
Condensed Notes for Security Protocol

Matteo Acclavio

November 24, 2021

1 Basic definitions

1.1 Messages
Definition 1 (Message). A message term or simply message is a term generated by
the following syntax

M,N B x variable
| pk(M) public key of M
| {|M|}N message M encrypted using N
| dec (M,N) message M derypted using N
| 〈M,N〉 pair containing M and N
| fst(M) first component of a message M
| snd(M) second component of a message M
| sign(M,N) message M signed using N
| check(M,N) removing a signature from a message M using N

Equational theory for messages

dec ({|M|}K , pk(K)) ≡ M decription
fst(〈M,N〉) ≡ M first projection

snd(〈M,N〉) ≡ N second projection
check(sign(M,K), pk(K)) ≡ M checking signature

Notation 2. In these notes we use the following colours and typesetting whenever
it may help the intuition to consider some messages specifically as agents, roles or
channel names:

capital calligraphic Agents A,B,C, . . .
small c’s Channels c1, c2, c3, . . .
capital R’s Roles R,R1,R′ , . . .

We may push even further on these intuitions by specifying the “type” of a message,
e.g., an index i ∈ N, a channel c, an agent A or a role R. The sole purpose of these
annotations are to help intuition and they can be skipped while reading the text.

1

1.2 Protocols
A security protocols is given by a set of behaviours called roles. We describe roles by
means of threads defined as follow

T B 0 end the execution
| send(c,M); T sent the message M on the channel c, then continue with T
| freshx; T bind the variable x, then continue with T
| recv(c, x); T receive a message on the channel c and register it as x, then continue with T
| if M = N then T if the message M is equal to N, then continue with T (otherwise end)
| C claims

(1)
where (for this note) we limit the syntax for claims to be the following

C B 0 end the execution (no claim)
| secret(M); C the message M is secret
| w-alive(M,N); C M claims weak-aliveness for N
| r-alive(M,N); C M claims recent-aliveness for N
| w-alive-role(M,N ,R); C M claims weak-aliveness in the correct role R for N
| r-alive-role(M,N ,R); C M claims recent-aliveness in the correct role R for N
| ni-agree(M,R); C M claims non-injective agreement for the role R
| i-agree(M,R); C M claims injective agreement for the role R
| ni-synch(M,R); C M claims non-injective synchronization for the role R
| ni-synch(M,R); C M claims injective synchronization for the role R

(2)
We may write claim(M1, . . . ,Mn) to denote a single claim secrecy, aliveness, agreement
or synchronization claim with n arguments M1, . . . ,Mn.

Remark 3. During the course we defined recent aliveness property by parametrizing
them with an additional value representing which intuitively is a channel specifying
a run of the role. Here I only translate the ones presented in the book “Operational
Semantics of Security Protocols”.

A system running a protocol may contain any number of agents executing instances
of any role. Such an instance of a role made by an agent is called run. Agents may run
multiple roles in parallel. An honest agent shows no behaviour other than the one de-
scribed by the role they are running. In contrast, an attacker has complete control over
the communication network: they can intercept any message and learn their content, as
well as insert messages produced using its knowledge.

The role specification Spec(R) of a role R is given by its initial knowledge (set of
messages) together with a thread describing its behaviour, that is,

Spec(R) B 〈KR ,TR〉 for a set of messages KR = {M1, . . . ,Mn} and a thread TR

We call each occurrence of a send or recv in the thread of a role specification an
event and we denote by E(R) = {e1, . . . , en} the set of events of a role R. In particular,
we denote Erecv(R) and Esend(R) the subset of send and receive event of R respectively.

2

We assume the existence of an order / between the events defined by their mutual
order in the thread role. We denote e / e′ if the event e occurs before e′ in the thread
TR , that is,

e/e′ if TR = T1; e; T2; e′; T3 or TR = T1; e; e′; T2 for some threads T1,T2,T3

To the study of a protocol it is useful to represent multiple threads running in par-
allel. For this purpose we define network which we denote as follows:

P,Q B T a thread T
| freshx; P bind the variable x, then continue with T
| P ‖ Q execute P in parallel with Q
| !P the process P a be executed many times in parallel
| C claim certain properties

(3)

The specification of a protocol P is given by describing the behaviours of the roles
in the protocol. We denote by R(P) the set of roles of the protocol P and by E(P) the
set of events of all its roles, that is

E(P) =
⋃

R∈R(P)

E(R)

Even if in the specification of the protocol P we split the communications between
the parties into two distinct events (one send-event and one recv-event), we assume
the existence of a one-to-one correspondence between Erecv(P) and Esend(P). We write
e d e′ to denote that e is a send-event in Erecv(P) and e′ is its corresponding recv-
event in Esend(P).

1.3 Freshness
In order to define the notion of freshness, we first introduce the notion of free variable.

Definition 4. The set of free variables in a message is defined by induction as follows:

fv(x) = {x}
fv(pk()) = fv(M)
fv({|M|}K) = fv(M) ∪ fv(N)
fv(dec (M,K)) = fv(M) ∪ fv(N)
fv(fst(M)) = fv(M)
fv(snd(M)) = fv(M)
fv(〈M,N〉) = fv(M) ∪ fv(N)
fv(sign(M,N)) = fv(M) ∪ fv(N)
fv(check(M,N)) = fv(M) ∪ fv(N)

Definition 5 (Fresh). We say that a variable x is fresh in a message M if x < fv(M).
In this case we write FreshM(x) or simply Fresh(x) if M is clear from the context.
We also write FreshM1,...,Mn (~x) if ~x = {x1, . . . , xn} contains only fresh variables for all
M1, . . . ,Mn.

3

The set of free variables in threads or a network is defined similarly as follows:

fv(0) = ∅

fv(freshx; T) = fv(T) \ {x}
fv(recv(c, x)) = fv(T) \ {x}
fv(send(M,N)) = fv(M) ∪ fv(N)
fv(if M = N then T) = fv(M) ∪ fv(N) ∪ fv(T)
fv(claim(M1, . . . ,Mn)) =

⋃n
i=1 fv(Mi)

fv(P ‖ Q) = fv(P) ∪ fv(Q)
fv(!P) = fv(P)
fv(freshxP) = fv(P) \ {x}

And we extend the definition of freshness from Theorem 5 to threads and protocols.

1.4 Substitution
A substitution θ is a function mapping a finite number of variables x1, . . . , xn into a
finite number of messages M1, . . . ,Mn and we denote it

θ = {x1 7→ M1, . . . , xn 7→ Mn} or θ =

x1 7→ M1

...
xn 7→ Mn

Each substitution defines a map from messages to messages associating to each mes-
sage M a message Mθ defined inductively as follows

xθ =

Mi if x = xi for a i
x otherwise

〈M,N〉θ = 〈Mθ,Nθ〉 fst(M)θ = fst(Mθ) snd(M)θ = snd(Mθ)
{|M|}N θ = {|Mθ|}Nθ dec (M,N) θ = dec (Mθ,Nθ)

sign(M,N)θ = sign(Mθ,Nθ) check(M,N)θ = check(Mθ,Nθ)

Substitutions can also be applied to threads and networks:

0θ = 0
freshx; Tθ = freshz; (T {x 7→ z} θ) for a z such that FreshT(z)

(recv(M, x); T)θ = recv(Mθ, z); (T {x 7→ z} θ) for a z such that FreshT(z)
(send(M,N); T)θ = send(Mθ,Nθ); (Tθ)

(if M = N then ; T)θ = if Mθ = Nθ then ; (Tθ)
claim(M1, . . . ,Mn)θ; C = claim(M1θ, . . . ,Mnθ); C

(P ‖ Q)θ = Pθ ‖ Qθ
(!P)θ = !(Pθ)

Definition 6 (State). A state (also called extended process) is given by an substitution
θ (also called the active substitutionof the state) and a network P.

S B [θ; P] where θ is a substitution and P is a network
| freshx; S binding the variable x in S

4

send Kθ≡M and FreshK,N,T,θ(x)

[θ; send(M,N); T]
send(K,x)
−−−−−−−→ [θ ◦ {x 7→ N}; T]

recv Kθ≡M and Lθ≡N

[θ; recv(M, x); T]
recv(K,L)
−−−−−−→ [θ; T{x 7→ Nθ}]

[θ; T]
α
−→ S

match M≡N
[θ; if M = N then ; T]

α
−→ S

S
α
−→ S′

fresh Freshα(x)
freshx; S

α
−→ freshx; S′

[θ; T]
α
−→ S

extrude Freshα,θ(x)
[θ; freshx; T]

α
−→ freshx; S

claim Niθ≡Mi∀i∈{1,...,n}

[θ; claim(M1, . . . ,Mn); C]
claim(N1,...,Nn)
−−−−−−−−−−−→ [θ; C]

Figure 1: Labelled transition rules on threads

2 Operational semantics
An action α is an occurrence of a send, recv or claim in a protocol specification, that
is,

α ∈

send(M1,M2)
recv(M1,M2) M1, . . . ,Mn messages
claim(M1, . . . ,Mn)

 (4)

A labelled transition
α
−→ is a relation between two states S and S′ labelled by an

action α. We say that the state S reach the state S′ after the transition α when S
α
−→ S′

holds, that is when this expression is derivable in the sequent system defined by the
rules in Figure 1 and Figure 2. More in general, we say that S0 can reach the state
Sn+1 if there are states S1, . . .Sn and actions α1, . . . , αn such that Si

αi
−→ Si+1 for all

i ∈ {1, . . . , n}.
A trace is a sequence of actions which may be performed during the execution of

a protocol. We denote traces as formulas generated by the following syntax

φ B > | 〈α〉 φ with α an action from Equation (4)

Definition 7 (Satisfiability). We define the notion of satisfiability for a trace φ in a

5

[θ; P]
α
−→ fresh~x; [θ′; P′ ‖ Q]

L−parallel FreshQ(bn(α)∪~x)
[θ; P ‖ Q]

α
−→ fresh~x; [θ′; P′ ‖ Q]

[θ; Q]
α
−→ fresh~x; [θ′; P ‖ Q′]

R−parallel FreshP(bn(α)∪~x)
[θ; P ‖ Q]

α
−→ fresh~x; [θ′; P′ ‖ Q]

[θ; P]
α
−→ fresh~x; [θ′; Q]

!−repetition FreshP(bn(α)∪~x)
[θ; !P]

α
−→ [θ′; Q ‖ !P]

where bn(α) =

{x} if α = recv(c, x)
∅ otherwise

Figure 2: Labelled transition rules on networks

state S by induction φ as follows:

S > for any S
S 〈α〉 φ if there is S′ such that S

α
−→ S′ and S′ φ

3 Secrecy
Definition 8. A state S reveals a secret M if S 〈α1〉 · · · 〈αn〉 〈secret(M)〉 >.

4 Authentication
In order to define authentication properties, we need to be able to keep track not only of
the exchanged messages, but also of the author of a message, its role when the message
was sent or received, and in which run of that given role this event is performed.

To simplify our definitions, we convoy part of the information in the channels we
use for the send and receive actions. More precisely, we assume that each honest agent
will use a unique channel for each run of a role during the execution of the the protocol
after declaring it publicly.

For this purpose, we assume that each agent will send a message on a special chan-
nel called channels to inform all the other parties taking action in the protocol its name
and its role. This declaration is done by sending on this dedicated channel channels a
message containing the nameA of the agent, the role R this agent will be performing,
and the name c of the dedicated channel the agent is going to use during its execution
of that given role. That is, the agentA will perform the following action

Declare(A,R, c) B send(channels, 〈〈A,R〉, c〉)

Note that we assume that each honest agent will use the communicated channel only
for the actions of a single run of the chosen role, that is, there will be a one-to-one

6

correspondence between the set of channels communicated on channels and the set of
runs of a role by an agent.

After such a declaration, we would be able to identify the name of the agent, its
role while performing the action, and during which run the agent performed the action
by only looking at the channel used during a send or recv assuming that the action has
been performed by an honest agent.

Remark 9. We are not assuming that the information sent through channels is private,
that is, the information of the channels used by each agent during a specific run of a
role is public and can be exploited by an attacker. Moreover, we are not excluding the
possibility for an attacker to send a dishonest message in channels in which it claims a
fake name or a fake role.

4.1 Aliveness
Definition 10. A state S satisfies weak aliveness whenever for each trace

φ = 〈α1〉 · · · 〈αn〉 〈w-alive(M,N)〉 >

if S φ, then N is performing an action during one of its run, that is:

1. there is i ∈ {1, . . . , n} such that αi = Declare(N ,Rx, cy) for some Rx and cy, and

2. there is j ∈ {i + 1, . . . , n} such that α j ∈ {send(cy,Z), recv(cy,Z) | Z ∈ M}

Definition 11. A state S satisfies recent aliveness whenever for each trace

φ = 〈α1〉 · · · 〈αn〉 〈r-alive(M,N)〉 >

if S φ, then N is performing an action during each of its run, that is,

1. for all i ∈ {1, . . . , n} such that αi = Declare(N ,Rx, cy) for some Rx and cy,

2. there is j(i) ∈ {i + 1, . . . , n} such that α j(i) ∈ {send(cy,Z), recv(cy,Z) | Z ∈ M}

Definition 12. A state S satisfies weak aliveness in the correct role whenever for each
trace

φ = 〈α1〉 · · · 〈αn〉 〈w-alive-role(M,N ,R)〉 >

if S φ, then N is performing an action in the role R during one of its run, that is,

1. there is i ∈ {1, . . . , n} such that αi = Declare(N ,R, cy) for a cy,

2. there is j ∈ {i + 1, . . . , n} such that α j ∈ {send(cy,Z), recv(cy,Z) | Z ∈ M}

It satisfies recent aliveness in the correct role if for each trace

φ = 〈α1〉 · · · 〈αn〉 〈r-alive-role(M,N ,R)〉 >

if S φ, then N is performing an action in the role R during each of its run, that is,

1. for all i ∈ {1, . . . , n} such that αi = Declare(N ,Rx, cy) for some Rx and cy,

2. there is j(i) ∈ {i + 1, . . . , n} such that α j(i) ∈ {send(cy,Z), recv(cy,Z) | Z ∈ M}

7

4.2 Agreement and Synchronization
Definition 13. Let S be a state of an execution of the protocol P. We say that S
satisfies non-injective agreement whenever for each trace

φ = 〈α1〉 · · · 〈αn〉
〈
ni-agree(M, R̂)

〉
>

if S φ, then there exists a run for each role of the protocol such that each pair of
matched send and receive events in P are executed in these runs and their content the
same. That is, for each R ∈ R(P) there is (at least) a channel cR such that

1. αi(R) = Declare(AR ,R, cR) for an index i(R) ∈ {1, . . . , n} and an agentAR

2. for each event e ∈ E(R) there is a index i(e) ∈ {1, . . . , n} such that

αi(e) =

send(cR ,M) if e ∈ Erecv(R)
recv(cR ,M) if e ∈ Esend(R)

and such that if e dP e′, then

αi(e) = send(cR ,N) and αi(e′) = recv(cR′ ,M) with cR = cR̂ or cR′ = cR̂

and Mθi(e) = Nθi(e′), where θk is the active substitution of the state Sk such that

S = S0
α1
−−→ · · ·

αk
−−→ Sk = [θk; Pk]

We say that S satisfies non-injective synchronization if we additionally ask that

3. for all e, e′ ∈ E(P), if e / e′ or e dP e′, then i(e) < i(e′).

We say that S satisfies injective agreement (respectively injective synchronization)
if we add to the definition of non-injective agreement (non-injective synchronization)
the additional constrain that the channel cR is unique for each R ∈ R(P), that is, there is
an injective map from R(P) to {cR | ∃iR ∈ {1, . . . , n} s.t. αi(R) = Declare(AR ,R, cR)}.

i-synch

u} !)
i-agree

!)

ni-synch

u}
r-agree

r-alive-role

s{ "*
w-alive-role

#+

r-alive

t|t|
w-alive

Figure 3: Relation between authentication statements.

8

