Comparing various proofs of the Novikov-Boone
theorem based on rewriting

Matteo Acclavio Directeurs: Prof. Y. Lafont , Prof. L. Tortora de Falco

Introduction: The aim of this paper is to analize two demonstrations of the
Novikov-Boone theorem of undecidability of the word problem for groups.

Bokut’s demonstration [4] [5] is based on a rewriting system induced by the
relations of the defining presentation of the Boone group G(T,¢q). This new
infinite rewriting system is built to be convergent. So, in order to verify if a
word W is equal to the letter ¢, it will suffice to compute the normal form of the
word W and compare it with ¢ (since ¢ is in normal form). The undecidability
of the word problem for G(T', q) will follow from the undecidability of the word
problem for the special monoid T, which is an encoding of a Turing machine.

Lafont’s demonstration [9] is inspired by Aandreaa and Cohen’s [1]. It also
use rewriting, but the only essential point is the notion of convergent rewriting
system. It uses the undecidability of the halting problem for a particular class
of abstract machines called affine machine. With some property of the free
group F3 it is possible to associate a local isomorphism to every transition of a
machine affine A. By the HNN embedding theorem, the configurations of the
machine live in some group G4 where transitions are represented by elements
of G 4. In that group the word problem is equivalent to accessibility of a fixed
configuration from any other one.

ce mémoire a été rédigé dans le cadre du ”Curiculum binational de master en
Logique”, financé par I'Université Franco-Italienne (programme Vinci 2009)
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Chapter 1

Some backgrounds

1.1 Group theory

Definition 1 (Transversal set) Let G be a group and H be a subgroup of G
(it will be noted by H < G) we can define a transversal set H* of the cosets of
H simply choosing' a random element of each coset. Two element g and ¢’ will
be in the same left coset (right coset) iff g~'g' € H (iff g9~ € H).

Given a subgroup H of G and a set H of representatives of right cosets we
have a unique decomposition of each element of G:

Proposition 1 For every g € G exist a unique decomposition of g = hv with
he H andve H*.

Demonstration: Because H induces a partition on G (given by its right cosets)
and g € Hg there exists a unique v € H+ such that Hg = Hv. So h = gv~! is

an element of H and g = hw.

Definition 2 (Subgroup generated by a subset of a group G) IfS a sub-
set of a group G, the subgroup generated by S is (S)q = {si' ...sf|s; € S}. A
subgroup H < G is finitely generated if 35S C G, S finite, such that H = (S)¢q.

Definition 3 If H < G and x € G, the centralizer of x in H is the subgroup of
H consisting of elements which commute with xz: Cy(x) = {h € H|zh = ha}.

Definition 4 (Local isomorphism) A local isomorphism of G is an isomor-
phism ¢ : H — H' between two subgroups H and H' of G. An element
t € G represents ¢ if Vo € G, ¢(x) = taxt™t. A subgroup K ¢-invariant if
G(H N K) = 6(H' N K)

1.2 Monoid presentations

We'll use the standard notation (X|R) for a presentation of a monoid M where
Y is the alphabet, ¥* its set of words (1 will denote the empty word) and

1'We need the axiom of choice if [G:H] is not finite.



R C ¥* x ¥*; in order to view a presentation like a string rewriting system? the
couple (w, w’) will be also denoted like the reduction rules w — w’. M = (X|R)™
means that M is equal to the quotient of X* by the congruency <} generated
by R (the smallest equivalence relation containing R and compatible with the
multiplication). A presentation it’s called finite if ¥ and R are finite sets. A
group G = (X|R) is given by the same quotient it will automatically imply the
existence for every elements of ¢ € X an single element o~! (the inverse of o)

such that co~! =0 1o = 1.

Notation: Given a presentation (X|R) and two words v, w € ¥*, v = w means
that v and w are written with the same letters in the same order and v =;; w
means that they are equivalent in the quotient M (if there will not be ambiguity
it will be denoted =).

Example: Z ~ (b|)) =: F; has a minimal presentation (b) := (b|f)) like a
group and a minimal presentation ({b,b}|Ry = {(bb, 1), (bb,1)}) like monoid. If
w = bb, w' = bb so ww’ = bb?b = 1.

Notation: Words of an alphabet ¥ will be signed with small and capital letters,
let wy,...,w,X* with W(wy,...,w,) wil be denoted a word W € ¥* such
that every word is written in therm of wq,...,w, ie. W = Wy... Wy with
W;=w;,V1<j<kII<i<n

It’s preferable to continue to distinguish the two equivalences = and %
because the first is independent from the choice of the presentation while the
second depends from the rewriting system chosen. If there is not ambiguity (a
unique system is given) or if the systems have the same property booth notation
will be used with the same meaning.

Definition 5 A group is finitely presented if it is a finitely presented monoid.

It’s easy to show that given a finite presentation (X|R) of a group G it’s possible
to get its presentation like monoid by (SUX|RURp,) where, if ¥ = {o;|i € I},
Y = {6ii € I} and Ripn, = {(0454,1),(G:04,1)|i € I} define the relation that
associate to each o its inverse 7.3

Definition 6 (Reductions) Let u,v € ¥* and (r,s) € R, we’ll denote an
elementary reduction with urv —g usv. If it exrist a sequence ug, Uy ... Uy in
¥* such that u; =g u;p1for alli =0...n—1 it’s defined a composted reduction
Uy =% un (exists a path of reduction from wy to u, in (X|R)). A word w is
reduced if there are not word v such that w —x v. If a word u admit an single
reduced word W such that w —% u, u is called its normal form.

Definition 7 (Convergent presentation) A presentation (X|R) is noethe-
rian if there are not infinite sequence {u;}ien such that u; =g u;41Vi € N. A
presentation is convergent if it have the Church-Rosser propriety (confluence):
for every w,v,v" such that u —% v and u —5 v’ it exists a unique w such that
v =5 w and v =% w.

2see. Appendix A ~
3All the relation in the form (v/,w’) with v/,w’ € £* will be derivable from R U Riny
because of +*ryUR,;,, it’s compatible with the product.
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Figure 1.1: An example of the confluence of a word

Definition 8 A subword w of a word v it’s a word (denoted w € sub(v)) such
that v = vwu’ exists u,u’ € ¥* (u and v’ can be the empty word). The inter-
section of two subword u and w of a word v is the longest word v' such that
u = u'v" and w = v'w' and v'v'w' is a subword of v, if v' = 1 the intersection
is empty. If w is a subword of v we say that v contains w, moreover if v = wu
(v =wuw) Ju € I*, w it’s a prefir (suffix) of v.

Definition 9 (Critical Peak) Given a presentation (|R) a critical peak is a
word w containing two subword v and v’ with non-empty intersection such that v
and v’ are respectively the prefix and the suffiz of w (or v =w and v' € sub(w))
and {(v,u), (v',u')} C R, Ju,u’. We'll say that a critical peak w is solvable if
every path of reduction starting from the word w converge to a word w.

Definition 10 (Standard presentation of a group) Let G be a group we’ll
define the standard presentation of G the presentation (Xq|R¢a) given by X =
{az| z € G} and R = {a1 — 1,azay — agy|z,y € G}.

Remark 1 The standard presentation of G is convergent.

Demonstration: The confluence depends of the associativity of the group
operation (i.e. Vx,y,z € G, x(yz) = (zy)z and S0 Gy(y.) = G(zy)>): We note
that every critical peak is in the following form:

Qz0ya
/ \

ApyQz ArQyz

} |

A(zy)z = G (yz)

Figure 1.2: A critical peak of the standard presentation of a group G

The termination, instead, is guaranteed by the fact that every reduction reduces
the length of a word by one and so the reduced word are the letters and the
empty word.

W= Gy, Oy - - - Op,, —Rg Ozy..p

Definition 11 (Free Product) Let G = (X¢|Rg)" and H = (Sg|Ru)* it's
defined the free product F of G and H (noted by F = G« H) the monoid of the



words generated by the elements of G and H. It’s presentation it’s given by the
disjoint union of the presentation of G and H, so F = (Xg¥W Xy|Re W Ru)™.
F,, will note the free group on n generators F,, = {a1,...,an) = Fy, * -+ % Fy,
and F,, the free group of Rg generators {an}nen-.

Definition 12 (Translation) Let (X|R) and (X'|R’) two presentations of monoids.
A translation ¢ : (X|R) — (X'|R’) is given by a function ¢ : ¥ — X'* such that:

1. Yw e X, ¢p(w) = ¢p(w)
2. Ve = (u,0) € R, §(v) = (4(u), $(v)) €%/
This translation define a homomorphism ¢ : (S|R)T — (X/|R/)+

Lemma 1 (Lafont embedding lemma) Let (X|R) and (X'|R’) be two pre-
sentations such that:

e X CY

o (X|R') is convergent

e R={(u,v) € R'|u e X*}
then the inclusion ¢ : ¥ — ¥ defines a translation ¢ : (Z|R) — (X'|R') and ¢
18 1njective.
Demonstration: Let [v]gz be the equivalence classes of v with respect to <%,
it suffice to prove that [v]g = [v]rs N T*
C) Since R C R'if w € ¥* and w <35 v then w <%, v

D) Let w € ¥ such that w <%, v. Then, since (X'|R’) is convergent, there
is u € X" such that w —%, u and v =%, u. For every v € ¥*, applying
a rewriting rule of R’ to v’ we get a word in ¥*, so that u € X. If also
w € X* then w <3 v.

Since ¢ is well defined and for every v,w € X%, v <%, w iff v <%, ¢ is an
injective homomorphism.

Definition 13 (Local convergence) Let T C ¥* and P = (X|R) a presen-
tation. P is locally convergent on T or T -convergent iff

o Ifv,weT and v =% w so it exists a path of reduction with elements in

T

e forallw e X* if w —-g v, w—r v and v € T so exists a unique normal
word 4 € T such that v —x 4 and v’ — g 1.

Definition 14 (Embedding Translation) An embedding translation
¢: (Z|R) = P = (¥|R) it’s a translation such that:

o P’ is locally convergent on ¢(X*)

e 3 a control function? ¢ : ¥* — £* compatible with <%, such that Yv €

5, h(0(v) o v

4it can be a partial function




Lemma 2 (Extended embedding lemma) If exists a embedding translation
é: (X|R) = P' = (X|R'), so exist an homomorphism ¢ : (S|R)T «— (X/|R/)T

Demonstration: We define ¢([w]r) = [¢(w)]r: and ¢([v]r) = [)(v)]z. Like
in 1 will be necessary to demonstrate ¢([v]z) = [¢(v)]r/
C) since ¢(R) Ce3k, if w € T and w <% v then g(w) <%, B(v)

D) let w € X* if ¢p(w) %, H(v) then w % v. Since (X'|R’) is locally
convergent on ¢(¥*), exists unique ¥ € X* such that ¢(v) —%, ¢()
and w —%, ¢(?). Since ¢ is compatible with %, and if 2 € ¥* every
rewriting rule in the path of reduction from a ¢(z) to ¢(%) is in ¢(R) (local

convergence), so ¢(z) 3%, ¢(0) iff 2 <% VP(2) 3% V(D) <k D.

Definition 15 (Iso-translation) An iso-translation between two presentation
¢: (X[R) — P = (¥'|R') is an embedding translation such that P’ is conver-
gent, ¢ : X < X and ¢(+%) =%

Proposition 2 If exists a iso-translation ¢ : (X|R) — (X'|R’), so M = (X|R)*
and M' = (X'|R')*" are isomorph.

Demonstration: By 2 M — M'. Moreover #(X*) = ¥ is a bijection with
the property ¢(ww’) = ¢(w)d(w’), so an isomorphism.

Definition 16 (Lexico-metric order) Given an alphabet ¥ equipped with an
order <s; (e =5, f means a < AL < @), v=q;, -, andw =, - -, ,
it’s possible to extend it to a lexicografic order on the word:

v <y w <& IkVh < k(q, =5 a;, A((E<nAn<m)— o, <s )
and also to lexico-metric order:
V(s,<y) WS n < m or Ik <nVh < ko, =x aj, Aoy, <s aj,)

Example: Let ¥ = {a,b,c} and with the order a =5 b <y ¢ so abc <x bca,
and abc < bea but aabca <sx; bea and bea < aabea.

Theorem 3 It exist an embedding of F,, into Fy

Demonstration: Like in [9], showing that the family {b"ab "},cz is free®
in the group F» = (a,b), it’s possible to have the embedding translation of
é: F,, — F, given by ¢(a,,) = b"ab™" and so the proof by lemma.2.

In order to build a new convergent presentation of

Fy= (Y =1{a,a,b,b}|R = {aa — 1,aa — 1,bb — 1,bb — 1})"

suffices to add for every n > 0 the superfluous generators® given by the relation:
a, = b ab™ a, = b"ab" a_p = bab™ a_, = b ab™

The following relation will be derivable for every n € Z (nominally ag := a):

anly =1 anap, =1 ba, = ap41b ba, = ap41b ba, = ap_1b b, = Gp_1b

5i.e. there are not relations between the elements

6them can be viewed like some abbreviation of some word in Fb



Let ¥y = {b,b} U {an, @, }nez, a presentation of Fy it’s given by (33|R,) where
R consists of the following reduction rules:

I | Gnan — 1 bb — 1 bb — 1

ba,, — an+1b ba,, — an+1b ECL” — CLn_lg Z)an — a,n_16

Defining the order on ¥ given by Vn, a, =x, any1 =5, Gn <z, b =5, b, is
possible to define a lexico-metric order < on 3. The rewriting system is so
noetherian since for every reduction w =g, w', w’' <w and < it’s a well-order
on Y%. By this order every reduced word will be in the form a; ..., 3% with
a; € {an,a,} and B € {b,b} Moreover all the critical picks are solvable:

e For every (v,7') € {(an,an), (@n,an), (b,b), (b,b)}

e For every (an,al,) € {(an,@n), (@n,an)}

banay, bay,al,

e ~
Oén—nboé% O‘n+1b0/n
! |
Q10410 Q100,410
o b

e For (v,7',6) € {(b,b,—1), (b,b,+1)}

7Y am
/

YOn4s7Y

a7y

.

v

This equivalence it’s provable by the existence of a iso-translation ¢’ :
(Z|R) — (Z2|Rz2) given by ¢'(a) = ag, ¢'(a) = do, ¢'(8) = B where 3 = b,b.
The control function ¢’ is defined by ¢/(3) = 8 and ¥'(a,) = b"ab™ ! where
B =b,band a = aa.

Now it’s easy to show that the function ¢ : X, = {an, & tnez — X5 such
that ¢(a,) = a, and ¢(a,) = @, give an embedding translation ¢ : (3,) —



(¥2|R2). Since every word in ¢(%,,) are in {a,, @y, },cy, them are in normal form
in (X3]|R2) and it’s possible to define ¢ : £5 — ¥, inductively on the number
of @ and @ N,, in w: if N, = 0 so ¢¥(w) is not defined. Else w = B(b, b)aw’
a = a or a, so Y(w) = a,¥(Bw’) where n = (#occurence of b in B(b,b)) —
(#occurence of b in B(b,b)) and Ny < N,,.7

Y(an) = an, P(an) = ay P(b) = 'l/}(l_)) = 1 that satisfy Vw € ¥y, ¢(d(w)) =
w. So F, = <Zw> — (ZQ‘RQ) = (a,b) =F.

Lemma 4 Vp,q € Z,q # 0 the family {ap,b?} is free in Fy

Demonstration: Because {a,b} is free in F» and ord(b) = oo, {a,b?} is free
in Fy (if not it means exists relations between a and b). So {a,,b?} have to be
free because it can be obtained from {a,b?} applying the internal isomorphism
x — bPaxb~P.

1.3 Computability theory

Definition 17 (Minsky machine) A Minsky machine is an abstract machine
M consisting of:

o Labeled unbounded integer-value register: any labeled register can hold a
single non-negative integer

e A list of (labeled) sequential instructions in the form8:

— INC(r,j) = increase v and go to j
— JZDEC(r,j, k) = if r =0 go to j, else decrease r and go to k

o A state register: which hold the label of the instruction to execute. A
configuration for a 2- register machine M is a triple (s,a,b) where a,b
represent the integers in registers and s a state. The writing 5 —paq &'
(s =3, ') denote that M transform a configuration s in a configuration
s’ in one step (a finite number of steps). A state (0,a,b) will denote a
final state.

Theorem 5 (Undecidability of Halt problem for 2-register machine) There
exist a 2-register machine with undecidable Halt problem

Definition 18 (Modular machines) [I] A modular machine Mod is defined,
fized an m € N, by a “set of instruction” (a,b,c,€) of quadruples where 0 <
a,b<m,0<c<m? e=R,L (at most one quadruple can begin with the same
pair a and b), and an integer 0 < n < m to define input and output function.
A configuration for Mod is a pair (a, ) where « = um+a, f =vm+b. If no
quadruple begins with a,b, («, 3) it’s called terminal, else (o, 8) = poa (¢, 8)
where ) .
(o, f) = { (um?® +c,v) ife=R

(u, vm?c) ife=1L

74 is defined only on {an, an }-word and ¥ (an) = an and ¥(an) = an
8Minsky have formulated different equivalent machine with different form of instructions

(7]



The computing function of A is the partial function upodgmodimod : N — N
defined by:

imod : N — N2 | r—)(mei,n—i—l) wherer:mei,Ogbi<n
IMod : N2 = N? | (a,8) =% (o, B), (o/, B') terminal
k
Unmod : N2 = N | (o, ") — Zbimi_l where o = Zbimi, 0<b;<n

1

where k = min{ilb; = 0}. It is so possible, with a proper encoding, to utilize it
9

to simulate a Turing machine”’.
Theorem 6 (Undecidability of Halt problem for modular machines) There
exist an affine machine A such that Halt 4 is undecidable.

Demonstration: Let Tg a Turing machine computing an recursively enu-
merable set S. Since is possible to encode its computing by a modular ma-
chine, so it exists a modular machine Mod such that it computes S. Then
Halt pmoa =~ Haltr, is indecidable.

Definition 19 (Affine machine) An affine machine, fized an m € N, is a
finite set A C ZxXZ* X ZxZ*. Every (p,q,p’,q') € A define an affine transition
pt+qz—=ap +q¢z (z€Z).

Remark 2 FEvery 2-register machines M can be simulated by an affine ma-
chine: let (s,a,b) a configuration for M, coding it in the integer [s,a,b] =
54+ m223°, every transition will be in the form.:

i+mk — i+ 2mk i+m(2z+1) = j+m(2z+1) i+2mz = k+mz

i+ mk — i+ 3mk i+m@Bz+1) = j+mBz+1) i+3mz = k+mz
i+mBz+2) = ji+mBz+2)

50 if 2,2 are two integer, z 3% 2’ so z is the code of a configuration iff 2’ is.
Futhermore

(s,a,b) = a (8',a',0") iff (s,a,b) <5 (8", V) iff [s,a,b] <% [s',a’, V]

Theorem 7 (Undecidability of equivalence problem for affine machines)
There exists a machine affine A and an integer m such that the equivalence
problem it’s undecidable.

Demonstration: The equivalence problem ask if, given a z = pm + ¢ € Z,
z <% m. Let M a 2-register machine with undecidable Halt problem, so the
problem of equivalence will correspond to the Halt problem for M (is possible
to suppose that the final state for M is (0,0,0)) since m = [0,0,0] and z =
[52,az,b:] so z <% miff (s.,a.,b,) <73, (0,0,0).

9Starting by a Turing machine T on the alphabet {bi}o<i<n is possible to associate the
coding of the tape r = > b;n*, at every state of T' a quadruple of Mod



Chapter 2

The
Higman-Neuman-Neuman
Extension Theorem

In order to build groups’ extensions with particular combinatorial propriety, it
will be useful to use the HNN-theorem for the groups.

2.1 HNN extension theorem

Theorem 8 (HNN extension associated with a subgroup) Let G be a group,
VH < G,3F > G and b € F such that H = Cg(b).

2.1.1 HNN extension theorem demonstration
Part I: A non convergent presentation of I

In order to demonstrate the theorem, we’ll build an “ad hoc” extension F' of G
and we’ll show that exist an element b € F' such that H = Cg(b).

Let F = G:)(*Cb) where <+, it’s the smallest equivalence relation containing the set
C = {(bh,hb)|h € H}. The free product G *(b), given the standard presentation
of G and the minimal presentation of Z like monoid!, G'* (b) = (X5U{b, b}|RqU
{(bb, 1), (bb,1)}), so we have a presentation of F' = (Xp = Y U {b,b}|Rr =

R UR,URy})T where Ry = {(Ban,anB)|h € H,3 € {b,b}}.

Remark 3 The presentation (X p|Rp) is not convergent.
Demonstration: We just need to observe the critique peak:

e if the critique pick it’s a word of the alphabet of G, it’s soluble because
it’s in the standard presentation of GG

lsee 1.2 pag. 2



e if the critique pick it’s a word of the alphabet of (b, b), it is solvable:

bbb bbb
/N / O\

b

e if the critique peak contain only the letters of ¥, and ap with h, k € H,
it’s solvable:

bbay, bbay, bapax banay,
\ \ N N
banb banb apbay, anbay,
| } | o
ahbi) ath banay banay,
J J v Rd
ap, ap, bank ban

e all the non-solvable peak are all in the form (8 € ¥, h€ H,x € G\ H) :

Baham

N
B 7£ apBa,

2.1.2 HNN extension theorem demonstration
Part II: A convergent presentation of F'

Using the Lemmal is possible to give another presentation of F' adding new
superfluous generators and new relation. Let fix an H' with 1 € H', we define
the superfluous generators b, = ba, and b, = ba, ( ) = {b,,b)|v € H+}).2
Using the relation of R and the fact that, by the Prop.1, is possible to derivate
the following set R of relations:

Vv e H* bibl, — ay Viby, — ay

byag — apby, Ah € Hyw € H* such that vz = hw

Y a, — apbl, Ih € Hyw € H' such that va = hw
Proposition 3 The presentation (X3¢ UX | |[RgURL) of F' is convergent.

Demonstration: Like in 3, a critique peak of the alphabet Y or {b1,b]}
is solvable. The others critique peak are all in the form B,a,a, or b1bla, or
bibya,. These three kind of critique peak are solvable:

2p, = bay and b’Q = bay essentially means that b, and bﬁj are abbreviation respectively for
the words ba, and ba,

10



Buzay

/ \ ve =kw', k€ Hw' € H-

ﬁvaa:y akﬁw’ay

l w/y — k'w",k' c H, = HL
v(zy) = hw,h € Hwe H apag Buwr
ahﬂw = akk//Bw”

because hw = v(zy) = (vr)y = (kw')y = k(w'y) = k(K'w”) = (kk")w” and by
the lemma 1 w = w” and h = kk’.

blb;am
wz =hw,h € Hwe H-
blahbiv
J
ahblb;}

|

Gy Qg Ap Aoy

| |

Ay - A hw

the same for the pick b|b,a, changing by with b} and b, with b,.

Remark 4 FEvery reduced words of this presentation of F' are in the form
aBy... By with o € XgU{1}, n >0 and B; € X1 (n #1 = Vi, i # b
and B; £V').

Proposition 4 F/ = (Xp =3¢ UX | |Rpr =RgUR,) ~F.

Demonstration: By Prop.2 , it suffices to show that an iso-translation from
F to F' exists. Let ¢ : ¥p — X7 such that ¢(a,) = az, ¢(b) = b and ¢(b) = b}
we can define ¢ and so:

o Vr € R, o(r) €,

e exists a control function 1 given by (a,) = az, ¥(by) = ba, and ¥ (b;,) =

ba,

o %

$(R)= TR

so ¢ will be an iso-translation and F ~ F”.

2.1.3 HNN extension theorem demonstration
Part I1I: Concluding

It’s easy to prove by prop.2 that F’ > G and F' > (b) because the functions
idg : Xg — X% and idy : {b,b' = b} — X% are embedding translation. It’s also
evident for construction that C(b) > H. To prove the equality it’s sufficient
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to show that only the elements of H commutes with b. Let x = hw with
h € H and w € HL, we have bja, —Rp by and so ba, = Y(bia,) =
Y(p(bay)) 2wy Y(anby). But apby, is reduced and so ¥(apby) = apbay, is. So
Vo € G b = hbw = «b iff © € H(i.e. w =1) that mean Cg(b) = H.

2.2 HNN extention theorem application

Corollary 9 If G is finitely presented and H is finitely generated in G, then
the HNN-extension F of G associated with H 1is finitely presented.

Demonstration: It just needs to change a little bit the construction of F' used
in the demonstration of Th.8. Let uq,...u, € X¢g such that H = (uq,...,up)
since Vh € H, h = u;, ...u;,, Im > 0 and i; € {1,...,n}. F will be pre-
sented by (Xg U {b,b}|R¢ U Ryepn) where Rye,, = {bb — 1,0 — 1,bu; —
upb, ..., bu, — upb}. By the transitive and operation-compatible closure of
Rgyen, Yh € H the relation (anb,bay) €<—>’7“zgen SO H%Fgﬁﬁcwzgm where
Rrp = Rg U {(hb,bh)|h € H}. Moreover every u; are elements of H so
Rgen € Rp and <1 g, SOR,-

Theorem 10 (HNN extension associated with an local isomorphism)
Let G be a group, Vo : H — H’ local isomrphism, 3F > G and b € F such that:

1. b represents ¢
2. (K,b)p NG = K for all K ¢-invariant

3. if G is finitly presented and H finitely generated F' is finitely presented

Demonstration: Let F' = Gg(*w where <37, is the smallest equivalence relation

C
containing the set C' = {(bh,¢(h)b)|h € H}. Fixed H*, H'* transversal set
respectively of cosets of H and H' (1 € H* and 1 € H'!') is possible to give
the following convergent presentation of F' = (3¥4|R4) built in the similar way
of 2.1.2 (b, = ba, and b/, = ba,):

Z¢ = {am}zGG U {bu}ueHL U {b;}veH’i

and the following rewriting rules R4

Ay Qy = gy a; — 1 bibl, — a, biby = ay
byay = ag(n)bw Jh € H,v,w € H* such that vz = hw
b,az — apnby, 30 € H',v,w € H* such that v = h'w
Like in Th.8 (£4|R¢) is a convergent presentation and F is an extension of G
and (b).
1) b represents ¢ since Vu € H, bya,b) = ag(y)-
2) For every K < G is possible to choose the elements of H+ and H'* such

that for every k € K, k = hv where h € KN H and v € K N H, under that
conditions if K is ¢-invariant if a word is written in the alphabet

Yol = {artrex U{butueninr U {b;}veH’LmK

so it is a normal form since every K is a subgroup. That means (K,b)r NG C K
and so the equality while K C (K,b)r N G.
3) Follow from Cor.9.

12



Theorem 11 (HNN extension associated with several local isomorphism)
Let G be a group, Y¢1 : Hy — Hy,...,¢n : H, — H/ local isomorphism,
3F > G and b € F such that:

1. b; represents ¢; Vi
2. (K,by,...,bn)r NG = K for all K invariant for all ¢;
3. if G is finitely presented and all H; finitely generated F' is finitely presented

Demonstration: Induction on the number of local isomorphism n using Th.10

13



Chapter 3

Novikow-Boone’s groups

Independently of Higman, Neumann and Neumann’s work oriented to a purely
algebraic and topological application, Novikow in [12] discover the HNN-extension
and approach the subject in a more constructive way. With Boone [6] they
connect it to algorithmic and combinatorial algebra demonstrating the undecid-
ability of the word problem for the groups.

3.1 A Novikov-Boone’s group zoo

Here will be presented some Novikov-Boone’s groups, stating some their prop-
erties that permits to demonstrate the undecidability of word problem.

3.1.1 Novikow group 2, ,,

Let K a Post system! [¥,;R] on the alphabet ¥, = {aj,...,a,} and R =
{(A4;, B;),1 <i < A}, A;, B; nonempty, is possible to build the Novikow group
Ay, p, associated with K on the alphabet > consisting of

ala"'7a/n7q17'"aQ)\arlw'wr)\?lla"'7l)\

one of his copy, namely

+ + o+ + .+ + 7+ +
N N N N IR o\ S

and two supporting letters p1, po defined by the following relations:

L. gia=aqq; ¢ ¢ at =atqf
2. riria = ar; riat =atrfrf
3.al;=lLa atlf =1fa"

4. ¢ U piliqi = Af ;A

5 71 piri =p1

rilipoli v = Bipa B;f

&

lsee. Appendix A
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7. @ip2q; = pa
for 1 <i<\a€X,and (as,,...,as,)" =at al

519 gy

Proposition 5 (Novikow property) The wordspi Xps X and p1Yp Y+ are
conjugate in the group Ay, p, iff X ~x Y in the associated Post system K where
X YelX,

3.1.2 Novikow group 2,

Let ¥, = {a1,...,a,} and (A;, B;) pairs of nonempty X,-word for 1 <i < m.
Aguip = (Za U{p, s iy firis th2is fi2is lair di }1<i<m|R)

where R is the set of the following relation

L pia=ap;  pia=ap;

2. bly; = lgib
3. apyilai = pita afii;lai = fiyia
4. alg;p2i = pga alqifi21 = fig;a

5. fipidifio; = finipidifia; A; ' By
6. (ldi = dia
for1<i<\Xanda,beX,.

+
_ Adulp * Ad,ulp *p
P — *
(—)Rp

where A:;ul , Is an antiisomorphic copy of Ay, given by the antiisomorphism 2
z — xt and R, = {EpE" — p} where E € Agp,.

3.1.3 Boone group

Let T = (ZT = {Sd, Qe}deD,e€E|RT = {A7 — B, }1SiSN) with ¢; = ¢, a monoid
with A;, B; special words in the alphabet X, (i.e. word in the form sg.s’ with
s, 8" words of the alphabet {s4}), the Boone group G(T,q) with corresponding
monoid 7T is given by the alphabet

X= {Sda de, T, Y, lia Ty k7 t}dED,eEE, 1<i<N

and the following relations:

1. y%s4 = sqy w84 = sqx°

2. sql; = yliysq S§4XT;T = T;S4
3. I;B;r; = A;

4. l;t =tl; yt =ty

2an antiisomorphisme ¢ : G — G’ is a map such that ¢(1g) = 1o and ¢(zy) = ¢(y)o(x)
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5. r;k =kr; zk = kx

6. ¢ ltgk = kq 'tq
Proposition 6 (Boone property) Let S,S" special words of ¥, than S <73,
S"iff IV (Ui, y), W(rs, x) such that S =V (l;,y)S'W (ri,z) in G(T,q)
3.1.4 Borisov group

Let 3, = {s;}1<j<n and R = {(F}, G;),1 < i < m} a set of pairs of nonempty
words of ¥, and P a fixed arbitrary word of ¥,. The Borisov group G(II, P)
can be presented by the alphabet

Y=3,U{d,ect k}

and the following relation

1. d™*tls = sd es = se™tl
2. sc=cs

3. d'Fielc = cd'G,e’

4. ct =tc dt =td

5. ck =kc ek = ke

6. P~1tPk = kP~'tP

for every 1 < i <m, s € X,. Let IT = (X,|Rn) the monoid associated with
G(IL, P).

Proposition 7 (Borisov property) Let Q be a ¥,-word then QQ = P in the
associated monoid iff Q~1tQk = kQ~tQ in G(I, P).

3.1.5 Aandrea group

In [5] its presentation is linked with Aandrea’s modular machine instruction
set [1]. It’s presented by an integer m > 0 and a set of triples of integer
M = {(si,ai, bi) ier U{(sj,a;,b;)}jes where 0 < ay, by < m and 0 < ¢, < m?
for every k € TU J.

G(M) = (ri,lj,z,y,t,r, ki€ I,j € JRum)

(0%

where, denoting t(a, ) = z~*y Ptz®y? for a, B > 0, the relation of Ry are:
1. xzy =yzx
2. 2Mr; = rixm2 Yy =13y
3. t(a;, bi)r; = rit(s;, 0)
4 2™ =L y™l = Ly™
5. t(ajbj)l; = 1;t(0,s;)
wherei € I,j € J.

Proposition 8 For every modular machine Mod, it exists an Aandrea group
G(Mpmoq) associated.
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3.1.6 Valiev group

Differentrly form the previous groups, the Valiev group [14] does not depend on
a monoid, Post system or a Turing or Modular machine, it can interpretate any
recursively enumerable set of natural number. It’ll be presented by the alphabet

2 ={ai, b, ¢i, i, ik, dYo<i<m, 0<k<ij<m
and the relations
L.ty boto = ag 'boag
2.t ity = aibie; (1 <i<m)
3. tia; = ajt; ticj = cjt; (0<4i,57<m)
4. ay,d= dafn Cmd = dcfn bm—1dam—1bm_1Cm—1
5. a;d = da;(i #m) bd; = d;b(i #m — 1) cid = dei(i # m)

6. bitijr = tijra1bic; citijr = tijktrc; Lijte = titijr
tijk@s = Qstijr(s # 1) tijkbs = bstijr(s # 1) tijkcs = Cstiji(s # 7)

17



3.2 Group with standard basis

Definition 20 (Group with stable letters) Let G = (21)|7A2> be a group, the
group with a system of stable letters {p} and base group G is defined by

G=(2=SU{p}/R =RUR, = {Aip — pBi}icr)

wherep ¢ ¥ and Vi€ I A;, B; € $*. A pair of corresponding or twin word will
be in the form
Ay =AT'L AT B, =87 BT

thus, for e = £1, the equality Apep® = p*Bpe where A;l =B, and B,-1 = A,.

The extension system of relation of the group G is the system of rule R, U
R;l where R;l = {B;lp_1 — p_lA;1 such that Aijp — pB; € Rptier- In
that system it’s possible to define the individuality of a letter: since every trans-
formation is in the form

wwo — ww'u with (w = A;p, w' = pB;) or (w = B 'p, w' =p A7), u,v € X*
the individuality of a letter in w and v and p will be preserved.

Definition 21 (Regular system) A system of stable letters is called regular
if Ape <% 1 Bye <% 1 for any corresponding words Ay, By,

Proposition 9 If {p} is a regular system for G, so G is an HNN-extension of
G.

Demonstration: See Cor.15

Definition 22 (Insertion/cancellation) An insertion is a transformation in
the form 1 — pp~! or — p~'p and its inverse it’s called cancellation

Lemma 12 Let WpU — WipU; — ... = W,pU, be a chain of extended
transformations, where the individuality of pc is preserved. Then there exists
twin words Ape and Bpe such that

W=W,A, U=93.U,

If there are insertion of stable letters in the chain then the words W and U can
be respectively transformed into the words Wy, Ay and ‘B;}Un without applying
such transformations.

Demonstration: Proved by induction on the length n of the chain. For n =0
is trivial. If a transformation of the chain does not apply on p¢ than the lemma
is clear, else it is in the form W;A;pU; — WipB,U; + 1 or W;B;p~'U; —
Wip P AU; so Wiy = W;Aipe and Uy = ‘B;plUi. Moreover in passing from
the words W, U; to W;1,U,; 41 there is not insertion of stable letters.

Lemma 13 (The Novikov lemma) Let {p} be a regular system of stable let-
ters and W a word in G satisfying W = 1. Than W can be rewrited in 1 by
a chain of extended transformation, each of them is not an insertion of stable
letters.
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Demonstration: Consider a step of a chain of an extended transformation
W — ... — 1 in which there is an insertion of the letter p:

W= . .. =W =VV W, =Vpp V' = ... =1

since the letters pe and p~¢ should be cancelled during the transformation, there
are two cases:

e the cancellation involves only the this two letters:
W . . .=W,=Vip’p V] - ... o Vipp VL > ViVi=W,— ... =1

so by the Lemma 12 there exist twin words Ajpe, Aape B1pe, Bope such that
the words V1,1,V can be transformed into the words VkA1p67%;p£ Bope

and Agpl VY Without insertion of stable letters. Since {p} is regular in

G holds B %gpe = 1 iff Ajpe "4217 = 1. So W; can be transformed in
Wi, Wlthout 1nsert10n of stable letters, then is possible to obtain the same
transformation eliminating this insertion of stable letters.

e clse the chain is in the form:
W — ... W; =Vip° V{piEpEVH—>

= Vipp VDV - ViV TV =W — . = 1

by lemma 12 there exists pairs of twin words A;pe, Bipe, i = 1,2,3 such
that the words Vl, Vi,1and V' can be transformed respectively in Vi Aqpe,
Agp_F, ‘B VkA3pe and B, V hence the word W; can be trans-
formed into
VkAlpepe%lipleAgpfe%gplg Vk”

and applying the transformations in the extended system W; become
VkAlpeAfplgAgpeAgp{pe i
which can be transformed in
Vi Aape .A3p£p Vil = ViBy,- Agpep

and by the insertion of 1 = B!

ap—< ViAspe (which doesn’t contain stable
letters)

Vk%Qp A3p€p —> Vk%gp = 1A3p5p —>
= ViBap— B, L ViAspe Ay p Vi =2 ViVip V! = W,
again is possible to decrease the number of insertions in the chain.

the lemma follows by induction on the number of insertion in the chain.

Lemma 14 (The Britton’s lemma) Let {p} be a regular system of stable
letters for the group G over G and W a word in G such that W =1 in G. Than
W is a word in G and W = =a 1 or W includes the subword p~°Ap® where A € G
and A =g Ape
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Demonstration: By Novikov’s lemma, the word W can be transformed in 1
without insertion of stable letters, so if the chain

W-W —...>W, =1

contain no stable letters then W € G and W =& 1. If W contains the letter
p, then it should be cancelled during the transformation. Considering the first
cancellation of a stable letters occurring in the chain

W=Vp < VpV"' = .. W= Vkp_epEVk/ — Vka/ = Wiy

where V'’ does not contain the stable letters. By lemma 12 there exists a pairs of
twin words Ajpe, Bipe, 7 = 1,2 such that the words V, V', V" can be transformed

into the words Vi Ayp, -, %;pl_F.Agpe and %Q_plg V} without insertion of stable let-

ters. Hence V' € G since V' = %;pl,gAgpe = A-1pe Agpe = Ape

Corollary 15 If {p} is a reqular system of stable letters of the group G over G
than G < G.

Definition 23 A word W of a group with stable letters {p} is called p-reducible
if Woincludes a subword in the form p=¢Ap® where A € G and A =5 Ape

With this definition is possible to reformulate the Britton’s lemma: if W =4 1
and W contains stable letters, so for some stable letters W is p-reducible.

Introducted by Bokut’ in [2] a standard basis or standard normal form per-
mits to have a canonical form to write an element of a Novikov-Boone group
given one of its presentation.

3.2.1 The definition of groups with standard normal form

Let’s consider a sequence of HNN-extension Gy, G;, ..., G, where Gg is a free
group and the group G4 is obtained adjoining to the group G; letters {p} and
defining relation

Aip = pB

where p € {p} it’s called letter of weight i + 1 and A;, B; € G; contain exactly
one letter of the highest weight. So in the group G;41 an arbitrary relation can
be represented in the form

A/xA//p :pB/yB//

where z and y are the letters of highest weight (if the power of these letters
are different from +1 will be considered its first or last occurrence). For every
relation will be associated four types of prohibited words:

B, A p zT1B, A y®B,B"p! y*IEBylelflpfl

Is so possible to define by induction on 4 the notion of canonical word: every
reduced word of GGy are in canonical form, an irreducible word

U=UpUsp® ... Upp™Upy1
in the group G;y1 where U; € G and p; are letters of weight ¢ +1 k > 0 is

canonical if, for every j:
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e U; are canonical words in the group G;
e U doesn’t include subword of an any prohibited types in G; 41

Is so possible to reduce a word U = U1pUs ... U, —1p°U, in canonical C(U) by
the following algorithmic process:

1. reduce every word U; to canonical form in the group Gj;
2. perform all possible cancellation of letters of weight ¢ + 1

3. eliminate the first occurrence (from the right) of a prohibited word follow-
ing the following role?

B, A"p - A, A" pB 1B, A p - B, A pB !
y%yB”p71 N A;lBlflpflA yil%y—lBlilpil SN %yB//p71A71
where A, and B, (with z = z or y) are twin words.

4. return to step 1

Definition 24 The group G;y1 is called group with standard normal form or
group with standard basis if every word U can be reduced to canonical form
C(U) in a finite number of steps*. If that condition it’s satisfy for every i the
group G is a group with standard normal form.

Lemma 16 Let G; a group with standard normal form then the canonical for
of an arbitrary word of the group G;y1 is unique iff the following condition are
met:

e p is a system of stable letters

o [f the word Up® and Vp¢ are canonical U,V € G, p letter of weight i + 1
and U = V Ay then the equality Ape =g, 1 holds

Lemma 17 Let G; be a group with standard normal form and {p} a regular
system of stable letters. Suppose that any word A, #¢, 1 with the letter p of
weight i + 1 is representable as

Ape =G, Viz1VaxaVs

where x1, o are letters of highest weight and the word is x-irriductible for every
letter x of higher weight. If an arbitrary word of the form

22C(BaaV3)p© zy OBy 'V e

is prohibited or includes a prohibited subword (with respect to the letter p) then
the second condition of Lemma 16 are satisfied.

3Every of these role derive by the relation A’ AyxB,A"p = pB' A yBy B, where B =
B'yB", A= A'xA” and
4 ??
see 77
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Chapter 4

Undecidibility of the word
problem for the groups

4.1 Novikov-Boone’s demonstration

In [2] Bokut represent the proofs of Novikov-Boone’s theorem proving that
Novikov’s group 2, p, and Boone’s groups G(T', ¢) has standard basis. It make
it easyer (Cap.4.1 or Bokut [3]) to prove that exist a finitely presented group
in which conjugacy problem (2,,,,,)is unsolvable and the word problem for the
group G(T,q) can have any fixed Turing degree of unsolvability.

4.1.1 The Boone group

To introduce the Boone group G(T), q) is needed to extend the concept of stable
letters to system with more than one letter. A set P = {pm} is a system of
stable letters of a group G over G if the group G can be presented by

G = (% U{pm}Re U{Aipm, = pn, BilAi, B; € G})

The letters involved in the same relation are called contiguous. Completing this
definition with transitivity and reflexivity is obtained a partition of P given by
Une {Pm}mep, where all the p,, € P, are contiguous to a fixed p,, for every
n € I. Since exist A}, , By, such that A, p,, = p,Bj, so by p,, = A, 'p,B],
is possible to eliminate all the p,, with m ¢ I and so present the group in the
form

G= <ZCJ U {pm}meﬂA%ll)n = pnFm>

Definition 25 The system P of stable letters is regular if every p,, € I are
stable letters. For py,,pn; contiguous is possible to define

Y / Y /
Apnq, 7pnj - Anj Apn Anl %Pni’pnj - B’I’L]' %pn Bnl

where A;, Ay, By, and By, are words participating in the relation which links
letters pp,,pn; to pn. It is also valid the following notational equality

Apzipii =B

—
Pnj Pr;
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In the same manner of Chap. 3.2 is possible to define the individuality of
a letter and extended system of transformation to reformulate the lemmas 12,
Britton’s and Novikov’s lemmas. For example the analogous of lemma 12 tell
that, given a chain of extended transformation

Wpp U — WipUs — ... = Wipj, Uy

where p, have the same individuality. Then there exists twin words Ape pe
and Bpe pe  such that

W=Wady, p,  U=%B, , Un
while Britton lemma tells that given a regular system of stable letters P of a
group G over G and a word W =¢ 1 than either W € G and W =alor W
includes subword of the form p;;Ap;ip; ; D5, -

Let’s now build the Boone group like a succession of HNN extension, for every
extension will be given them additional generators and relations, the letters of
maximal weight that will appear in the definition of prohibiten words will be
highlited and there will be explicitated the twin words form.

Definition 26 (Boone group) LetT be a special semigroup, i.e. a semgroup
generated by {Sq,qe}dep.ccr and relations A; = B;,1 < i < N where A;, B;
special words (A4;, B; = Sq.S" where S, S’ are {sq}-words).

L4 GO = <I7y>
e G1: {sq4|d € D} | YYSq = 54y, XS54 = S4TX
As, =V(x,y?) B,, =V(z?y)
o Go: {l;,r;|]1 <i< N} | sal; = yliysq, sarrix = r;Sq
A, =V (ytsq), B =V(ysa), Ar, = V(sax), By, = V(saz™!)
[ ] G3.’ {qe|6 S E} | Az = liB,'I'hAi = A;qu;/, BZ o B;qm7B2/

Al AY Bl Bl {sp}-words
Aqmiqni = V(AiillZB;)7 %Qnipmi = V(A;/r;lB’glil)

G4.’ {t} | lit = tli, yt = ty
A =V (li,y) =By

e fized a q € {q.}, Gs: {k} | rik = kry, xk = kx, ¢ 1tqk = kq~tq
Ay, =V (ri,z,q 'tq) = By,

Theorem 18 The Boone group G(T,q) = G5 have a standard basis.

Demonstration: Let’s build the set C; of the words in standard normal form
for every G;

o () is equal to the set of all irreducible words on the alphabet {z,y} (also
negative letters), by definition Ay, =B, = A4, =B, =1

e the set C; it’s constituited by words in the form

C(W) = UlSdlUQ N Uksdek+1
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where U; € Cy and C(W) does not contain subword in the form
O[%QAHP Oéil%a—lAlilp /B%ﬂB/lpfl Bil%ﬁlelilpil

so,since A=yy,B=y (A =1,A"=yB' ' =B"=1)or A=x,B =ax
(A" = A" =1,B" = x, B” = 1), the prohibiten words wil be in the form:

WA s yTVA T e yVy)B sty V()BT sy
aV(z)A"sq a7 'W(x)A sy aV(x)B"s)! e 'V (x)B syt

so them have to contain a subword in the form:

2 -1 -1 —2 1
Y Sd Y 84 YSq Y Sg

TSq xilsd :Usgl $728d

so in that simple case is possible to see that in a normal form word in Gy
before a positive sg there could be:
1. the word before a positive s; have to terminate with a single occur-
rence of an y
2. the word before a negative sy have to terminate with a single occur-
rence of a negative x
the set Cy it’s consists of reduced word in the form

Ul()éil U2 NN UkaikUk+1

where U; € Oy, a;; € {ri,l;|i < i < N} containing no subword in the
form:

saV (@ 9)lf sy V(@9 )yls

saV (22 y)xrs sglV(m, y*)re
where V., V¢ Vy¢ ( whereV = V(22,y) or V(z,y?)) are reduced, d €

D, 1 <i< N. Since a word A; can be in the form ySy—! with S reduced
word in {s4}, elimination rule could not and the word in the form

saV(@® 5 sV (z,y?)yels

are prohibited, lemma 17 is verified for that kind of word (choosing z; the
first letter of S and s the last one), else lemma 16 holds.

To verify the existence of the standard basis will suffice to use the lemma
16 G3: since a word Ay, q,.,Bq,.q, are equal to 1 iff his projection on the
alphabet {l;,r;} is equal to 1. It follows that the letters ¢. are regoular
and as above is possible to apply the lemma 17, so G3 is a gruop with
standard basis.

In G4 the prohibited word are in the form
Yt LOWTISyV(y) 17 C(ySy TV ()t

where 6 = £1 and S a reduced {sq}-word. Since every elimination of
prohibited word reduce the number of /; or y. The lemma 16 is proved
because if two reduced word Ut, Wt where U = WA, = WV (l;,y) than
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e Finally a normal form word contains no subword of form
kS 2%ke PC(V (i, y)gW (14, ) )k

where 6 = +1. The presence of W(r;,z) in the last class of prohibited
word is due to the fact that W (r;, ) commute with k& and by the fact that,
if ¥ is a special word of T such that ¥ =7 ¢, then 71tk =g, kX~ 1tS

Lemma 19 The word problem for the gour G4 is solvable
Lemma 20 Let S, S’ special word in T then S =1 S iff
S =5 V(li,y)S'W (r;, )

Lemma 21 The problem for a word U of the group Gs3 to wqual to a word in
the form V (1;,y)SW (r;, ) with S a special word is solvable

Theorem 22 The Turing degree of unsolvability of the word problem for the
group G(T,q) coincides with the Turing degree of the problem to a special word
of T to equal the word q.

Demonstration: By lemma 19 and Theor.18 is possible, for all word W € G,
to calculate its normal form C(W) = U1kUsk...U,kU,+1 in a finite number
of reduction. Since the word problem of Gy is solvable the problem is deduced
determinate if a word @ in Gj is equal or not to a word V(l;,y)gW (z,r;). By
lemma 21 is possible to determinate if a word @ is equal to a word in the form
V(i y)ZW (z,7;). So lemma 16 the decidability of word problem for G(T,q)
can be reduced to decidability to equivalence problem for the monoid T

Corollary 23 (Undecidability of word problem for the groups) There ez-
ists a finitely presented gruop with undecidable word problem

Demonstration: By Theo.26 exists a finite presented monoid 7" with defining
relation given by special words and undecidable word problem, so by Theo.22
the associated Boone group will have undecidable word problem.

4.2 Aandreaa and Cohen’s demonstration

Using the affine machines it’s possible to give a more intuitive demonstration
of the theorem like given in [1] by Cohen Aandrea and in a simplify way by
Lafont in [9]. Here will be used the same notation of Theor.3 : F; = (a,b) and
ap, = b"ab™"

Lemma 24 Forallp,p',q,q¢',z € Z, q,q' # 0 exist an isomorphism ¢ : Fy — Fy
such that ¢(aptqz) = Aprtq'z

Demonstration: By Lem. 4 (ap, b?) = F> = (a,, b?') so exist an isomorphism
¢ such that ¢(a,) = a, and ¢(b?) = b and so

laprqz) = G((0)7ap (b)) = $((69)7)bap)$((b~)7) = () ap (™) = ayszq
Notation: Let I C Z, [P]r, is the su bset of F; generated by the set {a,|z € Z}
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Lemma 25 Let p,q € Z, so (ap,b?) N [Z]p, = [p + ¢Z]F,

Demonstration: Let K = [p + ¢Z|p,. Every reduced word w in (a,,b?) can
be written in the form wv with v € K and v € (b?), because there are k; € Z
and §; € {—1,1} such that

k k krn
w = b"%as 0" as,, - - - as, pb" " =

= pmo=koa+o1p  pmi=k1g+(02=81)p . .. opMn=knd—0np

> m;
= Ay Ay +mg ** azgzo 1b =114

m “ee a’E'{L:Olm
Let m : Fy — (b) the projection of Fy on (b) (i.e. w(a) = 1,m(b) = b), so
K C [Z]p, C ker(m) and Yz € (ap,by), 7(z) = m(ww) = w(u)m(v) = w(v) = v so
[Z]F, N {(ap,b?) C K. By K C [Z]g, and k C (ap, by) follows the equality.

Demonstration: [Undecidability of word problem for the groups|] Let m € Z
and A machine affine. It’s possible to associate for every transition of A a local
isomorphism ¢;. By the Theor.11 is possible to obtain an extension of F 4 of
F5 with stable letters ¢; ... t,, which represents the local isomorphism ¢ ... ¢,,.
Let P = {z € Z|z <3 m} and H = (a,11,...t,). By Lemma 24 follow:

o if 2 >4 2 s0ay = ¢i(a,) = tiazti_1 exist an i € {1,...,n}

1

o if 2% 2 s0oay =¢;, 0...0¢;(a,) =ua,u"" exist an u € (t1,...ty)

so K C H because a,, € K and for every z <% m, a, <% a, and K =
K N[Z)p, = HN[Z]p,- Moreover K it’s invariant for every local isomorphism
¢; because

<ap7bq> NK = <apﬂbq> N [Z]Fz NK = [p+ qZ]FQ N [P]FQ = [(p+ qZ) N P]FQ

and so (see Theo. 11) K = H N Fy.
So is possible to see that exists an extension F 4 finitely presented of Fy and
u € F such that

au=uay, nFyea cHSa, e K=[Plpezeym

Therefore the word problem for group F 4 is reducible to the Halt problem for
the machine affine A which can be chose with any Turing degree of unsolvability
(see Prop.??).
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Appendix A

Combinatorial system

Rewriting system, Post system, Thue system are different system of substitution
of substrings in strings with the same base concept:

Definition 27 (production) Fized an alphabet X, a rewrite rule, semi-Thue
productionor simply production is an expression

uU—v
if P is a semi-Thue production u — v, A, B € ¥*
A —p B

mean that exists A’ A", B, B" € ¥* such that A = A'uA” and B = B'vB" A
normal production is a produictin in the form uv — vu'. Two word inu,w € X*.

Definition 28 A combinatorial system consists of an alphabet and a set of pair
of words callad production.

A semi-Thue system or string rewrite system S = (X|R) is given by an
alphabet and a finite set of rewriting rule. A Thue system is a semi-Thue system
where for every rewriting role w — v exists its inverse v — u. A Post system
P = [X; ®] is a combinatorial system with a finite set of normal production. Two
word are called equivalent in P (written u ~p w ) if there exists a sequence of
normal production which transform u in w.

Proposition 10 FEvery non deterministic Turing machine can be simulated by
a semi-Thue system

Demonstration: Let ¥ the alphabet and @ = {¢;} the states of T. Is so
possible to write the tape of the Turing macine as a special word of 3 UQ where
the letters ¢; corresponding to the state for turing machine is positionated before
the letter read by the head. Is so possible to code the computing of T" as a string
rewriting system ([8]).

Theorem 26 (Post-Markov ([13],[11]) Euxists a finite semigroup with unde-
cidable word problem.

More preciselly it exists a monoid finitely presented with rewriting rule expressed
by special words.
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Corollary 27 The following example is given by Ceitin in [7]

Theorem 28 The semigroup {(a,b,c,d|R)T where R are the relations
ac = ca ad = da bd = db ce = eca dc = edb cca = ccae

has unsolvable word problem.
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