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Abstract
We investigate non-wellfounded proof systems based on parsimonious logic, a weaker variant of linear
logic where the exponential modality ! is interpreted as a constructor for streams over finite data.
Logical consistency is maintained at a global level by adapting a standard progressing criterion. We
present an infinitary version of cut-elimination based on finite approximations, and we prove that,
in presence of the progressing criterion, it returns well-defined non-wellfounded proofs at its limit.
Furthermore, we show that cut-elimination preserves the progressive criterion and various regularity
conditions internalizing degrees of proof-theoretical uniformity. Finally, we provide a denotational
semantics for our systems based on the relational model.
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1 Introduction

Non-wellfounded proof theory studies proofs as possibly infinite (but finitely branching) trees,
where logical consistency is maintained via global conditions called progressing (or validity)
criteria. In this setting, the so-called regular (also called circular) proofs receive a special
attention, as they admit a finite description in terms of (possibly cyclic) directed graphs.

This area of proof theory makes its first appearance (in its modern guise) in the modal
µ-calculus [28, 13]. Since then, it has been extensively investigated from many perspectives
(see, e.g., [7, 33, 12, 21]), establishing itself as an ideal setting for manipulating least and
greatest fixed points, and hence for modeling induction and coinduction principles.

Non-wellfounded proof theory has been applied to constructive fixed point logics i.e.,
with a computational interpretation based on the Curry-Howard correspondence [34]. A key
example can be found in the context of linear logic (LL) [19], a logic implementing a finer
control on resources thanks to the exponential modalities ! and ?. In this framework, the
most extensively studied fixed point logic is µMALL, defined as the exponential-free fragment
of LL with least and greatest fixed point operators (respectively, µ and its dual ν) [6, 5].

In [6] Baelde and Miller have shown that the exponentials can be recovered in µMALL
by exploiting the fixed points operators, i.e., by defining !A := νX.(1 & A & (X ⊗ X)) and
?A := µX.(⊥ ⊕ A ⊕ (X ` X)). As these authors notice, the fixed point-based definition of !
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and ? can be regarded as a more permissive variant of the standard exponentials, since a
proof of νX.(1 & A & (X ⊗ X)) could be constructed using different proofs of A, whereas in
LL a proof of !A is constructed uniformly using a single proof of A. This proof-theoretical
notion of non-uniformity is indeed a central feature of the fixed-point exponentials.

However, the above encoding is not free of issues. First, as discussed in full detail
in [16], the encoding of the exponentials does not verify the Seely isomorphisms, syntactically
expressed by the equivalence !(A & B) ˛ (!A ⊗ !B), an essential property for modeling
exponentials in LL. Specifically, the fixed-point definition of ! relies on the multiplicative
connective ⊗, which forces an interpretation of !A based on lists rather than multisets.
Secondly, as pointed out in [6], there is a neat mismatch between cut-elimination for the
exponentials of LL and the one for the fixed point exponentials of µMALL. While the first
problem is related to syntactic deficiencies of the encoding, and does not undermine further
investigations on fixed point-based definitions of the exponential modalities, the second one
is more critical. These apparent differences between the two exponentials contribute to
stressing an important aspect in linear logic modalities, i.e., their non-canonicity [30, 11]1.

On a parallel research thread, Mazza [24, 25, 26] studied parsimonious logic, a variant
of linear logic where the exponential modality ! satisfies Milner’s law (i.e., !A ˛ A ⊗ !A)
and invalidates the implications !A ⊸ !!A (digging) and !A ⊸ !A ⊗ !A (contraction). In
parsimonious logic, a proof of !A can be interpreted as a stream over (a finite set of) proofs of
A, i.e., as a greatest fixed point, where the linear implications A ⊗ !A ⊸ !A (co-absorption)
and !A ⊸ A ⊗ !A (absorption) can be read computationally as the push and pop operations
on streams. More specifically, a formula !A is introduced by an infinitely branching rule
that takes a finite set of proofs D1, . . . , Dn of A and a (possibly non-recursive) function
f : N → {1, . . . , n} as premises, and constructs a proof of !A representing a stream of proofs of
the form S = (Df(0), Df(1), . . . , Df(n), . . .). Hence, parsimonious logic exponential modalities
exploit in an essential way the above-mentioned proof-theoretical non-uniformity, which in
turn deeply interfaces with notions of non-uniformity from computational complexity [26].

The analysis of parsimonious logic conducted in [25, 26] reveals that fixed point definitions
of the exponentials are better behaving when digging and contraction are discarded. On the
other hand, the co-absorption rule cannot be derived in LL, and so it prevents parsimonious
logic becoming a genuine subsystem of the latter. This led the authors of the present
paper to introduce parsimonious linear logic, a subsystem of linear logic (in particular,
co-absorption-free) that nonetheless allows a stream-based interpretation of the exponentials.

We present two finitary proof systems for parsimonious linear logic: the system nuPLL,
supporting non-uniform exponentials, and PLL, a fully uniform version. We investigate
non-wellfounded counterparts of nuPLL and PLL, adapting to our setting the progressing
criterion to maintain logical consistency. To recover the proof-theoretical behavior of nuPLL
and PLL, we identify further global conditions on non-wellfounded proofs, that is, some forms
of regularity to capture the notions of uniformity and non-uniformity. This leads us to two
main non-wellfounded proof systems: regular parsimonious linear logic (rPLL∞), defined via
the regularity condition and corresponding to PLL, and weakly regular parsimonious linear
logic (wrPLL∞), defined via a weak regularity condition and corresponding to nuPLL.

The major contribution of this paper is the study of continuous cut-elimination in the
setting of non-wellfounded parsimonious linear logic. We first introduce Scott-domains of
partially defined non-wellfounded proofs, ordered by an approximation relation. Then, we
define special infinitary proof rewriting strategies called maximal and continuous infinitary

1 One can construct LL proof systems with alternative (not equivalent) exponential modalities, see [27].



M. Acclavio, G. Curzi and G. Guerrieri 41:3

cut-elimination strategies (mc-ices) which compute (Scott-)continuous functions. Productivity
in this framework is established by showing that, in presence of a good global condition
(progressing, regularity or weak regularity), these continuous functions return totally defined
cut-free non-wellfounded proofs and preserve the global condition: progressing (Theorem 40),
and regularity or weak regularity (Theorem 48).

On a technical side, we stress that our methods and results distinguish from previous
approaches to cut-elimination in a non-wellfounded setting in many respects. First, we get
rid of many technical notions typically introduced to prove infinitary cut-elimination, such
as the multicut rule or the fairness conditions (as in, e.g., [18, 5]), as these notions are
subsumed by a finitary approximation approach to cut-elimination. Furthermore, we prove
productivity of cut-elimination and preservation of progressiveness in a more direct and
constructive way, i.e., without going through auxiliary proof systems and avoiding arguments
by contradiction (see, e.g., [5]). Finally, we prove for the first time preservation of regularity
properties under continuous cut-elimination, essentially exploiting methods for compressing
transfinite rewriting sequences to ω-long ones from [35, 24, 32].

Finally, we define a denotational semantics for non-wellfounded parsimonious logic based
on the relational model, with a standard multiset-based interpretation of the exponentials,
and we show that this semantics is preserved under continuous cut-elimination (Theorem 56).
We also prove that extending non-wellfounded parsimonious linear logic with digging prevents
the existence of a cut-elimination result preserving the semantics (Theorem 58). Therefore,
the impossibility of a stream-based definition of ! that validates digging (and contraction).

2 Preliminary notions

In this section we recall some basic notions from (non-wellfounded) proof theory, fixing the
notation that will be adopted in this paper.

2.1 Derivations and coderivations
We assume that the reader is familiar with the syntax of sequent calculus, e.g. [36]. Here we
specify some conventions adopted to simplify the content of this paper.

We consider (sequent) rules of the form r
Γ

or
Γ1

r
Γ

or
Γ1 Γ2

r
Γ

, and we refer to the

sequents Γ1 and Γ2 as the premises, and to the sequent Γ as the conclusion of the rule r.
To avoid technicalities of the sequents-as-lists presentation, we follow [5] and we consider
sequents as sets of occurrences of formulas from a given set of formulas. In particular, when
we refer to a formula in a sequent we always consider a specific occurrence of it.

▶ Definition 1. A (binary, possibly infinite) tree T is a subset of words in {1, 2}∗ that contains
the empty word ϵ (the root of T ) and is ordered-prefix-closed (i.e., if n ∈ {1, 2} and vn ∈ T ,
then v ∈ T , and if moreover v2 ∈ T , then v1 ∈ T ). The elements of T are called nodes and
their height is the length of the word. A child of v ∈ T is any vn ∈ T with n ∈ {1, 2}. The
prefix order is a partial order ≤T on T defined by: for any v, v′ ∈ T , v ≤T v′ if v′ = vw

for some w ∈ {1, 2}∗. A maximal element of ≤T is a leaf of T . A branch of T is a set
B ⊆ T such that ϵ ∈ B and if w ∈ B is not a leaf of T then w has exactly one child in B.

A coderivation over a set of rules S is a labeling D of a tree T by sequents such that if
v is a node of T with children v1, . . . , vn (with n ∈ {0, 1, 2}), then there is an occurrence of
a rule r in S with conclusion the sequent D(v) and premises the sequents D(v1), . . . , D(vn).
The height of r in D is the height of the node v ∈ T such that D(v) is the conclusion of r.

CSL 2024
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ax
A, A⊥

Γ, A A⊥, ∆
cut

Γ, ∆
Γ, A B, ∆

⊗
Γ, ∆, A ⊗ B

Γ, A, B`
Γ, A ` B

1
1

Γ
⊥

Γ, ⊥
Γ, A

f!p
?Γ, !A

Γ
?w

Γ, ?A

Γ, A, ?A
?b

Γ, ?A

Figure 1 Sequent calculus rules of PLL.

The conclusion of D is the sequent D(ϵ). If v is a node of the tree, the sub-coderivation
of D rooted at v is the coderivation Dv defined by Dv(w) = D(vw).

A coderivation D is r-free (for a rule r∈S) if it contains no occurrence of r. It is regular
if it has finitely many distinct sub-coderivations; it is non-wellfounded if it labels an infinite
tree, and it is a derivation (with size |D| ∈ N) if it labels a finite tree (with |D| nodes).

Given a set of coderivations X, a sequent Γ is provable in X (noted ⊢X Γ) if there is a
coderivation in X with conclusion Γ.

While derivations are usually represented as finite trees, regular coderivations can be
represented as finite directed (possibly cyclic) graphs: a cycle is created by linking the roots
of two identical subcoderivations.

▶ Definition 2. Let D be a coderivation labeling a tree T . A bar (resp. prebar) of D is a
set V ⊆ T where:

any branch (resp. infinite branch) of the tree T underlying D contains a node in V;
any pair of nodes in V are mutually incomparable with respect to the prefix order ≤T .

The height of a prebar V of D is the minimal height of the nodes of V.

3 Parsimonious Linear Logic

In this paper we consider the set of formulas for propositional multiplicative-exponential
linear logic with units (MELL). These are generated by a countable set of propositional
variables A = {X, Y, . . .} using the following grammar:

A, B ::= X | X⊥ | A ⊗ B | A ` B | !A | ?A | 1 | ⊥

A !-formula (resp. ?-formula) is a formula of the form !A (resp. ?A). Linear negation
(·)⊥ is defined by De Morgan’s laws (A⊥)⊥ = A , (A ⊗ B)⊥ = A⊥ `B⊥ , (!A)⊥ = ?A⊥ , and
(1)⊥ = ⊥ while linear implication is defined as A ⊸ B := A⊥ ` B.

▶ Definition 3. Parsimonious linear logic, denoted by PLL, is the set of rules in Figure 1,
that is, axiom (ax), cut (cut), tensor (⊗), par (`), one (1), bottom (⊥), functorial
promotion (f!p), weakening (?w), absorption (?b). Rules ax, ⊗, `, 1 and ⊥ are called
multiplicative, while rules f!p, ?w and ?b are called exponential. We also denote by PLL
the set of derivations over the rules in PLL.

▶ Example 4. Figure 2 gives some examples of derivation in PLL. The (distinct) derivations
0 and 1 prove the same formula N := !(X ⊸ X) ⊸ X ⊸ X. The derivation Dabs proves the
absorption law !A ⊸ A ⊗ !A; the derivation Dder proves the dereliction law !A ⊸ A.

The cut-elimination relation →cut in PLL is the union of principal cut-elimination steps
in Figure 3 (multiplicative) and Figure 4 (exponential) and commutative cut-elimination
steps in Figure 5. The reflexive-transitive closure of →cut is noted →∗

cut.

▶ Theorem 5. For every D ∈ PLL, there is a cut-free D′ ∈ PLL such that D →∗
cut D′.
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0 1 Dabs Dder

ax
X⊥, X

?w
?(X ⊗ X⊥), X⊥, X`

?(X ⊗ X⊥), X⊥ ` X`
?(X ⊗ X⊥) ` X⊥ ` X

ax
X⊥, X

ax
X⊥, X

⊗
X ⊗ X⊥, X⊥, X

?w
?(X ⊗ X⊥), X ⊗ X⊥, X⊥, X

?b
?(X ⊗ X⊥), X⊥, X`×2

?(X ⊗ X⊥) ` X⊥ ` X

ax
A⊥, A

ax
?A⊥, !A

⊗
A⊥, ?A⊥, A ⊗ !A

?b
?A⊥, A ⊗ !A`

?A⊥ ` (A ⊗ !A)

ax
A⊥, A

?w
A⊥, ?A⊥, A

?b
?A⊥, A`

?A⊥ ` A

Figure 2 Examples of derivations in PLL.

ax
A, A⊥ Γ, A

cut
Γ, A

→cut Γ, A

Γ, A, B`
Γ, A ` B

∆, A⊥ B⊥, Σ
⊗

∆, A⊥ ⊗ B⊥, Σ
cut

Γ, ∆, Σ
→cut

Γ, B, A A⊥, ∆
cut

Γ, ∆, B B⊥, Σ
cut

Γ, ∆, Σ

Γ
⊥

Γ, ⊥
1

1
cut

Γ
→cut Γ

Figure 3 Multiplicative cut-elimination steps in PLL.

Sketch of proof. We associate with any derivation D in PLL a derivation D♠ in MELL
sequent calculus. Thanks to additional commutative cut-elimination steps, we prove that cut-
elimination in MELL rewrites D♠ to the translation of a derivation in PLL. The termination
of cut-elimination in PLL follows from strong normalisation of (second-order) MELL [29]. ◀

Akin to light linear logic [20, 22, 31], the exponential rules of PLL are weaker than those
in MELL: the usual promotion rule is replaced by f!p (functorial promotion), and the usual
contraction and dereliction rules by ?b. As a consequence, the digging formula !A ⊸ !!A
and the contraction formula !A ⊸ !A ⊗ !A are not provable in PLL (unlike the dereliction
formula, Example 4). This allows us to interpret computationally these weaker exponentials
in terms of streams, as well as to control the complexity of cut-elimination [25, 26].

It is easy to show that MELL = PLL + digging: if we add the digging formula as an axiom
(or equivalently, the digging rule ??d in Figure 13) to the set of rules in Figure 1, then the
contraction formula becomes provable, and the obtained proof system coincides with MELL.

4 Non-wellfounded Parsimonious Linear Logic

In linear logic, a formula !A is interpreted as the availability of A at will. This intuition still
holds in PLL. Indeed, the Curry-Howard correspondence interprets rule f!p introducing the
modality ! as an operator taking a derivation D of A and creating a (infinite) stream (D, D, . . . ,

D, . . .) of copies of the proof D. Each element of the stream is accessed via the cut-elimination
step f!p vs ?b in Figure 4: rule ?b is interpreted as an operator popping one copy of D out
of the stream. Pushing these ideas further, Mazza [25] introduced parsimonious logic PL, a
type system (comprising rules f!p and ?b) characterizing the logspace decidable problems.

Mazza and Terui then introduced in [26] another type system, nuPL∀ℓ, based on parsi-
monious logic and capturing the complexity class P/poly (i.e., the problems decidable by
polynomial size families of Boolean circuits [4]). Their system is endowed with a non-uniform
version of the functorial promotion, which takes a finite set of proofs D1, . . . , Dn of A and a
(possibly non-recursive) function f : N → {1, . . . , n} as premises, and constructs a proof of !A
modeling the stream (Df(0), Df(1), . . . , Df(n), . . .). This typing rule is the key tool to encode
the so-called advices for Turing machines, an essential step to show completeness for P/poly.

In a similar vein, we can endow PLL with a non-uniform version of f!p called infinitely
branching promotion (ib!p), which constructs a stream (D0, D1, . . . , Dn, . . .) with finite

CSL 2024
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Γ, A
f!p

?Γ, !A
A⊥, ∆, B

f!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
f!p

?Γ, ?∆, !B

Γ, A
f!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

?w
?Γ, ∆

Γ, A
f!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut Γ, A

Γ, A
f!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
|Γ|×?b

?Γ, ∆

Figure 4 Exponential cut-elimination steps in PLL.

Γ1, A
r

Γ, A A⊥, ∆
cut

Γ, ∆
→cut

Γ1, A A⊥, ∆
cut

Γ1, ∆
r

Γ, ∆

Γ1, A Γ2
r

Γ, A ∆, A⊥
cut

Γ, ∆
→cut

Γ1, A A⊥, ∆
cut

Γ1, ∆ Γ2
r

Γ, ∆

Figure 5 Commutative cut-elimination steps in PLL, where r ̸= cut.
{

Di

Γ, A

}
i∈Nib!p

?Γ, !A

{
D′

i

A⊥, ∆, B

}
i∈Nib!p

?A⊥, ?∆, !B
cut

?Γ, ?∆, !B

→cut


Di

Γ, A

D′
i

A⊥, ∆, B
cut

Γ, ∆, B


i∈Nib!p

?Γ, ?∆, !B

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

|Γ|×?w
?Γ, ∆

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut
D0

Γ, A

{
Di+1

Γ, A

}
i∈Nib!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
|Γ|×?b

?Γ, ∆

Figure 6 Exponential cut-elimination steps in nuPLL.

support, i.e., made of finitely many distinct derivations (of the same conclusion):2

D0

Γ, A

D1

Γ, A · · ·
Dn

Γ, A · · ·
ib!p {Di | i ∈ N} is finite

?Γ, !A
!w

!A
Γ, A ∆, !A

!b
Γ, ∆, !A (1)

The side condition on ib!p provides a proof theoretic counterpart to the function f : N →
{1, . . . , n} in nuPL∀ℓ. Clearly, f!p is subsumed by the rule ib!p, as it corresponds to the
special (uniform) case where Di = Di+1 for all i ∈ N.

▶ Definition 6. We define the set of rules nuPLL := {ax, ⊗,`, 1, ⊥, cut, ?b, ?w, ib!p}. We
also denote by nuPLL the set of derivations over the rules in nuPLL.3

There are some notable differences between nuPLL and Mazza and Terui’s original system
nuPL∀ℓ [26]. As opposed to nuPLL, nuPL∀ℓ is formulated as an intuitionistic (type) system.

2 Rule ib!p is reminiscent of the ω-rule used in (first-order) Peano arithmetic to derive formulas of the
form ∀xϕ that cannot be proven in a uniform way.

3 To be rigorous, this requires a slight change in Definition 1: the tree labeled by a derivation in nuPLL
must be over Nω instead of {1, 2}∗, in order to deal with infinitely branching derivations.
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D := ax
A⊥, A

ax
A⊥, A

...
cut

Γ, A
cut

Γ, A
cut

Γ, A

D? :=

...
?b

A, A, ?A
?b

A, ?A
?b

?A

Figure 7 Two non-wellfounded and non-progressing coderivations in PLL∞.

 D

Γ′
r

Γ


◦

:=
D◦

Γ′
r

Γ

 D1

Γ1

D2

Γ2
t

Γ


◦

:=
D1

◦

Γ1

D2
◦

Γ2
t

Γ

 D

Γ, A
f!p

?Γ, !A


◦

:= D◦

Γ, A

D◦

Γ, A

...
c!p

?Γ, !A
c!p

?Γ, !A
c!p

?Γ, !A

 D

Γ′
r

Γ


•

:=
D•

Γ′
r

Γ

 D1

Γ1

D2

Γ2
t

Γ


•

:=
D1

•

Γ1

D2
•

Γ2
t

Γ

 D0

Γ, A · · ·
Dn

Γ, A · · ·
ib!p

?Γ, !A


•

:= D•
0

Γ, A

D•
n

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
for all r ∈ {`, ⊥, ?w, ?b} and t ∈ {cut, ⊗} (ax and 1 are translated by themselves).

Figure 8 Translations (·)◦ from PLL to PLL∞, and (·)• from nuPLL to PLL∞.

Furthermore, to achieve completeness for P/poly, these authors introduced second-order
quantifiers and the co-absorption (!b) and co-weakening (!w) rules displayed in (1).

Cut-elimination steps for nuPLL are in Figures 3, 5, and 6. In particular, the step ib!p-vs-?b
in Figure 6 pops the first derivation D0 of ib!p out of the stream (D0, D1, . . . , Dn, . . .).

4.1 From infinitely branching proofs to non-wellfounded proofs
In this paper we explore a dual approach to the one of nuPL∀ℓ (and nuPLL): instead of
considering (wellfounded) derivations with infinite branching, we consider (non-wellfounded)
coderivations with finite branching. For this purpose, the infinitary rule ib!p of nuPLL is
replaced by the binary rule below, called conditional promotion (c!p):

Γ, A ?Γ, !A
c!p

?Γ, !A
(2)

▶ Definition 7. We define the set of rules PLL∞ := {ax, ⊗,`, 1, ⊥, cut, ?b, ?w, c!p}. We also
denote by PLL∞ the set of coderivations over the rules in PLL∞.

In other words, PLL∞ is the set of coderivations generated by the same rules as PLL,
except that f!p is replaced by c!p. From now on, we will only consider coderivations in PLL∞.

▶ Example 8. Figure 7 shows two non-wellfounded coderivations in PLL∞: D (resp. D?)
has an infinite branch of cut (resp. ?b) rules, and is (resp. is not) regular.

We can embed PLL and nuPLL into PLL∞ via the conclusion-preserving translations
(·)◦ : PLL → PLL∞ and (·)• : nuPLL → PLL∞ defined in Figure 8 by induction on derivations:
they map all rules to themselves except f!p and ib!p, which are “unpacked” into non-
wellfounded coderivations that iterate infinitely many times the rule c!p.

An infinite chain of c!p rules (Figure 9) is a structure of interest in itself in PLL∞.
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D = c!p(D0,...,Dn,...) =
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
c!p

?Γ, !A

Figure 9 A non-wellfounded box in PLL∞.

▶ Definition 9. A non-wellfounded box (nwb for short) is a coderivation D ∈ PLL∞

with an infinite branch {ϵ, 2, 22, . . . } (the main branch of D) all labeled by c!p rules as
in Figure 9, where !A in the conclusion is the principal formula of D, and D0, D1, . . . are
the calls of D. We denote D by c!p(D0,...,Dn,...).

Let S = c!p(D0,...,Dn,...) be a nwb. We may write S(i) to denote Di. We say that S

has finite support (resp. is periodic with period k) if {S(i) | i ∈ N} is finite (resp. if
S(i) = S(k + i) for any i ∈ N). A coderivation D has finite support (resp. is periodic) if
any nwb in D has finite support (resp. is periodic).

▶ Example 10. The only cut-free derivations of the formula N := !(X ⊸ X) ⊸ X ⊸ X are
of the form n below on the right, for all n ∈ N, up to permutations of the rules ?w and ⊗
(the derivations 0 and 1 in Example 4 are special cases of it)

c!p(i0,...,in,...) =
i0

N

i1

N

in

N

...
c!p

!N
c!p

...
c!p

!N
c!p

!N

n :=

ax
X⊥, X

ax
X⊥, X

⊗
X ⊗ X⊥, X⊥, X

ax
X⊥, X

⊗ ×(n−1)
X ⊗ X⊥, . . . , X ⊗ X⊥, X⊥, X

?w
?(X ⊗ X⊥), X ⊗ X⊥, . . . , X ⊗ X⊥, X⊥, X

?b×n

?(X ⊗ X⊥), X⊥, X`×2
?(X ⊗ X⊥) ` X⊥ ` X

(3)

Consider the nwb c!p(i0,...,in,...) above on the left, proving the formula !N, where ij ∈ {0, 1}
for all j ∈ N. Thus c!p(i0,...,in,...) has finite support, as its only calls can be 0 or 1, and it is
periodic if and only if so is the infinite sequence (i0, . . . , in, . . .) ∈ {0, 1}ω.

The cut-elimination steps →cut for PLL∞ are in Figures 3, 5, and 10. Computationally,
they allow the c!p rule to be interpreted as a coinductive definition of a stream of type !A
from a stream of the same type to which an element of type A is prepended. In particular, the
cut-elimination step c!p vs ?b accesses the head of a stream: rule ?b acts as a pop operator.

As a consequence, the nwb in Figure 9 constructs a stream (D0, D1, . . . , Dn, . . .) similarly
to ib!p but, unlike the latter, all the Di’s may be pairwise distinct. The reader expert in linear
logic can see a nwb as a box with possibly infinitely many distinct contents (its calls), while
usual linear logic boxes (and f!p in PLL) provide infinitely many copies of the same content.

Rules f!p in PLL and ib!p in nuPLL are mapped by (·)◦ and (·)• into nwbs, which are
non-wellfounded coderivations. Hence, the cut-elimination steps f!p vs f!p in PLL and ib!p vs
ib!p in nuPLL can only be simulated by infinitely many cut-elimination steps in PLL∞.

Note that D ∈ PLL∞ in Figure 7 is not cut-free, and if D →cut D then D = D : thus D 
cannot reduce to a cut-free coderivation, and so the cut-elimination theorem fails in PLL∞.

4.2 Consistency via a progressing criterion
In a non-wellfounded setting such as PLL∞, any sequent is provable. Indeed, the (non-
wellfounded) coderivation D in Figure 7 shows that any non-empty sequent (in particular,
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Γ, A ?Γ, !A
c!p

?Γ, !A
A⊥, ∆, B ?A⊥, ?∆, !B

c!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B

?Γ, !A ?A⊥, ?∆, !B
cut

?Γ, ?∆, !B
c!p

?Γ, ?∆, !B

Γ, A ?Γ, !A
c!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

|Γ|×?w
?Γ, ∆

Γ, A ?Γ, !A
c!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut
?Γ, !A

Γ, A ∆, A⊥, ?A⊥
cut

?Γ, ∆, ?A⊥
cut

Γ, ?Γ, ∆
|Γ|×?b

?Γ, ∆

Figure 10 Exponential cut-elimination steps for coderivations of PLL∞.

ax
A, A⊥

F 1, . . . F
n
, A A⊥, G1, . . . , G

mcut
F 1, . . . , F

n
, G1, . . . , G

m

F 1, . . . F
n
, A , B

`
F 1, . . . , F

n
, A ` B

F 1, . . . F
n
, A B, G1, . . . , G

m⊗
F 1, . . . , F

n
, A ⊗ B, G1, . . . , G

m

1
1

F 1, . . . , F
n⊥

F 1, . . . , F
n
, ⊥

F1, . . . , Fn, A ?F 1, . . . , ?F
n
, !A

c!p
?F 1, . . . , ?F

n
, !A

F 1, . . . , F
n?w

F 1, . . . , F
n
, ?A

F 1, . . . , F
n
, A, ?A

?b
F 1, . . . , F

n
, ?A

Figure 11 PLL∞ rules: edges connect a formula in the conclusion with its parent(s) in a premise.

any formula) is provable in PLL∞, and the empty sequent is provable in PLL∞ by applying
the cut rule on the conclusions B and B⊥ (for any formula B) of two derivations D .

The standard way to recover logical consistency in non-wellfounded proof theory is to
introduce a global soundness condition on coderivations, called progressing criterion. In
PLL∞, this criterion relies on tracking occurrences of !-formulas in a coderivation.

▶ Definition 11. Let D be a coderivation in PLL∞. It is weakly progressing if every infinite
branch contains infinitely many right premises of c!p-rules.

An occurrence of a formula in a premise of a rule r is the parent of an occurrence of a
formula in the conclusion if they are connected according to the edges depicted in Figure 11.

A !-thread (resp. ?-thread) in D is a maximal sequence (Ai)i∈I of !-formulas (resp. ?-
formulas) for some downward-closed I ⊆ N such that Ai+1 is the parent of Ai for all i ∈ I. A
!-thread (Ai)i∈I is progressing if Aj is in the conclusion of a c!p for infinitely many j ∈ I.
D is progressing if every infinite branch contains a progressing !-thread. We define pPLL∞

(resp. wpPLL∞) as the set of progressing (resp. weak-progressing) coderivations in PLL∞.

▶ Remark 12. Clearly, any progressing coderivation is weakly progressing too, but the
converse fails (Example 14), therefore pPLL∞ ⊊ wpPLL∞. Moreover, the main branch of any
nwb contains by definition a progressing !-thread of its principal formula.

▶ Remark 13. Any branch B in a progressing coderivation D contains at most (and hence
exactly) one progressing !-thread. This follows by maximality of !-threads and the fact that
conclusions of c!p rules contain at most one !-formula. As a consequence, any infinite !-thread
τ of a branch B in a progressing coderivation D must be progressing.

▶ Example 14. Coderivations in Figure 7 are not weakly progressing (hence, not progressing):
the rightmost branch of D , i.e., the branch {ϵ, 2, 22, . . .}, and the unique branch of D? are
infinite and contain no c!p-rules. In contrast, the nwb c!p(i0,...,in,...) in Example 10 is
progressing by Remark 12, since its main branch is the only infinite branch. Below, a regular,
weakly progressing but not progressing coderivation (!X in the conclusion of c!p is a cut
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formula, so the branch {ϵ, 2, 21, 212, 2121, . . . } is infinite but has no progressing !-thread).

ax
X, X⊥

ax
X, X⊥

...
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥, !X
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥ , !X
c!p

?X⊥ , !X

▶ Lemma 15. Let Γ be a sequent. Then, ⊢PLL Γ if and only if ⊢wpPLL∞ Γ.

Proof. Given D ∈ PLL, D◦ ∈ PLL∞ preserves the conclusion and is progressing, hence weakly
progressing (see Remark 12). Conversely, given a weakly progressing coderivation D, we define
a derivation Df ∈ PLL with the same conclusion by applying, bottom-up, the translation:

 D

Γ′
r

Γ


f

:=
Df

Γ′
r

Γ

 D1

Γ1

D2

Γ2
r

Γ


f

:=
D1

f

Γ1

D2
f

Γ2
r

Γ

 D

Γ, A

D′

?Γ, !A
c!p

?Γ, !A


f

:=
Df

Γ, A
f!p

?Γ, !A

with r ̸= c!p. Note that the derivation Df is well-defined because D is weakly progressing. ◀

▶ Corollary 16. The empty sequent is not provable in wpPLL∞ (and hence in pPLL∞).

Proof. If the empty sequent were provable in wpPLL∞, then there would be a cut-free
derivation D ∈ PLL of the empty sequent by Lemma 15 and Theorem 5, but this is impossible
since cut is the only rule in PLL that could have the empty sequent in its conclusion. ◀

4.3 Recovering (weak forms of) regularity
The progressing criterion cannot capture the finiteness condition of the rule ib!p in the
derivations in nuPLL. By means of example, consider the nwb below, which is progressing
but cannot be the image of the rule ib!p via (·)• (see Figure 8) since {Di | i ∈ N} is infinite.

D0

!N

D1

!N

Dn

!N

...
c!p

!!N
c!p

...
c!p

!!N
c!p

!!N

with Di = c!p(1,...,1︸︷︷︸
i

,0,...) for each i ∈ N. (4)

To identify in pPLL∞ the coderivations corresponding to derivations in nuPLL and in PLL
via the translations (·)• and (·)◦, respectively, we need additional conditions.

▶ Definition 17. A coderivation is weakly regular if it has only finitely many distinct
sub-coderivations whose conclusions are left premises of c!p-rules; it is finitely expandable
if any branch contains finitely many cut and ?b rules. We denote by wrPLL∞ (resp. rPLL∞)
the set of weakly regular (resp. regular) and finitely expandable coderivations in pPLL∞.

▶ Remark 18. Regularity implies weak regularity and the converse fails as shown in Example 19
below, so rPLL∞ ⊊ wrPLL∞. Given D ∈ PLL∞ progressing and finitely expandable, it is
regular (resp. weakly regular) if and only if any nwb in D is periodic (resp. has finite support).
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▶ Example 19. Coderivations D and D? in Figure 7 are not finitely expandable, as their
infinite branch has infinitely many cut or ?b, but they are weakly regular, since they have no
c!p rules. The coderivation in (4) is not weakly regular because {Di | i ∈ N} is infinite.

An example of a weakly regular but not regular coderivation is the nwb c!p(i0,...,in,...) in
Example 10 when the infinite sequence (ij)j∈N ∈ {0, 1}ω is not periodic: 0 and 1 are the only
coderivations ending in the left premise of a c!p rule (so the nwb is weakly regular), but there
are infinitely many distinct coderivations ending in the right premise of a c!p rule (so the
nwb is not regular). Moreover, that nwb is finitely expandable, as it contains no ?b or cut.

The sets rPLL∞ and wrPLL∞ are the non-wellfounded counterparts of PLL and nuPLL,
respectively. Indeed, we have the following correspondence via the translations (·)◦ and (·)•.

▶ Proposition 20. The following statements hold.

1. If D ∈ PLL (resp. D ∈ nuPLL) with conclusion Γ, then D◦ ∈ rPLL∞ (resp. D• ∈ wrPLL∞)
with conclusion Γ, and every c!p in D◦ (resp. D•) belongs to a nwb.

2. If D′ ∈ rPLL∞ (resp. D′ ∈ wrPLL∞) and every c!p in D′ belongs to a nwb, then there is
D ∈ PLL (resp. D ∈ nuPLL) such that D◦ = D′ (resp. D• = D′).

1. By straightforward induction on D ∈ PLL (resp. D ∈ nuPLL).
2. d(D) ∈ N by Lemma 45. We can then prove the statement by induction on d(D). We

prove the statement by induction on the measure d(D) (see Definition 42 and Lemma 45).

Progressing and weak progressing coincide in finitely expandable coderivations.

▶ Lemma 21. Let D ∈ PLL∞ be finitely expandable. If D ∈ wpPLL∞ then any infinite branch
contains the main branch of a nwb. Moreover, D ∈ pPLL∞ if and only if D ∈ wpPLL∞.

Proof. Let D ∈ wpPLL∞ be finitely expandable, and let B be an infinite branch in D.
By finite expandability there is h ∈ N such that B contains no conclusion of a cut or ?b
with height greater than h. Moreover, by weakly progressing there is an infinite sequence
h ≤ h0 < h1 < . . . < hn < . . . such that the sequent of B at height hi has shape ?Γi, !Ai. By
inspecting the rules in Figure 1, each such ?Γi, !Ai can be the conclusion of either a ?w or a
c!p (with right premise ?Γi, !Ai). So, there is a k large enough such that, for any i ≥ k, only
the latter case applies (and, in particular, Γi = Γ and Ai = A for some Γ, A). Therefore, hk

is the root of a nwb. This also shows D ∈ pPLL∞. By Remark 12, pPLL∞ ⊆ wpPLL∞. ◀

By inspecting the steps in Figures 3, 5, and 10, we prove the following preservations.

▶ Proposition 22. Cut elimination preserves weak-regularity, regularity and finite expandab-
ility. Therefore, if D ∈ X with X ∈ {rPLL∞, wrPLL∞} and D →cut D′, then also D′ ∈ X.

Proof. By inspection of the cut-elimination steps defined in Figures 3, 5, and 10. ◀

5 Continuous cut-elimination

Cut-elimination for (finitary) sequent calculi proceeds by introducing a proof rewriting
strategy that stepwise decreases an appropriate termination ordering (see, e.g, [36]). Typically,
these proof rewriting strategies consist on pushing upward the topmost cuts via the cut-
elimination steps in order to eventually eliminate them.

A somewhat dual approach is investigated in the context of non-wellfounded proofs [5, 18].
It consists on infinitary proof rewriting strategies that gradually push upward the bottommost
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cuts. In this setting, the progressing condition is essential to guarantee productivity, i.e., that
such proof rewriting strategies construct strictly increasing approximations of the cut-free
proof, which can thus be obtained as a (well-defined) limit.

A major obstacle of this approach arises when the bottommost cut r is below another one
r′. In this case, no cut-elimination step can be applied to r, so proof rewriting runs into an
apparent stumbling block. To circumvent this problem, in [5, 18] a special cut-elimination
step is introduced, which merges r and r′ in a single, generalized cut rule called multicut.

In this section we study a continuous cut-elimination method that does not rely on
multicut rules, following an alternative idea in which the notion of approximation plays an
even more central rule, inspired by the topological approaches to infinite trees [8]. To this
end, we assume the reader familiar with basic definitions on domain-theory (see, e.g., [3]).

5.1 Approximating coderivations
We introduce open coderivations to approximate coderivations. They form Scott-domains,
on top of which we define continuous cut elimination. We also exploit them to decompose
a finitely expandable and progressing coderivation into a finite approximation and a finite
sequence of nwbs.

▶ Definition 23. We define the set of rules oPLL∞ := PLL∞ ∪ {hyp}, where hyp := hyp
Γ

for

any sequent Γ.4 We will also refer to oPLL∞ as the set of coderivations over oPLL∞, which we
call open coderivations. An open coderivation is normal if no cut-elimination step can be
applied to it, that is, if one premise of each cut is a hyp. An open derivation is a derivation
in oPLL∞. We denote by oPLL∞(Γ) the set of open coderivations with conclusion Γ.

▶ Definition 24. Let D be an open coderivation, V ⊆ {1, 2}∗ be a set of mutually incomparable
(w.r.t. the prefix order) nodes of D, and {D′

ν}ν∈V be a set of open coderivations where D′
ν

has the same conclusion as the subderivation Dν of D. We denote by D{D′
ν/ν}ν∈V , the open

coderivation obtained by replacing each Dν with D′
ν . When V is finite, we will also use the

alternative notation D(D′
ν1

/ν1, . . . , D′
νn

/νn).
The pruning of D over V is the open coderivation ⌊D⌋V = D{hyp/ν}ν∈V . If D and

D′ are open coderivations, we say that D is an approximation of D′ (noted D ⪯ D′) iff
D = ⌊D′⌋V for some V ⊆ {1, 2}∗. An approximation is finite if it is an open derivation. We
denote by K(D) (resp. Kf (D)) the set of approximations (resp. finite approximations) of D.

Note that D and ⌊D⌋V (and hence D′ if D ⪯ D′) have the same conclusion. Any open
coderivation D is the supremum of its finite approximations, i.e., D =

⊔
D′∈Kf (D) D′. Indeed:

▶ Proposition 25. For any sequent Γ, the poset (oPLL∞(Γ), ⪯) is a Scott-domain with least
element the open derivation hyp and with maximal elements the coderivations (in PLL∞) with
conclusion Γ. The compact elements are precisely the open derivations in oPLL∞(Γ).

Cut-elimination steps essentially do not increase the size of open derivations, hence:

▶ Lemma 26. →cut over open derivations is strongly normalizing and confluent.

Proof. For D an open derivation, let C(D) be the number of c!p in D and H(D) be the sum of
the sizes of all subderivations of D whose root is the conclusion of a cut rule. If D →cut D′ via:

4 Previously introduced notions and definitions on coderivations extend to open coderivations in the
obvious way, e.g. the global conditions of Definitions 11 and 17 and the cut-elimination relation →cut.
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a commutative cut-elimination step, then C(D) = C(D′), |D| = |D′| and H(D) > H(D′);
a multiplicative cut-elimination (Figure 3), then C(D) = C(D′) and |D| > |D′|;
an exponential cut-elimination step (Figure 10), then C(D) > C(D′).

Since the lexicographic order over the triples (C(D), |D|, H(D)) ∈ ω3 is wellfounded, we
conclude that there is no infinite sequence (Di)i∈N such that D0 = D and Di →cut Di+1.

Finally, since cut-elimination →cut is strongly normalizing over open derivations and it is
locally confluent by inspection of critical pairs, by Newman’s lemma it is also confluent. ◀

Progressing and finitely expandable coderivations can be approximated in a canonical way.
Indeed, by Lemma 21 we have:

▶ Proposition 27. If D ∈ pPLL∞ is finitely expandable, then there is a prebar V ⊆ {1, 2}∗ of
D such that each v ∈ V is the root of a nwb in D.

▶ Definition 28. Let D ∈ pPLL∞ be finitely expandable. The decomposition prebar of D is
the minimal prebar V of D such that, for all ν ∈ V, Dν is a nwb. We denote with border(D)
such a bar and we set base(D) := ⌊D⌋border(D).

Note that, by weak König lemma, in the above definition border(D) is finite and base(D)
is a finite approximation of D.

5.2 Domain-theoretic approach to continuous cut-elimination
In this subsection we define maximal and continuous infinitary cut-elimination strategies
(mc-ices), that is, specific rewriting strategies generating infinite reduction chains, whose limits
are cut-free open coderivations. In other words, a mc-ices computes a (Scott-)continuous
function from open coderivations to cut-free open coderivations. Then, we introduce the
height-by-height mc-ices, a notable example of mc-ices that will be used for our results, and
we show that any two mc-icess compute the same (Scott-)continuous function.

In what follows, σ denotes a countable sequence of coderivations, and σ(i) denotes the
(i + 1)-th coderivation in σ. We denote the length of a sequence σ by length(σ) ≤ ω.

▶ Definition 29. An infinitary cut-elimination strategy (or ices for short) is a family
σ = {σD}D∈oPLL∞ where, for all D ∈ oPLL∞, σD is a sequence of open coderivations such
that σD(0) = D and σD(i) →cut σD(i + 1) for all 0 ≤ i < length(σD). Given an ices σ,
we define the function fσ : oPLL∞(Γ) → oPLL∞(Γ) as fσ(D) :=

⊔length(σD)
i=0 cf(σD(i)) where

cf(Di) is the greatest cut-free approximation of Di (w.r.t. ⪯).5
An ices σ is a mc-ices if it is:

maximal: σD(length(σD)) is normal for any open derivation D (length(σD) < ω

by Lemma 26);
(Scott)-continuous: fσ is Scott-continuous.

Roughly, a maximal ices is an ices that applies cut-elimination steps to open derivations
until a normal (possibly cut-free) open derivation is reached. Together with continuity,
this allows us to define fσ(D) as the supremum of the normal open derivation obtained
by applying the cut-elimination steps to the finite approximations of a coderivation D,

5 The function fσ is well-defined since {cf(σD(i)) | i ≥ 0} is a direct set in (oPLL∞(Γ), ⪯), therefore its
supremum exists by Proposition 25.
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that is, fσ(D) =
⊔

D′∈Kf (D) fσ(D′) =
⊔

D′∈Kf (D) cf(σ′
D(length(D′))), where length(σD) < ω

by Lemma 26.
The following property states that all mc-icess induce the same continuous function, an

easy consequence of Lemma 26 and continuity.

▶ Proposition 30. If σ and σ′ are two mc-icess, then fσ = fσ′ .

Proof. For any open derivation D, since σ and σ′ are maximal, we have that σD(length(σD))
and σ′

D(length(σ′
D)) are normal, and so σD(length(σD)) = σ′

D(length(σ′
D)) by Lemma 26.

Hence:
fσ(D) = cf(σD(length(σD))) = cf(σ′

D(length(σ′
D))) = fσ′(D)

Now, let D be an open coderivation. Since oPLL∞ is a Scott-domain (Proposition 25), then
D =

⊔
D′∈Kf (D) D′. We conclude that fσ(D) =

⊔
D′∈Kf (D) fσ(D′) =

⊔
D′∈Kf (D) fσ′(D′) =

fσ′(D) because fσ and fσ′ are continuous. ◀

Therefore, we define a specific mc-ices we use in our proofs, where cut-elimination steps
are applied in a deterministic way to the minimal reducible cut-rules.

▶ Definition 31. The height-by-height ices is defined as σ∞ = {σ∞
D }D∈oPLL∞ where

σ∞
D (0) = D for each D ∈ oPLL∞, and σ∞

D (i + 1) is the open coderivation obtained by applying
a cut-elimination step to the rightmost reducible cut-rule with minimal height in σ∞

D (i).

▶ Proposition 32. The ices σ∞ is a mc-ices.

Proof. By Lemma 26, any open derivation D normalizes in nD ∈ N steps; so, if D is an open
derivation, length(σ∞

D ) = nD with σ∞
D (nD) normal by definition of σ∞. Hence, σ∞ is maximal.

To conclude we have to show that fσ∞ is continuous. Since σ∞
D (i) is defined by applying

a finite number of cut-eliminations steps to D, then for each i ∈ N such that length(σ∞)
there is Di ∈ K(D) such that cf(σ∞

D (i)) ⪯ fσ∞(Di). Thus fσ∞(D) ⪯
⊔

D′∈K(D) fσ∞(D′). We
conclude since

⊔
D′∈K(D) fσ∞(D′) ⪯ fσ∞(D) because σ∞ is monotone by construction. ◀

▶ Example 33. For any finite approximation D of the (non-weakly progressing, non-finitely
expandable) open coderivation D , we have fσ∞(D) = hyp, so fσ∞(D ) = hyp by continuity.

5.3 Productivity of Continuous Cut-elimination
We conclude this section by proving continuous cut-elimination theorem, the main contribution
of this paper, establishing a productivity result and showing that continuous cut-elimination
preserves all global conditions. For this purpose, we introduce the notion of chain of cut-rules,
which allows us to keep track of the dynamic of cut-elimination steps during infinitary
rewriting. Note that the definition of cut-chain is the analogue of the multi-cut reduction
sequences from [5].

▶ Definition 34 (Chains). Let σ = {σD}D∈oPLL∞ be an ices. We write ri 7→σ ri+1 if ri+1 is a
cut-rule in σD(i + 1) produced by applying a cut-elimination step to the cut-rule ri in σD(i).
A cut-chain in σD is a maximal sequence (ri)i<α of cut rules with α ≤ length(σD), such that
ri a rule in σD(i), and either ri = ri+1 or ri 7→σ ri+1. It is stable if (it is infinite and) there
is a k ≥ 0 such that ri = rk for all i ≥ k.

▶ Notation 35. Let D be a coderivation. The starting point of a thread τ in D is its first
element. A progressing point of a !-thread !ρ in D is a sequent which is conclusion of a
c!p-rule with principal !-formula the one in !ρ.
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A cut-rule is reducible if a cut-elimination step can be applied to it, that is, if one of its
premises is not the conclusion of a cut-rule.

We denote by σ∞
τ (i) the thread of σ∞

D (i) obtained by applying σ∞ to τ (notice that, if it
exists, it is unique).

▶ Lemma 36. Let D ∈ pPLL∞. If D is not cut-free, then it contains a reducible cut-rule.

Proof. By definition, if no cut-rule in D is reducible, then both premises of each cut-rule in
D are conclusion of cut-rules. Therefore, if D is not cut-free, then any rule above a cut-rule
is a cut-rule. This implies the existence of an infinite branch containing only cut-rules,
contradicting progressivity of D. ◀

▶ Lemma 37. Let D ∈ pPLL∞ and (rj)j≥0 an infinite cut-chain in σ∞
D with r0 in D. Then:

1. If (rj)j≥0 is not stable, then there is no i0 ≥ 0 such that, for every i ≥ i0, either ri+1 = ri

or ri 7→σ ri+1 is a commuting step or a c!p-vs-?b step.
2. (rj)j≥0 is not stable;
3. there is some i0 ≥ 0 and a !-thread τ of σD(i0) such that, for every i ≥ i0:

a. the !-formula that is active in ri is the starting point of σ∞
τ (i),

b. if ri 7→σ ri+1 then ri is a c!p-vs-c!p, a c!p-vs-?b or a commuting step,
c. there are infinitely many ri 7→σ ri+1 such that ri is a c!p-vs-c!p step.

Proof. Concerning Item 1, suppose (rj)j≥0 is not stable, and there is some i0 ≥ 0 such that,
for every i ≥ i0, either ri+1 = ri or ri 7→σ ri+1 is a commuting step or a c!p-vs-?b step. We
first show that the set I of i ≥ i0 such that ri 7→σ ri+1 is a c!p-vs-?b step is finite. To this
end, we notice that the cut-elimination step c!p-vs-?b erases a ?b rule r and creates a finite
sequence of ?b rules in the same branch of r; no other cut-elimination step creates ?b rules.
This means that, if I were infinite, either a branch containing infinite ?b rules (and only
finitely many c!p rules) exists already in D, or D contains a branch with infinitely many c!p
rules whose principal !-formula will be eventually active for a cut of the form c!p-vs-?b. Both
cases are impossible by progressivity of D. Therefore, there is i1 ≥ i0 such that, for every
i ≥ i1, either ri+1 = ri or ri 7→σ ri+1 is a commuting step. Moreover, since (rj)j≥0 is not
stable there must be infinite commuting steps. We apply a similar reasoning and appeal to
progressivity of D.

To prove Item 2, it suffices to show that there is i ≥ 0 such that r = r0 ̸= ri. Suppose
towards contradiction that ri = r for every i ≥ 0. By Lemma 36, for every i ≥ 0 there is a
r′
i ≠ ri that is reduced at the i-th step of cut-elimination. Let hj and ki be the heights of ri

and r′
i in σ∞

D (i) respectively. By definition of σ∞, it must be that either ki < hj or ki = hi

and r′
i is at the right of r (remember that σ∞ applies a cut-elimination step to the rightmost

reducible cut with minimal height). Notice that there cannot be infinitely many i with
ki < hi. Indeed, this would induce a cut-elimination sequence σ∞

D′ with infinite length on a
finite approximation D′ of D, contradicting Lemma 26. This means that there is i0 ≥ 0 such
that ki = hi = hi0 for every i ≥ i0, and r′

i is at the right of ri. We observe that there are only
finitely many (reducible) cuts at height hi0 in any σ∞

D (i), and moreover any cut-elimination
step applied to a cut with height hi0 produces at most one cut rule with the same height.
We conclude that infinitely many r′

i belong to the same cut-chain, which is therefore not
stable. Furthermore, the only cut reduced by this cut-chain are `-vs-⊗ and c!p-vs-?b, since
these are the only cut-elimination steps that reduce a cut producing a new one with the
same height. However, since `-vs-⊗-steps shrink the size of the cut-formulas, there must be
infinitely many c!p-vs-?b-steps in the cut-chain. This contradicts Item 1.
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Let us finally show Item 3. Note that since (rj)j≥0 is infinite, no ax-vs-cut or ?w-vs-c!p
cut-elimination step is ever applied to rj , otherwise the chain would be finite. Also, there are
finitely many i ∈ N such that the active formulas of rj are `- or ⊗-formulas, because each
⊗ -vs-` cut-elimination step reduces the size of the cut-formula. Notice also that there are
finitely many ?b-vs-c!p steps ri 7→ ri+1 such that ri+1 is the topmost cut produced because,
again, this cut-elimination step decreases the size of the formula. Therefore, there exists
i0 ≥ 0 and a !-thread τ of σD(i0) such that, for every i ≥ i0 the !-formula that is active in ri

is the starting point of σ∞
τ (i). This shows Item 3a. Moreover, Item 3b follows by the fact

that any ri with i ≥ i0 has exponential active formulas and the fact that ri 7→ ri+1 is neither
ax-vs-cut not ?w-vs-c!p. By Item 1 and Item 2, this implies Item 3c. ◀

We introduce some terminology to trace cut-rules during cut-elimination. The names
yard, clewline and buntline are borrowed from the sailing jargon. The yard is a horizontal
spar on which a square sail is attached.6 The clewlines and buntlines are lines attached
respectively to the corner and to the foot of a square sail, which is furled up on the yard.7
The intuition is that, during cut-elimination, a yard eventually moves upwards together
with the end-points of the buntlines, which are attached to the foot of the sail. Meanwhile
the clewlines are pulled down-ward. We then use the existence of such a clewline for each
cut-chain to ensure the existence of a progressing thread in each infinite branch created by
eliminating the cut-rules of an infinite cut-chain.

▶ Definition 38. A yard is an infinite cut-chain (ri)i<α such that if ri+1 ̸= ri, then ri is the
≤T -minimal right-most cut-rule produced by the cut-elimination step applied to ri.

A thread τ is a buntline of a yard (ri)i≥0 if there is a i0 ∈ N such that the starting point
of σ∞

τ (i) is the active formula of ri for all i ≥ i0.
A !-thread !ρ is a clewline of a yard (ri)i≥0 if there is a i0 ∈ N such that:

the starting point of σ∞
!ρ (i) is not the active formula of a cut-rule in σ∞

D (i) for any i ≥ 0;
the conclusion of ri contains a formula in σ∞

!ρ (i) for any i ≥ i0;
For any k > 0 there is a ik ≥ i0 such that σ∞

!ρ (ik) has at least k points right below rik
in

σ∞
D (ik).

▶ Lemma 39 (Furl up the sail!). Let D ∈ pPLL∞. If (rj)j≥0 is a yard in σ∞
D , then it has a

(unique) clewline !ρ.

Proof. By Lemma 37.3a there is a buntline τ of the yard (rj)j≥0. Moreover, by definition
and Lemma 37.3b and Lemma 37.3c, there is a i0 ≥ 0 such that:

ri0 is of the form c!p-vs-c!p,
for every i ≥ i0, if ri 7→σ ri+1 then ri is a c!p-vs-c!p, a c!p-vs-?b or a commuting step.

Moreover, it must be that one of the c!p rules right above ri0 has principal !-formula active
for ri0 , and the other c!p rule has principal !-formula that appears both in the premise and
in the conclusion of ri0 . Let !ρ be the !-thread containing the latter !-formula (it is unique by
Remark 13). It is easy to check that, for all i ≥ i0:

(i) the starting point of σ∞
!ρ (i) is not the active formula of a cut-rule in σ∞

D (i),
(ii) the conclusion of ri contains a formula in σ∞

!ρ (i).

6 See https://en.wikipedia.org/wiki/Yard_(sailing).
7 See https://en.wikipedia.org/wiki/Clewlines_and_buntlines.

https://en.wikipedia.org/wiki/Yard_(sailing)
https://en.wikipedia.org/wiki/Clewlines_and_buntlines
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This follows by the fact that every cut in a yard has minimal height and the fact that every
ri 7→σ ri+1 with i ≥ i0 is a c!p-vs-c!p, a c!p-vs-?b or a commuting step. To conclude that
!ρ is a clewline we observe that by Lemma 37.3c there are infinitely many j ≥ 0 such that
rj 7→σ rj+1 is a c!p-vs-c!p step. By Items (i) and (ii) the principal !-formula of one of the two
c!p rules right above rj has a progressing point of !ρ. Then, the sub-coderivation of σ∞

D (j)
containing σ∞

!ρ (j) and the sub-coderivation of σ∞
D (j + 1) containing σ∞

!ρ (j + 1) are of the
following form, where we mark with ☞the progressing points of !ρ in focus.

Σ, A ?Σ, !A
c!p

?Σ, !A

A⊥, Θ, B ?A
⊥

, ?Θ, !B
c!p ☞

?A
⊥

, ?Θ, !B
rj

?Γ, ?Θ, !B
...

?Γ, ?Θ, !B

σ∞
!ρ (j)

σ∞
τ (j)

→cut

Σ, A A⊥, Θ, B
cut

Σ, Θ, B

?Σ, !A ?A
⊥

, ?Θ, !B
rj+1

?Σ, ?Θ, !B
c!p ☞?Γ, ?Θ, !B

...
?Γ, ?Θ, !B

σ∞
!ρ (j + 1)

σ∞
τ (j + 1)

This shows that there are infinitely many j such that σ∞
!ρ (j + 1) has strictly more progressing

points right below rj+1 then σ∞
!ρ (j) has below rj . Moreover, we observe that the number of

progressing points of !ρ that are below cuts in the yard cannot decrease. Therefore, !ρ is a
clewline. ◀

We now have all technical tools requires to prove the so-called productivity result for
fσ∞ , that is, that if D is a progressing coderivation, then fσ∞(D) is a (well-defined) hyp-free
and cut-free coderivation. In addition, we show that the same reasoning we use to ensure
productivity also ensures that the progressing condition is preserved by fσ∞ .

▶ Theorem 40. If D ∈ pPLL∞, then so is fσ∞(D).

Proof. We have to prove that if D ∈ pPLL∞, then fσ∞(D) is a well-defined cut-free coderiv-
ation, that is, fσ∞(D) contains no hyp-rule and any infinite branch in fσ∞(D) contains a
progressing !-thread.

Let B be a branch of fσ∞(D). If B is also in σ∞
D (k) for a k ∈ N (therefore in all σ∞

D (j)
with j ≥ k), then it must be hyp-free by definition of the cut-elimination steps and, in case it
is infinite, it has a progressing !-thread by Proposition 22.

Otherwise there is no j ∈ N such that B is a branch of σ∞
D (j). In this case,

either there is an infinite cut-chain (rj)j≥0 in σ∞
D and a j0 ∈ N such that the branch Bj of

σ∞
D (j) containing the conclusion of rj is an initial segment of B for all j ≥ j0. Note that

this cut-chain is a yard by construction, and that the sequence (Bj)j≥0 is well-ordered
with supremum B by definition of σ∞.
In this case, by Lemma 39 there is clewline for (rj)j≥0 and there is a j0 such that for all
j ≥ j0 if rj ̸= rj+1, then Bj+1 strictly contains Bj and the number of progressing points
of the clewline below rj+1 increases. We conclude that !ρ is the progressing !-thread of B,
and that B is hyp-free by construction because it is infinite;
or we can define a sequence (rj)j≥0 of cut-rules such that rj is the bottom-most cut-rule in
the initial segment Bj of B in σ∞

D (j). As in the previous case we have that the sequence
(Bj)j≥0 is well-ordered with supremum B by definition of σ∞.
In this case (rj)j≥0 is the union of finite cut-chains, that is, we have that (rj)j≥0 =∏

ki
(rki

, . . . , r(ki+1−1)) for some ki ∈ N with 0 = k0 and ki < ki+1 for all i ∈ N. Thus we
have that rj+1 is either obtained by applying a cut-elimination step to rj , or that j +1 = ki

if a cut-elimination step applied to rj introduces no new cut-rules. By progressiveness of
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D, we know that the infinite branch of D containing the conclusion of all rki contains a
progressing thread τ . Then, since any cut-chain in (rj)j≥0 is finite, there must be some
j0 ≥ 0 such that the starting point of σ∞

τ (j) is not the active formula of rj for any j ≥ j0.
This means that B is progressing and hyp-free.

◀

▶ Remark 41. In our setting, yards play the same role of multicuts (see, e.g., [5, 14, 17, 1, 2]).
To be more precise, the same role of the bottom-most cut-rule in a pile of cut-rules is
represented by the multicut. Note that, at the pure syntactical level, if we consider a multicut
as a rule and we define multicut-elimination steps, then the number of the premises of such a
rule may increase indefinitively during cut-elimination. In fact, the derivation D in Figure 7
would reduce, via multicut-elimination, to a (progressing) derivation made of a multicut with
infinite premises conclusion of ax-rules.

ax
A⊥, A

ax
A⊥, A

...
cut

Γ, A
cut

Γ, A
cut

Γ, A

→∗
cut

ax
A, A⊥ · · ·

ax
A, A⊥ · · ·

multicut
A

The most interesting aspect of our technique is that it allows us to focus on the study of the
dynamics of the bottom-most cut-rule in a pile of cut-rules (corresponding to a multicut) to
deduce important properties of the limit coderivations. This is possible because in progressive
derivations there cannot be infinite piles of cut-rules, therefore a cut-elimination step is
eventually applied to a rule on top of a pile of cut-rules, which therefore is progressively
pushed by the height-by-height mc-ices below the pile, or simply removed by a cut-elimination
step involving one of the cut-rules of the pile. This interesting dynamic is hidden by multicut-
elimination, which lacks the granularity required to observe it.

5.4 Continuous Cut-elimination preserves (weak-)regularity
To prove that continuous cut-elimination preserves regularity and weak-regularity, we define
the notion of depth of a coderivation, akin in linear logic, as the maximal number of nested
nwbs.

▶ Definition 42. Let D ∈ PLL∞. The nesting level of a sequent occurrence Γ in D
is the number nlD(Γ) of nodes below it that are the root of a call of a nwb. The nesting
level of a formula (occurrence) A in D, noted nlD(A), is the nesting level of the sequent
that contain that formula. The nesting level of a rule r in D, noted nlD(r) (resp. of
a sub-coderivation D′ of D, noted nlD(D′)), is the nesting level of the conclusion of r
(resp. conclusion of D′).

The depth of D is d(D) := supr∈D{nlD(r)} ∈ N ∪ {∞}.

▶ Remark 43. All calls of a nwb have the same nesting level. Moreover, each of the sequents
of its main branch have nesting level 0.

Cut-elimination →cut on PLL∞ enjoys the following property.

▶ Lemma 44. Let D, D′ ∈ PLL∞. If D →cut D′ then d(D) ≥ d(D′).

Proof. By inspection of the cut-elimination steps in Figures 3, 5, and 10. ◀
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▶ Lemma 45. If D is weakly regular then d(D) ∈ N.

Proof. Since D is weakly regular, it has only finitely many distinct sub-coderivations whose
conclusion is the left premise of a c!p rule. Therefore, d(D) ∈ N. ◀

▶ Proposition 46. If D is progressing and finitely expandable then so is fσ∞(D).

Proof. By Theorem 40, fσ∞(D) is cut-free and progressing. To conclude, we need to show
that any infinite branch B of fσ∞(D) has only finitely many ?b rules. To this end, we notice
that the cut-elimination step c!p-vs-?b erases a ?b rule r and creates a finite sequence of ?b
rules in the same branch of r. No other cut-elimination step creates ?b rules. This means that,
if B had infinitely many ?b rules, either a branch containing infinite ?b rules exists already
in D, or D contains a branch with infinitely many c!p rules whose principal !-formula will be
eventually active for a cut of the form c!p-vs-?b. Both cases are impossible by progressiveness
of D. ◀

▶ Proposition 47. Let D ∈ wrPLL∞ (resp. rPLL∞). Then fσ∞(D) admits a decomposition
prebar, and base(fσ∞(D)) = base(σ∞

D (n)) for some n ≥ 0.

Proof. By Theorem 40 and Proposition 46, fσ∞(D) is a hyp-free, cut-free, progressing and
finitely expandable coderivation. By Proposition 27 fσ∞(D) admits a decomposition prebar
border(D) = {v1, . . . , vk}. By continuity of fσ∞ , this means that there is n ≥ 0 such that
base(σ∞

D (n)) = base(fσ∞(D)). Note that base(σ∞
D (n)) exists by Propositions 22 and 27. ◀

▶ Theorem 48. Continuous cut-elimination preserves (weak-)regularity. That is, if D ∈
wrPLL∞ (resp. D ∈ rPLL∞), then so is fσ∞(D).

Proof. To prove the statement we define a maximal and transfinite ices σ = {σD}D∈oPLL∞

eliminating the cut and preserving (weak) regularity, finite expandability and (weak) pro-
gressivity. Then show that we can define a mc-ices σ∗ = {σ∗

D}D∈oPLL∞ by “compressing” σ,
using a technique similar to the one in [32]. This allows us to conclude since, by Proposi-
tion 30, we have that fσ∞ = fσ∗ . In particular, every transfinite ices that we will construct
will satisfy the following conditions for any limit ordinal λ ≤ length(σD):

(I) σ∞
D (λ) =

⊔
i<λ D̃i for some D̃i finite approximations of σ∞

D (i),
(II) if hi is the height of the cut-rule reduced at the i-th step of σ∞

D , then limi<λ(hi) = ∞.

By Lemma 45 we know that d = d(D) is finite. Then we define σD as follows:

If d = 0, then by Proposition 27 D is a derivation and there is a maximal (finite) cut-
elimination sequence σD rewriting D to a cut-free and hyp-free derivation (see Lemma 26).
If d > 0, then we know by Proposition 47 that there is nbase(D) ≥ 0 and a finite sequence
σbase such that σbase(0) = D and base(fσ∞(D)) = base(σbase(nbase(D))) where

σbase(nbase(D)) =

Dcut
1

?∆1, !A1

· · · Dcut
k

?∆k, !Ak

Dnwb
k+1

?Σk+1, !Ck+1

· · · Dnwb
m

?Σm, !Cm

base(fσ∞ (D))

Γ

(5)
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where Dcut
i is made of a cut-rule with premises two nwbs D′

i and D′′
i for each i ∈ {1, . . . , k}

and Dnwb
i is a nwb for each i ∈ {k + 1, . . . , m}.

We let σ′ be the sequence of cut-elimination steps of length ω + 1 that reduces only the
cuts c!p-vs-c!p in the coderivations Dcut

i with i ∈ {1, . . . , k} in such a way that σ′(ω) has
the following shape:

σ′(ω) =

Dnwb
1

?∆1, !A1

· · · Dnwb
k

?∆k, !Ak

Dnwb
k+1

?Σk+1, !Ck+1

· · · Dnwb
m

?Σm, !Cm

base(fσ∞ (D))

Γ

(6)

where for i ∈ {1, . . . , k} Dnwb
i is the nwb whose calls are the coderivations obtained by

cutting each j-th call D′
i(j) of the nwb D′

i with the corresponding j-th call D′′
i (j) of the

nwb D′′
i . That is,

Dnwb
i = D′

i(1)

∆′
i, B

D′′
i (1)

B⊥, ∆′′
i , A

cut
∆i, Ai

D′
i(2)

∆′
i, B

D′′
i (2)

B⊥, ∆′′
i , A

cut
∆i, Ai

D′
i(n)

∆′
i, B

D′′
i (n)

B⊥, ∆′′
i , A

cut
∆i, Ai

...
c!p

?∆i, !Ai
c!p

...
c!p

?∆i, !Ai
c!p

?∆i, !Ai

Note that, since D is (weakly) regular, then each Dnwb
i is also (weakly) regular. By

induction hypothesis, each call of the nwbs Dnwb
i with i ∈ {1, . . . , m} has strictly smaller

depth. Therefore for all i ∈ {1, . . . , m} we can define a cut-elimination sequence σnwb
i

such that σnwb
i (0) = Dnwb

i that satisfies conditions (I) and (II), eliminates the cut and
preserves (weak) regularity, finite expandability and (weak) progressiveness.
We define the sequence σD with transfinite length which first performs all cut-elimination
steps required to remove reducible cut-rule in ⌊D⌋border(D), then performs all c!p-vs-c!p
steps, and finally applies cut-elimination steps to each call of the resulting new nwbs

created by merging the calls. That is,

σD = σbase · σ′ ·
m∏

i=1
σnwb

i

where the product of sequences denotes their concatenation. By construction σD
satisfies conditions (I) and (II), eliminates the cut and preserves (weak) regularity, finite
expandability and (weak) progressiveness.

It is clear that σ := {σD}D∈oPLL∞ is a maximal transfinite ices. To conclude we have to
define a mc-ices σ∗ = {σ∗

D}D∈oPLL∞ containing only sequences of length at most ω such that
fσ∗(D) is the same coderivation of the limit of σD. We construct each σ∗

D by induction on
d = d(D).

If d = 0, then σD is finite and σ∗
D := σD.
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Otherwise d > 0. By induction hypothesis, for all i ∈ {1, . . . , m}, we can construct
from each σnwb

i a sequence σ∗
i with length(σ∗

i ) ≤ ω such that σ∗
i (0) = Dnwb

i and having
the same limit, i.e., σ∗

i (length(σ∗
i )) = σ̂D(length(σnwb

i )). This means that the following
cut-elimination sequence

σ̂D := σbase · σ′ ·
m∏

i=1
σ∗

i

has the same limit as σD and satisfies conditions (I) and (II). We notice that any cut-
elimination step in σ∗

i commutes with any cut-elimination step in σ∗
j for any i, j ∈

{1, . . . , m}. Moreover, any cut-elimination step in σ∗
i with i ∈ {k + 1, . . . , m} commutes

with any cut-elimination step in σ′. Finally, for any cut-elimination step in σ∗
i with

i ∈ {1, . . . , k} there is a j0 ≥ 0 such that it commutes with the j-th cut-elimination step
in σ′ for any j ≥ j0. This means that we can define σ∗

D by reordering the cut-elimination
steps from σ̂D in such a way that we alternate one step in σ′ with m steps from each σ∗

i .
Clearly, σ∗

D is such that length(σ∗
D) ≤ ω, and it satisfies conditions (I) and (II). Moreover,

since σ̂D satisfies condition (II), it is easy to show that this reordering preserves the
limit, i.e., σ∗

D(length(σ∗
D)) = σ̂D(length(σ̂D)). Finally, since σ∗

D satisfies condition (I), the
ices σ∗ := {σ∗

D}D∈oPLL∞ is a (maximal and) continuous ices, i.e., fσ∗ is Scott-continuous.
Therefore, σ∗ is a mc-ices and, by Proposition 30, we have:

σ̂D(length(σ̂D)) = fσ∗(D) = fσ∞(D)

which implies that fσ∞(D) is (weakly) regular, finitely expandable and (weakly) progress-
ive.

◀

6 Relational semantics for non-wellfounded proofs

Here we define a denotational model for oPLL∞ based on relational semantics, which interprets
an open coderivation as the union of the interpretations of its finite approximations, as in [17].
We show that relational semantics is sound for oPLL∞, but not for its extension with digging.

Relational semantics interprets exponential by finite multisets, denoted by brackets, e.g.,
[x1, . . . , xn]; + denotes the multiset union, and Mf (X) denotes the set of finite multisets
over a set X. To correctly define the semantics of a coderivation, we need to see sequents as
finite sequences of formulas (taking their order into account), which means that we have to
add an exchange rule to oPLL∞ to swap the order of two consecutive formulas in a sequent.

▶ Definition 49. We associate with each formula A a set JAK defined as follows:

JXK := DX J1K := {∗} JA ⊗ BK := JAK × JBK J!AK := Mf (JAK) JA⊥K := JAK

where DX is an arbitrary set. For a sequent Γ = A1, . . . , An, we set JΓK := JA1 ` · · · ` AnK.
Given D ∈ PLL ∪ oPLL∞ with conclusion Γ, we set JDK :=

⋃
n≥0JDKn ⊆ JΓK, where

JDK0 = ∅ and, for all i ∈ N \ {0}, JDKi is defined inductively according to Figure 12.

▶ Example 50. For the coderivations D and D? in Figure 7, JD K = JD?K = ∅. For the
derivations 0 and 1 in Figure 2, J0K = {([ ], (x, x)) | x ∈ DX} and J1K = {([(x, y)], (x, y)) |
x, y ∈ DX}. For the coderivation c!p(i0,...,in,...) in Example 10 (with ij ∈ {0, 1} for all j ∈ N),

Jc!p(i0,...,in,...)K = {[ ]} ∪
{

[xi0 , . . . , xin ] ∈ Mf (JNK) | n ∈ N, xij ∈ JijK ∀ 0 ≤ j ≤ n
}

. For the
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t

ax
A, A⊥

|

n

=
{

(x, x) x ∈ JAK
} u

w
v

D′

Γ, A

D′′

∆, A⊥
cut

Γ, ∆

}

�
~

n

=

 (x⃗, y⃗) ∃z ∈ JAK s.t.
(x⃗, z) ∈ JD′Kn−1

and
(z, y⃗) ∈ JD′′Kn−1


u

w
v

D′

Γ
⊥

Γ, ⊥

}

�
~

n

=
{

(x⃗, ∗) x⃗ ∈ JD′Kn−1
} u

w
v

D′

Γ, A, B`
Γ, A ` B

}

�
~

n

=
{

(x⃗, (y, z)) (x⃗, y, z) ∈ JD′Kn−1
}

t

1
1

|

n

= {∗}

u

w
v

D′

Γ, A

D′′

∆, B
⊗

Γ, ∆, A ⊗ B

}

�
~

n

=

 (x⃗, y⃗, (x, y))
(x⃗, x) ∈ JD′Kn−1

and
(y⃗, y) ∈ JD′′Kn−1


t

hyp
Γ

|

n

= ∅

u

w
v

D′

Γ
?w

Γ, ?A

}

�
~

n

=
{

(x⃗, [ ]) x⃗ ∈ JD′Kn−1
} u

w
v

D′

Γ, A, ?A
?b

Γ, ?A

}

�
~

n

=
{
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?Γ, !A
c!p

?Γ, !A

}
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n

=
{

([⃗ ], [ ])
}

∪

 ([x1] + µ1, . . . , [xk] + µk, [x] + µ)
(x1, . . . , xk, x) ∈ JD′Kn−1

and
(µ1, . . . , µk, µ) ∈ JD′′Kn−1


Figure 12 Inductive definition of the set JDKn, for n > 0.

derivation n in Example 10 (for any n ∈ N), JnK = {([(x1, x2), . . . , (xn, xn+1)], (x1, xn+1)) |
x1, . . . , xn+1 ∈ DX}. Note that JnK ∩ JmK = ∅ for all n, m ∈ N such that n ̸= m, and that
JnK is stable under permutations of the rules ?w and ⊗ in n (that is, if D is obtained from n

by permuting the rules ?w or ⊗, then JDK = JnK).

By inspecting the cut-elimination steps and by continuity, we can prove the soundness of
relational semantics with respect to cut-elimination (Theorem 56), thanks to the fact the
interpretation of a coderivation is the union the interpretations of its finite approximation.

▶ Lemma 51. Let D, D′ ∈ oPLL∞.

1. If n ∈ N and D ⪯ D′, then JDKn ⊆ JD′Kn.
2. If D ⪯ D′ then JDK ⊆ JD′K.

Proof. 1. By induction on n ∈ N. By definition, JDK0 = ∅ = JD′K0.
Let n > 0. Let us consider the bottommost rule r in D′. As D ⪯ D′, there are two cases:

the bottommost rule in D is hyp and then JDKn = ∅ ⊆ JD′Kn;
the bottommost rule in D is also r; thus, if r has no premises then D = D′ and hence
JDKn = JD′Kn; otherwise Di ⪯ D′

i for every respective premise Di, D′
i of r in D, D′, and

thus JDKn ⊆ JD′Kn easily follows from the inductive hypothesis, since JDKn and JD′Kn

only depend on JDiKn−1 and JD′
iKn−1, respectively (see Figure 12).

2. According to Lemma 51.1, for all n ∈ N, JDKn ⊆ JD′Kn ⊆
⋃

n∈NJD′Kn = JD′K. By
minimality of the union, JDK =

⋃
n∈NJDKn ⊆ JD′K. ◀

▶ Definition 52. Let T be a tree. The height of a branch of T is the supremum (in N∪ {∞}
with the expected order) of the heights of its nodes.

A prebar V of a open coderivation labeling a tree T has uniform height n ∈ N if all and
only the branches of T with height > n have a node in V, and all nodes in V have height n.

▶ Lemma 53. Let D ∈ oPLL∞. For every n ∈ N there is Dn ∈ Kf (D) such that JDnK = JDKn.
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Proof. By induction on n ∈ N. By definition, JDK0 = ∅. Let D0 the open derivation made
only of the rule hyp with the same conclusion as D: then, D0 ∈ Kf (D) and JD0K = ∅ = JDK0
(since JD0Kn = ∅ for all n ∈ N).

Let n > 0. Let Dn = ⌊D⌋Vn where Vn is a prebar of D with uniform height n. Thus, it is
easy to check that JDnKi = JDKi for every 0 ≤ i ≤ n, and JDnKi = JDKn for all i ≥ n, since
JD′K0 = ∅ for all D′ ∈ oPLL∞ and JhypKi = ∅ for all i ∈ N. ◀

▶ Lemma 54. Let D ∈ oPLL∞. Then, JDK = J
⊔

D′∈Kf (D) D′K =
⋃

D′∈Kf (D)JD′K.

Proof. By Proposition 25, D =
⊔

D′∈Kf (D) D′.
For the left-to-right inclusion, observe that for every n ∈ N there is D′

n ∈ Kf (D) such
that J

⊔
D′∈Kf (D) D′Kn = JD′

nK ⊆
⋃

D′∈Kf (D)JD′K. Therefore, by minimality of the union,

JDK =
⋃

n∈N
JDKn =

⋃
n∈N

J
⊔

D′∈Kf (D)

D′Kn ⊆
⋃

D′∈Kf (D)

JD′K.

As for the converse inclusion, we have that D′ ⪯ D′′ implies JD′K ⊆ JD′′K. Hence, for
all D′ ∈ Kf (D), since D′ ⪯

⊔
D′∈Kf (D) D′ = D, we have JD′K ⊆ JDK. By minimality of the

union,
⋃

D′∈Kf (D)JD′K ⊆ JDK. ◀

▶ Lemma 55. Let σ is a mc-ices, and D ∈ oPLL∞(Γ). If D′′ ∈ Kf (fσ(D)) then there is
D′ ∈ Kf (D) such that D′′ ⪯ fσ(D′).

Proof. As D′′ ∈ Kf (fσ(D)), in particular D′′ ⪯ fσ(D). Since (oPLL∞(Γ), ⪯) is a Scott-
domain (Proposition 25), D =

⊔
D′∈Kf (D) D′ and hence, by continuity of fσ (as σ is a mc-ices),

fσ(D) = fσ(
⊔

D′∈Kf (D) D′) =
⊔

D′∈Kf (D) fσ(D′). By compactness of D′′ (Proposition 25),
from D′′ ⪯ fσ(D) =

⊔
D′∈Kf (D) fσ(D′) it follows that D′′ ⪯ fσ(D′) for some D′ ∈ Kf (D). ◀

▶ Theorem 56 (Soundness). theoremsoundness

1. Let D ∈ oPLL∞. If D →cut D′, then JDK = JD′K.
2. Let D ∈ oPLL∞. If σ is a mc-ices, then JDK = Jfσ(D)K.

Proof. 1. By straightforward inspection of the cut-elimination steps for oPLL∞.
2. By definition of mc-ices, for any D′ ∈ Kf (D) we have D′ →∗

cut fσ(D′), so JD′K = Jfσ(D′)K
by Theorem 56.1. By Proposition 25, D =

⊔
D′∈Kf (D) D′. By continuity of fσ, we have

fσ(D) =
⊔

D′∈Kf (D) fσ(D′). Thus, using Lemma 54 in the first equality below,

JDK =
⋃

D′∈Kf (D)JD′K =
⋃

D′∈Kf (D)Jfσ(D′)K = J
⊔

D′∈Kf (D) fσ(D′)K = Jfσ(D)K

where the third equality holds for the following reasons:

⊆: for all D′ ∈ Kf (D), fσ(D′) ⪯
⊔

D′∈Kf (D) fσ(D′) and so Jfσ(D′)K ⊆ J
⊔

D′∈Kf (D) fσ(D′)K
by Lemma 51; by minimality of the union,

⋃
D′∈Kf (D)Jfσ(D′)K ⊆ J

⊔
D′∈Kf (D) fσ(D′)K;

⊇: according to Lemma 55, for all D′′ ∈ Kf (fσ(D)), there is D′ ∈ Kf (D) such that D′′ ⪯
fσ(D′), and hence JD′′K ⊆ Jfσ(D′)K ⊆

⋃
D′∈Kf (D)Jfσ(D′)K by Lemma 51; by Lemma 54

and minimality of the union, Jfσ(D)K =
⋃

D′′∈Kf (fσ(D))JD′′K ⊆
⋃

D′∈Kf (D)Jfσ(D′)K.
◀

By Theorem 56 and since cut-free coderivations have non-empty semantics, we have:

▶ Corollary 57. Let D ∈ wpPLL∞. Then JDK ̸= ∅.
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}

Figure 13 The rule ??d and its interpretation in the relational semantics (n > 0).

Proof. If D ∈ wpPLL∞ is a cut-free coderivation, then weak-progressing ensures the existence
of a bar V containing conclusions of rules in {ax, 1, c!p}. By weak König’s lemma, ⌊D⌋V is
finite. Then, we prove by induction on ⌊D⌋V that there is n ≥ 0 such that J⌊D⌋VKn ̸= ∅,
so that we conclude ∅ ̸= J⌊D⌋VKn ⊆ JDKn ⊆ JDK. As for the base case, notice that the
interpretation of any coderivation ending with the c!p contains the element ([⃗ ], [ ]), so it is
never empty. The inductive steps are straightforward.

If D contains cut-rules, then JDK = Jfσ(D)K by Theorem 56. Since fσ(D) is cut-free, we
conclude JDK ̸= ∅ by the above reasoning. ◀

We define the set of rules MELL∞ := PLL∞ ∪ {??d} where the rule ??d (digging) is
defined in Figure 13. We also denote by MELL∞ the set of coderivations over the rules in
MELL∞. Relational semantics is naturally extended to MELL∞ as shown in Figure 13.

The proof system MELL∞ can be seen as a non-wellfounded version of MELL. We show
that, as opposed to several fragments of PLL∞, in any good fragment of MELL∞ with digging,
cut-elimination cannot reduce to cut-free coderivations and preserve both the progressing
condition and relational semantics.

▶ Theorem 58. Let X ⊆ MELL∞ contain non-wellfounded coderivations with ??d. Let →cut+
be a cut-elimination relation on X preserving the progressing condition, containing →cut in
Figures 3, 5, and 10 and reducing every coderivation in X to a cut-free one. Then, →cut+
does not preserve relational semantics.

Proof. Consider the coderivations D??d and D̂??d below, where D = c!p(0,1,0,1,...) and, for all
i ∈ N, Di ∈ {c!p(ki

0,...,ki
n,...) | ki

j ∈ N for all j ∈ N} (n is defined in Example 10 for all n ∈ N).

D??d :=
D

!N

ax
??N⊥, !!N

??d
?N⊥, !!N

cut
!!N

D̂??d :=
D0

!N

D1

!N

Dn

!N

...
c!p

!!N
c!p

...
c!p

!!N
c!p

!!N

Coderivations D̂??d are the only cut-free and progressing ones with conclusion !!N. Indeed, any
cut-free coderivation of !!N or !N must end with a c!p, and the only cut-free and progressing
coderivations of N are the derivations of the form n for any n ∈ N, up to permutations
of the rules ?w and ⊗ (other cut-free coderivations of N exist, but they have an infinite
branch containing infinitely many ?b rules and no c!p rules, hence they are not progressing).
Therefore, for whatever definition of the cut-elimination steps concerning ??d that preserves
the progressing condition, necessarily D??d will reduce to D̂??d, since D??d is progressing.

We show that JD̂??dK ̸⊆ JD??dK. First, it can be easily shown that if, in one of the Di =
c!p(ki

0,...,ki
n,...) in D̂??d, one of the ki

j is different from 0 or 1, then there is x ∈ JD̂??dK∖ JD??dK
(this basically follows from the fact that JnK ∩ JmK = ∅ for all n, m ∈ N such that n ̸= m,
see Example 50). Let us now suppose that in D̂??d, for all i ∈ N, Di = c!p(ki

0,...,ki
n,...) with

ki
j ∈ {0, 1} for all j ∈ N. Let 0̂ and 1̂ be any element of J0K and J1K, respectively (see
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Example 50). Note that 0̂ ≠ 1̂. It is easy to verify that [[0̂], [0̂]], [[1̂], [1̂]] /∈ JD??dK, since
[0̂, 0̂], [1̂, 1̂] /∈ JDK (see Example 50). Concerning JD̂??dK, notice that, since k0

0, k1
0, k2

0 ∈ {0, 1},
either k0

0 = k1
0 or k1

0 = k2
0 or k2

0 = k0
0. In the first case, we have [[k0

0], [k1
0]] ∈ JD̂??dK, in the

second case we have [[k1
0], [k2

0]] ∈ JD̂??dK, and in the last case we have [[k2
0], [k0

0]] ∈ JD̂??dK. ◀

7 Conclusion and future work

For future research, we envisage extending our contributions in many directions. First, our
notion of finite approximation seems intimately related with that of Taylor expansion from
differential linear logic (DiLL) [15], where the rule hyp (quite like the rule 0 from DiLL) serves
to model approximations of boxes. This connection with Taylor expansions becomes even
more apparent in Mazza’s original systems for parsimonious logic [25, 26], which comprise
co-absorption and co-weakening rules typical of DiLL. These considerations deserve further
investigations. Secondly, building on a series of recent works in Cyclic Implicit Complexity,
i.e., implicit computational complexity in the setting of circular and non-wellfounded proof
theory [10, 9], we are currently working on second-order extensions of wrPLL∞ and rPLL∞ to
characterize the complexity classes P/poly and P (see [23]). These results would reformulate
in a non-wellfounded setting the characterization of P/poly presented in [26].
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for all r ∈ {ax,`, 1, ⊥, ?w} and t ∈ {cut, ⊗}

Figure 14 Translation (·)♠ from PLL to MELL.
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♠

Figure 15 Commutation of the ?b-vs-f!p step and (·)♠.

A Appendix of Section 3

▶ Theorem 5. For every D ∈ PLL, there is a cut-free D′ ∈ PLL such that D →∗
cut D′.

Proof. We recall the sequent calculus for (propositional) multiplicative exponential linear
logic MELL = {ax, ⊗,`, 1, ⊥, cut, !p, ?w, ?d, ?c} where the promotion (!p), dereliction (?d),
contraction (?c) rules are defined as follows:

?Γ, A
!p

?Γ, !A
Γ, A

?d
Γ, ?A

Γ, ?A, ?A
?c

Γ, ?A
(7)

We also denote by MELL the set of derivations over the rules in MELL, and we map
each derivation in D ∈ PLL to a derivation in (D)♠ ∈ MELL (·)♠ : PLL → MELL defined in
Figure 14 by induction on derivations.

In order to prove that the following diagram commute,

D D♠

D′ (D′)♠

♠

possibly many steps
♠
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Figure 16 Commutation of the f!p-vs-?b step with (·)♠.

Each cut-elimination step in PLL corresponds to a cut-elimination step in MELL except
the ones in Figures 15 and 16, where a cut-elimination step in PLL can be simulated by a
sequence of cut-elimination steps in MELL. In these Figures each macro-step denoted by
→→ involves a unique step from Figures 4 and 5 (the one marked) and certain additional
commutative cut-elimination steps of the following form below

Γ, A

A⊥, ∆, B
?d

A⊥, ∆, ?B
cut

Γ, ∆, ?B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
?d

Γ, ∆, ?B

Γ, A, ?B, ?B
?d

Γ, ?A, ?B, ?B
?c

Γ, ?A, ?B

→cut

Γ, A, ?B, ?B
?c

Γ, A, ?B
?d

Γ, ?A, ?B

(8)

which push ?d down a cut and create an alternating chain of ?d and ?c (such additional steps
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are natural to consider since they involve rule permutations of independent rules and would
appear whenever a cut-rule would interact with the ?-formula introduced by the ?d-rule).
Thus, the derivation in MELL obtained by (standard and additional) cut-elimination from D♠

is exactly the translation (D′)♠ of the derivation D′ in PLL obtained after a cut-elimination
step from D. According to the definition of (·)♠, if (D′)♠ is cut-free then so is D′.

The termination of cut-elimination in MELL with this additional commutative step follows
from the result in MELL [29]. Indeed, to the usual measure m that decreases after each
standard cut-elimination step in MELL (and remains unchanged after each additional step in
(8)), we can add the sum d of the heights of the ?d rules in a derivation, which decreases
after each step in (8). Thus, the measure (m, d) with the lexicographical order decreases
after each (standard or additional) cut-elimination step in MELL. ◀
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