

The letters involved in the same relation are called contiguous. Completing this
definition with transitivity and reflexivity is obtained a partition of P given by�
nPItpmumPPn where all the pm P Pn are contiguous to a fixed pn for every

n P I. Since exist A1ni , B
1
ni such that Anipni � pnB

1
ni so by pni � A1�1

ni pnB
1
ni

is possible to eliminate all the pm with m R I and so present the group in the
form:

G � 〈ΣĜ Y tpmumPI |A
1
nl
pn � pnFnl〉.

Definition 46 The system P of stable letters is regular if every pm P I are
stable letters. For pni , pnj contiguous is possible to define

Apni ,pnj � A1njApnA
1
ni Bpni ,pnj

� B1njBpnB
1
ni

where A1nj , A
1
ni , B

1
nj and B1ni are words participating in the relation which links

letters pni , pnj to pn. It is also valid the following notational equality:

Apεnipεni � Bp�εnj p
�ε
ni
.
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In the same manner of Chap.4.2 is possible to define the individuality of
a letter and extended system of transformation to reformulate the lemmas 27,
Britton’s and Novikov’s lemmas. For example the analogous of lemma 27 tell
that, given a chain of extended transformation

Wpεn1
U ÑW1p

εU1 Ñ . . .ÑWkp
ε
nk
Uk

where pεni have the same individuality, there exists twin words Apεnipεni and

Bpεni
pεni

such that:

W �WnApεnkpεn1
and U � B�1

pεn1
pεnk

Un

while Britton lemma tells that given a regular system of stable letters P of a
group G over Ĝ and a word W �G 1 than either W P Ĝ and W �Ĝ 1 or W
includes subword of the form p�εnjApεnipεnj p

ε
ni .

Let’s now build the Boone group like a succession of HNN extension, for every
extension will be given them additional generators and relations, the letters of
maximal weight that will appear in the definition of prohibiten words will be
highlited and there will be explicitated the twin words form.

Definition 47 (Boone group) Let T be a special semigroup1, i.e. a sem-
group generated by tsd, qeudPD,ePE and relations Ai � Bi, 1 ¤ i ¤ N where
Ai, Bi special words (Ai, Bi � SqeS

1 where S, S1 are tsdu-words).

• G0 � 〈x, y〉;

• G1: tsd|d P Du | yysd � sdy, xsd � sdxx ,
Asd � V px, y2q , Bsd � V px2, yq;

• G2: tli, ri|1 ¤ i ¤ Nu | sdli � yliysd, sdxrix � risd ,
Ali � V py�1sdq, B � V pysdq, Ari � V psdxq, Bri � V psdx

�1q;

• G3: tqe|e P Eu | Ai � liBiri, Ai � A1iqniA
2
i , Bi � B1iqmiB

2
i ,

where A1i, A
2
i , B

1
i, B

2
i are tsbu-words and

Aqmiqni � V pA1�1
i liB

1
iq, Bqnipmi

� V pA2i r
�1
i B2�1

i q;

• G4: ttu | lit � tli, yt � ty ,
At � V pli, yq � Bt;

• fixed a q P tqeu, G5: tku | rik � kri, xk � kx, q�1tqk � kq�1tq ,
Ak � V pri, x, q

�1tqq � Bk.

Theorem 33 The Boone group GpT, qq � G5 have a standard basis.

Proof: Let’s build the set Ci of the words in standard normal form for every
Gi:

• C0 is equal to the set of all irreducible words on the alphabet tx, yu (also
negative letters), by definition Ax � Bx � Ay � By � 1;

1App.A
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• the set C1 it’s constituited by words in the form

CpW q � U1sd1
U2 . . . UksdkUk�1

where Ui P C0 and CpW q does not contain subword in the form:

αBαA
2p, α�1Bα�1A1�1p, βBβB

2p�1, β�1Bβ�1B1�1p�1.

Since A � yy,B � y (A1 � 1, A2 � yB1 � B2 � 1) or A � x, B � xx
(A1 � A2 � 1, B1 � x,B2 � 1), the prohibiten words wil be in the form:

yV pyqA2sd, y�1V pyqA1�1sd, yV pyqB2s�1
d , y�1V pyqB1�1s�1

d ,

xV pxqA2sd, x�1V pxqA1�1sd, xV pxqB2s�1
d , x�1V pxqB1�1s�1

d ,

so them have to contain a subword in the form:

y2sd, y�1sd, ys�1
d , y�2s�1

d ,

xsd, x�1sd, xs�1
d , x�2sd.

In that simple case is possible to see that in a normal form word in G1

before a positive sd there could be:

1. the word before a positive sd have to terminate with a single occur-
rence of an y;

2. the word before a negative sd have to terminate with a single occur-
rence of a negative x.

• the set C2 it’s consists of reduced word in the form

U1αi1U2 . . . UkαikUk�1

where Ui P C1, αij P tri, li|i ¤ i ¤ Nu containing no subword in the form:

sdV px
2, yqlεi , s�1

d V px, y2qyεlεi ,

sdV px
2, yqxεrεi , s�1

d V px, y2qrε,

where V , V xε ,V yε ( whereV � V px2, yq or V px, y2q) are reduced, d P
D, 1 ¤ i ¤ N . Since a word Al can be in the form ySy�1 with S reduced
word in tsdu, elimination rule could not and the word in the form

sdV px
2, yqlεi or s�1

d V px, y2qyεlεi

are prohibited, lemma 32 is verified for that kind of word (choosing x1 the
first letter of S and x2 the last one), else lemma 31 holds.

• To verify the existence of the standard basis for G3 will suffice to use the
lemma 31: since a word Aqmqn ,Bqmqn are equal to 1 iff his projection on
the alphabet tli, riu is equal to 1. It follows that the letters qe are regoular
and as above is possible to apply the lemma 32, so G3 is a gruop with
standard basis;
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• In G4 the prohibited word are in the form

yδtε liCpy
�1SyV pyqqtε l�1

i CpySy�1V pyqqtε

where δ � �1 and S a reduced tsdu-word. Since every elimination of
prohibited word reduce the number of li or y. The lemma 31 is proved
because if two reduced word Ut, Wt where U � WAt � WV pli, yq than
V pli, yq � 1.

• Finally a normal form word contains no subword of form:

rδi k
ε , xδkε , tδCpV pli, yqqW pri, xqqk

ε

where δ � �1. The presence of W pri, xq in the last class of prohibited
words is due to the fact that W pri, xq commute with k and by the fact that,
if Σ is a special word of T such that Σ �T q, then Σ�1tΣk �G5

kΣ�1tΣ.

Lemma 34 The word problem for the group G4 is solvable.

Proof: Let us verify that, for every word X P G4, the canonical word CpXq
equal to X is effectively calculable. As observed, the problem reduction to canon-
ical form it depends of the recognition of prohibited words. The last one is related
to the recognition problem for the subwords in the form Ax,Bx where x is a sta-
ble letter of the group Gi, i   4, but also Ax,x1 ,Bx,x1 where x, x are contiguous
stable letters (in the case of i � 3). For the groups G1, G2 to recognize prohibited
words is trivial. For example in G2 we need to recognize a word V px, y2q among
the word of the group G0 and an irreducible word equal to V px, y2q coincides
with it.

In the group G3 we have to solve the membership problem for words of G1

and each of the following subgroup

A1 � 〈y�1sb〉, A2 � 〈ysb〉, A3 � 〈sbx〉, A4 � 〈sbx�1〉.

In the case of A1, for example, an arbitrary element is representable in the form
ySy�1 where S is an irreducible word in tsb|b P Bu. Then a word U P G1 is
equals of a word in the subgroup A1 iff U � CpySy�1q.

For the group G4 we have to recognize, for example, the word in the form
V py�1sbqy

l � ySy�1yl among the words of the group G1. If a canonical word
U equals a word, of the form tackled, in the group G1 then the word S is the
projection of the word U on the alphabet tsbu and CpyS�1y�1Uq � yl, which
can be recognized by reducing to canonical form in the group G1.

Lemma 35 Let S, S1 special word in T then S �T S
1 iff there exist V pli, yq,W pri, xq

such that:
S �G3 V pli, yqS

1W pri, xq.

Proof:

ð Let S, S1 be special words in T such that S �T S
1. Inductively it suffice to

consider the case S Ñ S1: if S � UpsbqAiU
1psbq and S1 � UpsbqBiU

1psbq
exist Upsbq, U

1psbq. Since Ai � liBiri, for some V pli, yq and W pri, xq, the
equality S � V pli, yqS

1W pri, xq holds in the group GpT, qq.
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ñ Let S � UpsbqAiU
1psbq, S

1
� UpsbqBiU

1psbq and V pli, yq � yn0 lε1ii � � � l
εk
ik
ynqk

with V reduced and Cpyn0 lε1ii � � � l
εk
ik
S11qmq � S1qmU with U P G. However,

the normal form of

yn0 lε1ii � � � l
εk
ik
S11qm

given by the standardization process will give us

yn0 lε1ii � � � l
εk
ik
S11 �G1

S1Aplε1ii � � � l
εk
ik
q

where Aplε1ii � � � l
εk
ik
q � Aqmqn and Aqmqn is reduced.

It follows that Bpr�ε1ii
� � � r�εkik

qS12W pri, xq � S2 and by Britton’s lemma
we have W pri, xq � xmkrεkik � � � l

ε1
r1x

m0 .

By induction if k � 0, then S � S1. If k ¥ 1 an , for example εk � 1 than
we have

liky
nkS11qmik � liky

�1SyBik1qmik

where S is a positive tsdu-word, From a first reduction of the right side
we obtain

S � yn0 lε1ii � � � l
εk�1

ik�1
ynk�1SAik1qnikAik2r

�1
ik
B�1
ik2S

1
2x
mkrεkik � � � l

ε1
r1x

m0

and by W pri, xq � xmkrεkik � � � l
ε1
r1x

m0

B�1
ik2S

1
2x
mk � xS1x�1

where S1 is a positive word, so S12 � Γik2S
1. In this way we obtain

S � yn0 lε1ii � � � l
εk�1

ik�1
ynk�1SAik1qnikAik2x

mk�1rεkik�1
� � � lε1r1x

m0

and S1 � SBik1qmikBik2S
1 in T and so S �T S

1 as required.

Lemma 36 The problem for a word U of the group G3 to equal to a word in
the form V pli, yqSW pri, xq with S a special word is solvable.
Proof: By induction, it is possible to define Bprε1i1 , . . . , r

εk
ik
q for k ¥ 0;

Bp1q � 1, Bprεi q � pAi2riB
�1
i2 q

ε, Bprε1i1 , . . . , r
εk
ik
q � Bprε1i1 , . . . , r

εk�1

ik�1
qBprεkik q.

Suppose that Q is a canonical word for G3 in the form V pli, yqSW pri, xq
where V,W are in canonical word and S special. Among all the word inthe form
V pli, yqSW pri, xq equal to Q, if we take the one with the minimum number
of li we have Q � CpV SW q � Q1pli, y, sdqqnCpBqnqmS

2W pri, xqq where S �

S1qmS
2,the word Q1 does not contain s�1

d and Bqnqm is an rj-irriductible word.
In particolar we conclude that

CpQ1Aqnqmq � CpV S1q

therefore this word does not contain s�1
d . If a word Bqnqm ends with the word

r�1
i B�1

i2 or riB
�1
i2 then the wrod S2 does not begin with the word Bi2 or Ai2

respectively; otherwise the word Q is representable the form V pli, yqSW pri, xq
having less li letters than V . This imply that during the process to reduce the
word BqnqmS

2W to a canonical form, no letters ri are cancelled.
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So Q is in the form V pli, yqSW pri, xq iff Q � Q1pli, y, sdqqnQ2pri, c, sdqqn
where Q1 does not contain s�1

d and if Q2 � R0r
ε1
i1
, . . . , rεkikRk with k ¥ 0, where

Rj does not contain rεi , then there exists h P t0, . . . , ku such that Bprε1i1 , . . . , r
εk
ik
q

is a word in the form Bqnqm for a suitable qm and all the words CpQ1Aqmqnq,
CpB�1

qnqmQ2q do not contain the letters s�1
d . All these conditions are algorith-

mically recognizable.

Theorem 37 The decidability of the word problem for the group GpT, qq coin-
cides with the decidability of the problem to verify the equality of special word
of a monoid T to a word q.

Proof: By lemma 34 and Theor.33 is possible, for all words W P G, to calculate
its normal form CpW q � U1kU2k . . . UnkUn�1 in a finite number of reduction.
Since the word problem of G4 is solvable the problem is deduced determinate if a
word Q in G3 is equal or not to a word V pli, yqqW px, riq. By lemma 36 is possi-
ble to determinate if a word Q is equal to a word in the form V pli, yqΣW px, riq.
So lemma 31 the decidability of word problem for GpT, qq can be reduced to
decidability of word problem for the monoid T .

Corollary 38 (Undecidability of word problem for the groups) There ex-
ists a finitely presented gruop with undecidable word problem.

Proof: By Theo.42 exists a finite presented monoid T with defining relation
given by special words and undecidable word problem, so by Theo.37 the associ-
ated Boone group will have undecidable word problem.

5.2 Lafont proof

Using the affine machines Lafont in [15] give another proof of the theorem,
similar to the proof given in [1] by Cohen Aandrea, in a simply way. We’ll use
the same notation of Theor.3 : F2 � 〈a, b〉 and an � bnab�n.

Lemma 39
For all p, p1, q, q1, z P Z, q, q1 � 0, there is an isomorphism φ : F2 Ñ F2 such
that φpap�qzq � ap1�q1z.

Proof: By Lem. 4 〈ap, bq〉 � F2 � 〈ap1 , bq
1〉 so it exists an isomorphism φ such

that φpapq � ap1 and φpbqq � bq
1

and so:

φpap�qzq � φppbqqzappb
�qqzq � φppbqqzqφpapqφppb

�qqzq � pbq
1

qzap1pb
�q1qz � ap1�zq1 .

Notation: Let I � Z, rP sF2 is the subset of F2 generated by the set taz|z P Zu.

Lemma 40 Let p, q P Z, so 〈ap, bq〉X rZsF2 � rp� qZsF2 .
Proof: Let K � rp� qZsF2 . Every reduced word w in 〈ap, bq〉 can be written in
the form uv with u P K and v P 〈bq〉, because there are ki P Z and δi P t�1, 1u
such that:

w � bk0qaδ1pb
k1qaδ2p � � � aδnpb

knq
�

� bm0�k0q�δ1pabm1�k1q�pδ2�δ1qpa � � � abmn�knq�δnp �

� am0
am1�m0

� � � aΣji�0mi
� � � aΣn�1

i�0 mi
bΣ

n
i�1mi .
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Let π : F2 Ñ 〈b〉 the projection of F2 on 〈b〉 (i.e. πpaq � 1, πpbq � b), so
K � rZsF2

� kerpπq and @x P 〈ap, bq〉, πpxq � πpuvq � πpuqπpvq � πpvq � v so
rZsF2

X 〈ap, bq〉 � K. By K � rZsF2
and k � 〈ap, bq〉 follows the equality.

Proof: [Undecidability of word problem for the groups] Let m P Z and A ma-
chine affine. It’s possible to associate for every transition of A a local iso-
morphism φi. By the Theor.26 is possible to obtain an extension of FA of F2

with stable letters t1 . . . tn which represents the local isomorphism φ1 . . . φn. Let
P � tz P Z|z Ø�

A mu and H � 〈am, t1, . . . tn〉. By Lemma 39 follow:

• if z ÑA z1 so az1 � φipazq � tiazt
�1
i exist an i P t1, . . . , nu

• if z Ø�
A z1 so az1 � φin � . . . � φi1pazq � uazu

�1 exist an u P 〈t1, . . . tn〉

so K � H because am P K and for every z Ø�
A m, am Ø�

A az and K �
K X rZsF2

� H X rZsF2
. Moreover K it’s invariant for every local isomorphism

φi because

〈ap, bq〉XK � 〈ap, bq〉X rZsF2
XK � rp� qZsF2

X rP sF2
� rpp� qZq X P sF2

and so (see Theo. 26) K � H X F2.
So is possible to see that exists an extension FA finitely presented of F2 and
u P F such that

azu � uam in FA ô az P H ô az P K � rP sF2
ô z Ø�

A m

Therefore the word problem for group FA is reducible to the Halt problem for
the machine affine A which can be undecidable (see Prop.18).
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Chapter 6

Conclusion

Now that we have analyzed the two proofs, we can find out the differences of the
use of rewriting:

• Bokut’ starts from the definition of Boone group to create a convergent
rewriting system on its elements. Using it, he shows that any elements
will have a canonical representative and so the word problem will be re-
duced to the verification if two different elements have the same canonical
representative.

This process will be equivalent to every implementable test on words to
verify the equivalence since this new rewriting system is derived by the
presentation and can be viewed as an order on the equivalence classes of
words in GpT, qq, where the normal forms are the minimums, so it is just
a test on two representatives of the equivalence classes. This rewriting
system will work progressively on the alphabets used to build GpT, qq com-
puting its normal form. This computation will be decidable iff the word
problem of the monoid T is since, during the computation, the rewriting
system needs to know if an elements of T is equivalent to q and so, by the
construction of T , if an element of the monoid T represents a configuration
of a Turing machine contained in a terminating computation;

• The Lafont’s idea is to consider a copy of F8 contained in F2 to simulate
the natural numbers and, usind the affine machines A, to consider a subset
of n P N “equivalent” to a fixed m P N. With HNN theorem will be
possible to extend F2 with elements that will simulate the affine transition
of A. In this new group LpAq there will be some elements corresponding
to natural numbers and some others to affine transitions, so there will
be some elements capable to represent a computation of A. To test if
an element which represent a computation of A is equal to the element
representing the number m will be decidable if and only if the equivalence
problem for A is. Taking an affine machine with undecidable equivalence
problem, LpAq will be a group with undecidable word problem.
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6.1 Word problem and Propositional linear logic

The results of the undecidability of word problem for monoids can be used to
prove the undecidability of non commutative propositional linear logic (NCL,
see App.B) even in the multiplicative fragment [16]. We’ll encode the word
problem for monoids in a similar way of Chap.2.5 encoding axioms capable to
represent derivation correspondig to computation of rewriting systems.

We’ll define the translation of the word rab . . . zs as list of NCL formulas
pKa , p

K
b , . . . , p

K
z , rab . . . zsK as pKa b p

K
b b . . .b p

K
z and of the rules v Ñ w P R as

an axiom rv Ñ ws interpreted so $ rvs, rwsK.
For any rewriting system pΣ|Rq we’ll be possible to associate a set of formula

tpai , p
K
aiuaiPΣ and a theory TpΣ|Rq � trv Ñ wsuvÑwPR.

With this encoding, a “pair of words” problem P pv, wq : v Ñ�
R w? for two

words v and w it’s equivalent to prove the sequent

$ rvsrwsK

in the relative NCL theory encoding the rewriting system.

Proposition 15 A “pair of words” problem P pv, wq is solvable in pΣ|Rq iff
$ rvsrwsK is provable in the theory TpΣ|Rq.
Proof: we’ll not give a proper proof of the lemma but we’ll show an example
to understand how NCL simulate a rewriting system. First we note that if
U � u1 . . . uk we have:

I
$ pKu1

, pu1

I
$ pKu2

, pu2
b

$ pKu1
, pKu2

, ppu1
b, pu2

q
I

$ pKu3
, pu3

b
$ pKu1

, pKu2
, pKu3

, ppu1 b pu2b, pu3q

...
... b

$ pKu1
, . . . pKuk , ppu1

b . . .b pukq

}

$ rU s, rU sK

so if U � V , $ rU s, rV sK is provable.
The sequent calculus to simulate the application of the rule W ÑW 1 on the

word UWV to obtained the word UW 1V is the following:

T
$W, rW 1sK

...

$ rU s, rW 1s, rV s `
... `

$ rU s, γprW 1sq, rV s
Cut

$ rU s, rW s, rV s

where γprW 1sq is the formula derived by rW s applying all the possible ` rules.
The following concrete example simulates the application of the rule cdÑ xy

on the word UcdV to obtained the word UxyV :
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T
$ pKc , p

K
d , ppx b pyq

...

$ rU s, pKx , p
K
y , rV s `

$ rU s, ppKx ` pKy q, rV s
Cut

$ rU s, pKc , p
K
d , rV s

In such proofs, the application of Cut rules correspond to an application of a
rewriting rule in the rewriting system.
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Appendix A

Combinatorial system

Rewriting system, Post system, Thue system are different system of substitution
of substrings in strings with the same base concept:

Definition 48 (production) [11] Fixed an alphabet Σ, a rewrite rule, semi-
Thue productionor simply production is an expression

uÑ v

if P is a semi-Thue production uÑ v, A,B P Σ�

AÑP B

mean that exists A1, A2, B1, B2 P Σ� such that A � A1uA2 and B � B1vB2 A
normal production is a produictin in the form uv Ñ vu1. Two word in u,w P Σ�.

Definition 49 A combinatorial system consists of an alphabet and a set of pair
of words callad production.

A semi-Thue system or string rewrite system S � pΣ|Rq is given by an
alphabet and a finite set of rewriting rule. A Thue system is a semi-Thue system
where for every rewriting rule u Ñ v exists its inverse v Ñ u. A Post system
P � rΣ; Φs is a combinatorial system with a finite set of normal production. Two
word are called equivalent in P ( written u �P w ) if there exists a sequence of
normal production which transform u in w.

A.1 Undecidability of word problem for monoids

Proposition 16 Every non deterministic Turing machine can be simulated by
a semi-Thue system.

Proof: Let Σ the alphabet of T and Q � tqiu the states of T . Is so possible
([12]) code the configurations of a Turing machine T writing the contents of the
tape as a word on the alphabet Σ and placing the letter qi before the letter read
by the head. We’ll call a word on a bipartite alphabeth Σ Y Q special if in it
there will be a single occurrence of letters in Q. To understand the intuition
we’ll give the following:
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Example: the special word a0 . . . ai�1qai . . . an will correspond to the following
configuration of the machine:

q
5

. . . a0 . . . ai�1 ai ai�1 . . . an . . .

So every transition given by δ will correspond a rewriting rule in the form:

qai Ñ a1iq
1 if δpai, qq � pa

1
i, q

1, Rq

ai�1qai Ñ ai�1a
1
iq
1 if δpai, qq � pa

1
i, q

1, Lq

Let R be the set of rule corresponding to the set of 5-tuple describing δ, so the
presentation pΣYQ|Rq of the monoid MpT q can simulate every computation of
T . If w is a special word corresponding to a final configuration (i.e. the letters
in Q is in K), to test if a word v is equal to w we need to verify if a computation
starting from the configuration v will terminate with w, so in particular, if T
terminate some of its computation. This problem is exactly the halting problem.

Corollary 41 Semi-thue system are a Turing complete computation model.

This proves the following:

Theorem 42 (Post-Markov ([20],[18]) Exists a finite semigroup with un-
decidable word problem.
More preciselly it exists a monoid finitely presented with rewriting rule expressed
by special words.

The following example is given by Ceitin in [8].

Example: The semigroup 〈a, b, c, d|R〉� where R are the relations:

ac � ca, ad � da, bd � db, ce � eca, dc � edb, cca � ccae

has unsolvable word problem.

A.2 Why undecidability of word problem for groups
is more difficult

We’ll give an example to show why to prove the undecidability of word problem
for groups we can’t use the same methods used to prove the same results for
monoid.
Example: Let M be a 2-register machine given by the following instruction
set:

s1 JZDECpa, sK, s2q;

s2 INCpa, s3q;
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s3 JZDECpb, sK, s3q;

sK HALT .

All the transition of M will be in the form:

p1, 0, yq ÑM pK, 0, yq , p1, x�1, yq ÑM p2, x, yq , p2, x, yq ÑM p3, x�1, yq,

p3, x, 0q ÑM pK, x, 0q , p3, x, y � 1q ÑM p3, x, yq.

If we encode the configuration pi, x, yq ofM as ri, x, ys � αaxsib
yω we can build

a monoid
MM � 〈ΣM � tα, ω, a, b, s1, s2, s3, sKu|R〉�

where R is the set of rules applied on word in the form αaxsib
yω represent the

transition of M:

αs1 Ñ αsK, as1 Ñ s2, s2 Ñ as3, s3ω Ñ sK, s3bÑ s3.

In this monoid s1 �M s3 but in the group G � 〈ΣM|R〉 we have a�1as1 Ñ s1

and a�1as1 Ñ a�1s2 Ñ a�1ac3 Ñ s3 so s1 �G s3.
This is not coherent with the register machine computing since:

p1, 0, 1q Ñ�
M pK, 1, 0q and p1, 0, 1q Ü�

M pK, 0, 0q

while in G we have r1, 0, 1s � αs1bω �G αs3bω �G αs3ω �G αsKω � rK, 0, 0s.
The presence of the inverse element for every element of G create interfer-

ences which doesn’t respect the derivation of a model of computation, because,
in general, transitions don’t admit an inverse transition capable to restore the
changes done.

Theorem 43 (Word problem for commutative rewriting system)
Let pΣ|Rq a presentation of a commutative monoid, so the word problem for
〈Σ|R〉� is decidable. (i.e. )
Proof: since tpaiaj , ajaiq, pajai, aiajquai,ajPΣ �Ø

�
R letters commute, so it only

matters the number of occurrence of any letters to know if it is possible to apply
a rule. It will be possible to compute, form any word v, the set Sv of words in
which it can be rewritten and verify if for some of word in Sv and Sw contain
the same number of occurrence of the same letters.
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Appendix B

Linear Logic

A linear logic sequent is a $ followed by a multiset of linear logic formulas. We
assume a set of proposition pi given, along with their associated negation pKi .
Below we give the inference rules for the linear sequent calculus, along with the
definition of negation and implication. The negation is a defined concept, not an
operator. We’ll note with pi, p

K
i propositional literal, A,B,C, . . . for formulas

and Σ,Γ,∆ for multisets of formulas.

• Identity

I
$ A,AK

• Cut

$ Σ, A $ Γ, AK
Cut

$ Σ,Γ

• Tensor

$ Σ, A $ B,Γ
b

$ Σ, pAbBq,Γ

• Par

$ ΣA,B `
$ Σ, A`B

• Plus

$ ΣA
`

$ Σ, A`B
$ ΣB

`
$ Σ, A`B

• With

$ Σ, A $ Σ, B
&

$ Σ, pA&Bq
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• Weakening

$ Σ
?W

$ Σ, ?A

• Contraction

$ Σ, ?A, ?A
?C

$ Σ, ?A

• Dereliction

$ Σ, A
?D

$ Σ, ?A

• Of course / Bang

$ ?Σ, A
!S

$ ?Σ, !A

• Botton

$ Σ
K

$ Σ,K

• 1

1
$ 1

• True

T
$ Σ, T

There also is an exchange rule usually omitted in linear logic:

$ A1, . . . , Ak
σ P Sk$ Aσp1q, . . . , Aσpkq

The principal formula of an inference rules is any formula introduced by that
rule, we say that a formula is active in a Cut if it appear in one of premises
but not in the conclusions.

With the term multiplicative fragment (MLL) is denoted the calculus with
inference rules I, Cut,b,` and with MALL the multiplicative-additive fragment
with rules I, Cut,b,`,&,`. The non-commutative linear logic NCL is given
prohibiting the use of the exchange rules.
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B.1 Cut Elimination

Like in classical sequent calculus, also in linear logic we have an analogous cut
elimination theorem:

Theorem 44 If A is provable in linear logic , there exists a prove of A without
Cut rules.
Proof: We have to give a procedure to eliminate Cut rules form derivation:

• if both formulas active in the cut are not principal, it will be possible to
simply switch the position of the cut going up in the proof tree;

• if at least one of the formulas active in the cut is not principal, it will be
possible to simply switch the position of the cut:

– In the case of binary rules (different from cut):

...
$ Σ, A

...

$ Σ1, C,B
�

$ φpΣ,Σ1q, C, pA �Bq

...

$ Γ, CK
Cut

$ φpΣ,Σ1q, pA �Bq

became

...
$ Σ, A

...

$ Σ1, C,B

...

$ Γ, CK
Cut

$ Σ1,Γ, Bq
�

$ φpΣ,Σ1q,Γ, pA �Bq

where

φpΣ,Σ1q �

"
Σ,Σ1 if � � b
Σ if Σ � Σ1, C and � � &

.

– In case of unary rules:

...
$ Σ, C,B,A

�

$ φpΣ, Bq, C, φpA,Bq

...

$ Γ, CK
Cut

$ φpΣ, Bq,Γ, φpB,Aq

became

...
$ Σ, C,B,A

...

$ Γ, CK
Cut

$ Σ, B,A
�

$ φpΣ, Bq, φpA,Bq
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where

pφpΣ, Bq;φpB,Aqq �

$''''&
''''%

pΣ;A`Bq if � � `
pΣ, B;A`Dq if � � `
pΣ, B,A; ?Dq if � � ?W
pΣ, B,A; ?Dq if � � ?C and Σ � Σ1, ?D, ?D
pΣ, B; ?Aq if � � ?A

.

• if both formulas active in the cut are principal, it will be possible to simply
switch the position of the cut: In the case of binary rules (different from
cut):

b vs `
...

$ Σ, A

...

$ B,Σ1
b

$ Σ, AbB,Σ1

...

$ Γ, AK, BK `
$ Γ, AK `BK

Cut
$ Σ,Γ,Σ1

became

...
$ Σ, A

...

$ B,Σ1

...

$ Γ, AK, BK
Cut

$ Γ, AK,Σ1
Cut

$ Σ,Γ,Σ1

& vs `

...
$ Σ, A

...
$ Σ, B,

&
$ Σ, A&B

...

$ Γ, AK
`

$ Γ, AK `BK
Cut

$ Σ,Γ

became

...
$ Σ, A

...

$ Γ, AK
Cut

$ Σ,Γ

?W vs !S

...
$ Σ

?W
$ Σ, ?A

...

$ ?Γ, AK
!S

$ ?Γ, !AK
Cut

$ Σ, ?Γ
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became

...
$ Σ

?W
...

?W
$ Σ, ?Γ

?C vs !S

...
$ Σ, ?A, ?A

?C
$ Σ, ?A

...

$ ?Γ, AK
!S

$ ?Γ, !AK
Cut

$ Σ, ?Γ

became

...
$ Σ

?W
...

?W
$ Σ, ?Γ

?D vs !S

K vs 1

The theorem is still valid also in NCL fragment:

Theorem 45 If A is provable in NCL , there exists a prove of A without Cut
rules.

As seen in Ch.2.5, we may need work in a fragment of linear logic with some
non-logical axioms i.e. rules in the form:

T
$ C, pKai , . . . , p

K
aj

where C is a formula in MALL and pKaj negative literals. If we define a direct
cut an application of a cut rule where one of the premises is consequence of a
non-logical axiom and a direct proof is a proof without non-direct cut, the cut
elimination theorem is still valid as enunciated in Teor.19.

All the proofs of these theorem can be founded on [16], App.A.
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