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0 Why Combinatorial Proofs?

e Combinatorial Proofs for Classical Logic

e The (current) realm of Combinatorial Proofs
@ Combinatorial Proofs and Proof Equivalence
e Compositionality

e Related and Future works
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Why Combinatorial Proofs?
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Definition (Proof Theory)

Proof theory is the branch of mathematical logic that studies proofs as
formal mathematical objects.
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Pythagorean theorem

There are many different proofs of the Pythagorean theorem
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Pythagorean theorem

There are many different proofs of the Pythagorean theorem

More proofs (122) available at
http://www.cut-the-knot.org/pythagoras/index.shtml
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Pythagorean theorem

There are many different proofs of the Pythagorean theorem

[~

More proofs (122) available at
http://www.cut-the-knot.org/pythagoras/index.shtml
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Proof theory is the branch of mathematical logic that studies proofs as
formal mathematical objects.
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Definition (Proof Theory)

Proof theory is the branch of mathematical logic that studies proofs as
formal mathematical objects.

PROBLEM
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Definition (Proof Theory)

Proof theory is the branch of mathematical logic that studies proofs as
formal mathematical objects.

PROBLEM

We do not have a “nice” representation of the basic object
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“[God] caused a tumult among them, by producing in them diverse
languages, and causing that, through the multitude of those languages,
they should not be able to understand one another.”

(Flavius Josephus, Antiquities of the Jews, c. 94 CE)
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Rules permutations

We consider some derivations to be the same proof:

—AX —— AX
a,a b,b
AX

a,a®b,b = cc  dd
a®(aeb).b. ccedd
a®(a®b).bec,d,cod
a% (aeb),(b®c)¥d,ced

AX
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Rules permutations

We consider some derivations to be the same proof
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Rules permutations

We consider some derivations to be the same proof:
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Proof nets'

—AX ——AX

a,a .b

—_—c —AX  ——AX

a,a®b,b c,C d,d
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2 o g

'Girard 1987
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Proof nets’
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Proof nets’

\a\§®5(b®c)’9 teY ®
e3e0. } N

a’hé@ﬁ), (b®c)®d, cod

'Girard 1987
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Proof nets'
\ /
kY ﬂ/

b®c)7é’d c®d

f\\@/f~\ _
// \\ ®//
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~
N\
\ e

a’hé@ﬁ), (b®c)®d, cod
Problem: no proof net* for extensions of MLL (with units or weakening)
'Girard 1987
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Combinatorial Proofs for
Classical Logic
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Classical Logic

Formulas
A,B=alal|AAB|AVB

Sequent Calculus LK

ax

A,B NA BA I MLAA
\% A w C
a,a NAvB NAABA MA MA

Theorem

LK is a sound and complete proof system for classical logic.
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Classical Logic

Formulas
A,B=alal|AAB|AVB

Sequent Calculus LK

rAB NnA B,A r MAA A AA
ax—— VvV A W C cut
a,a [LAvB T,AABA MnA rA rA
Theorem
LK is a sound and complete proof system for classical logic. J
Theorem
Cut elimination holds in LK. J
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Combinatorial Proofs

Definition
A combinatorial proof of a formula F is an axiom-preserving skew fibration

f:G— [FIl

from a RB-cograph G to the cograph of F.

|
éﬁ

QI <
[WV)

Ideas:
@ cograph = graph enconding a formula
@ RB-cograph = MLL proof nets
@ skew fibration = {W!, C!}-derivations (ALL proof nets)
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Cographs?

) °
\o )

S

b——a a

2Duffin 1965
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Cographs

Definition
*o——©O
A cograph is a graph containing no four vertices such that /
*o—©O
Theorem

A graph is a cograph iff constructed from single-vertices graphs using the
graph operations

®H
G H
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From formula to cographs

((anb)ve)Aa(dve)
A
v/ \v
/N /N
A c d e
/\
a b

(e

O 0O O CCTCUTO®»M 9 99
®©® ® QO DO OO 0Oao
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From formula to cographs

((anb)ve)Aa(dve)

AN
VANAN
a/ \b

O 0 O T T®» 9 9 ©

d
b
c
d
e
c
d
e
d
e
e

~
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From formula to cographs

((anb)ve)Aa(dve)
alb
A alc| A
/\ ald
% Vi ale .c
' d
/N /N e )
A c d e ble b e
/N c|d
d|e
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From formula to cographs
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From formula to cographs

((anb)ve)Aa(dve)
alb
A alc
/\ o |
\Y \Y; aje| — c

b|c a d

/\/ \c d/ \e E 2 b\e
/N c |d
d|e
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From formula to cographs
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alb
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/\ ald
Y Vv a|e »C

/N /N el f
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/N c|d
d|e

Matteo Acclavio An Introduction to Combinatorial Proofs 15/58



From formula to cographs

((anb)ve)Aa(dve)
alb
A alc
/\ o |
\Y v aj|e c

b|c a d

SN SN Rl
/N c |d
d|e
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From formula to cographs

((anb)ve)Aa(dve)
alb
A alc
/\ 2| d
v v ale c

b|c a d
/N /N b
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d|e
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From formula to cographs

((anb)ve)Aa(dve)
alb
A alc
/\ 2l d
\% \Y; aj|e c\
/N /N el o
A ¢ d e b|e b e
/N ||~
dle
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From formula to cographs

((anb)ve)Aa(dve)
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A c d e ble b e
A HR
d|e

Matteo Acclavio An Introduction to Combinatorial Proofs 15/58



From formula to cographs

((anb)ve)Aa(dve)
alb
A alc
/\ ald
v v ale c
/N /N el e
A c d e b|e b e
/N c |
dle| A~

Matteo Acclavio An Introduction to Combinatorial Proofs 15/58



From formula to cographs

((anb)ve)Aa(dve)
alb| ~
A alc| A~
/\ ald —
vV Vi a|lej| — C
/\ /\ blc| A~ a N
b|d| ~ | QS
A e d e ble| ~ b e
/\ cl|d]| ~
a b cle| —
dle| A~
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From cographs to formulas

Lemma
If G is a cograph, then either G or G is disconnected. J

Formula =7

Matteo Acclavio An Introduction to Combinatorial Proofs 16/58



From cographs to formulas

Lemma
Hg&awywnmwengméwammmm J

/\

Formula=7vVv f
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From cographs to formulas

Lemma
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/\

Formula=7vVv f
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From cographs to formulas

Lemma

If G is a cograph, then either G or G is disconnected.

c

~
@

Matteo Acclavio

/\/V\f

/N

Formula = (? AcA?) vV
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From cographs to formulas

Lemma
If G is a cograph, then either G or G is disconnected. J

—r /i<v\
a/ \b d/ \e

Formula=((avb)AcA(dve))Vf
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Cograph and Formula Isomophism

Definition
The formula isomorphism = is the equivalence relation generated by:

AANB=BAA AvB=~BVA
(AAB)AC=AA(BAC) (AvB)vC=AvVv (BvVvOC)

Theorem
F~F < [Fl1=1F1 J
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RB-cographs®

) °
\o )

S

b——a a

3Retoré 1993
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RB-cographs®

3Retoré 1993
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MLL Proof nets

The sequent calculus for LK

A B A B,A r nLAA

ax

\% A w
a,a NAvB MAAB,A A A

Definition
A proof structure is a graph constructed using the following links

A B A B
A®B A®B

A proof net is a proof structure encoding a derivation in MLL
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MLL Proof nets

The sequent calculus for MLL

rA.B rA BA
\ A
MAvB NAAB,A

ax

QI

a,

Definition
A proof structure is a graph constructed using the following links

A B A B

A®B A®B

A proof net is a proof structure encoding a derivation in MLL
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MLL Proof nets

The sequent calculus for MLL

AB rnA B,A
x®
A®B T[LA®B.A

ax

Q1

a,

Definition
A proof structure is a graph constructed using the following links

A B A B

A®B A®B

A proof net is a proof structure encoding a derivation in MLL
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MLL Proof nets

Definition

A proof structure is correct if “pruning” one input from each %-gate we
obtain a connected and acyclic graph.

a a b b c

Definition

A proof net is correct iff it is connected and acyclic (for each switching). }
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Definition
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obtain a connected and acyclic graph.

S

A proof net is correct iff it is connected and acyclic (for each switching). }

Definition
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MLL Proof nets

Definition
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obtain a connected and acyclic graph.
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Definition

A proof net is correct iff it is connected and acyclic (for each switching). }

Matteo Acclavio An Introduction to Combinatorial Proofs

20/58



Handsome proof nets

rAB rA BA
ax ®r— ®
a,a NA%®B NA®B,A
A B A B
v v
a a N4 e
| |
A®B A®B
A B A B
i \. _— \. _—
a—-a | |
A®B A®B
An Introduction to Combinatorial Proofs
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Handsome proof nets

b—b ¢
\ \//( N /
[}
Definition
A RB-proof net is correct iff it is a-connected and ae-acyclic. J

Matteo Acclavio An Introduction to Combinatorial Proofs 22/58



Handsome proof nets: unfolding

Unfolding = remove e-vertices from the graph

N~
X‘/ \y‘
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Handsome proof nets: unfolding

Unfolding = remove e-vertices from the graph

X><y1
Xn ym
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Handsome proof nets: unfolding

Unfolding = remove e-vertices from the graph

Note: by removing e-vertices we remove all non-axiom v-edges
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Handsome proof nets: unfolding

Unfolding = remove e-vertices from the graph

Xn ym

Note: by removing e-vertices we remove all non-axiom v-edges Note: by
removing v-edges we may introduce bow-ties (see above)
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Handsome proof nets: unfolding

b—b ¢
\ \//( N /
L] .
[ ]
Definition
A RB-cograph is correct iff it is ae-connected and ee-acyclic . J
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Handsome proof nets: unfolding

a—a b—b ¢ c
NS Ny
[ ] [ ]
o————©0
\~
[ ]
Definition
A RB-cograph is correct iff it is ae-connected and ee-acyclic . J
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Handsome proof nets: unfolding

a—a b—b ¢ ¢

Ny Ny
L] [ ]
Definition
A RB-cograph is correct iff it is ae-connected and ee-acyclic . J
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Handsome proof nets: unfolding

Definition
A RB-cograph is correct iff it is ae-connected and ee-acyclic . J
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Handsome proof nets: unfolding

a—a——b=—b ~c——cC

Definition
A RB-cograph is correct iff it is ae-connected and ee-acyclic . J
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Handsome proof nets: unfolding

a—-u>b

a—a— b—b ~c—=& ‘ ><J
v !

a—-u>b

Definition
A RB-cograph is correct iff it is se-connected and ae-acyclic w.r.t. cordless
paths.
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RB-cograph

a—>b

a—a— b—b ~c——¢ ‘ ><J
~ |

a—>b

Definition
A RB-cograph is correct iff it is ae-connected and se-acyclic w.r.t. cordless
paths.

Theorem

MLL
— F < exists a correct RB-cograph (V, —~, v) s.t. [F] =(V, ~)
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Skew Fibrations*

° °
\o )

é\ v v

b——a a

4Hughes 2005; StraBburger RTA2007
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Skew Fibrations*
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4Hughes 2005; StraBburger RTA2007
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Skew Fibration

G f(YV)\LI/f(LV)

Definition
@ A graph homomorphism 7: H — G between two graphs is a map
f: Vyy — Vg preserving —-edges;
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Skew Fibration

G f(v)  u  f(w)

Definition
@ A graph homomorphism 7: H — G between two graphs is a map
f: Vyy — Vg preserving —-edges;
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Skew Fibration

G f(y\/)\g/f@'/)

Definition
@ A graph homomorphism 7: H — G between two graphs is a map
f: Vyy — Vg preserving —-edges;
@ A fibration is an homomorphism f: ‘H — G such that

f(v)ﬁf(w) = vZw
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Skew Fibration

G (V) —u  f(w)
~_
Definition
@ A graph homomorphism 7: H — G between two graphs is a map
f: Vyy — Vg preserving —-edges;
@ A fibration is an homomorphism f: ‘H — G such that

f(v)ﬁf(w) = vZw
@ A skew fibration is an homomorphism f: H — G such that

f(v )rg\u:vﬁwforawsuchthatf iiu
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Skew Fibration
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r CF,A,A
LA A

|

fibration
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fibration
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C{B
c{BvA

o
>
<
>

wil

|
[ ] e o
v
[ ]

(]
v
[ ]

fibration
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skew fibration
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Skew Fibrations (midterm exam)

.\o\o
S
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Skew Fibrations (midterm exam)
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Skew Fibrations (midterm exam)

[ ] [ ]
\o\o \o\o
Is a not skew fibration
v :»
\v A \v
[} [} [ ]
[} [ ] [ ] [ ]
NN AN NN
[ ] [ ) [ ] [ ] [ ] [}
Is a skew fibration
[} [ ] [ ] [ ] [}
AN ANy o NN
[ ] [ ) [ ] [ ] [ ] [}
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Matteo Acclavio

Skew Fibrations®

Theorem (Decomposition)

{w.chy

F' — F = there is a skew fibration f: [F'] — [F]

[FT
bijective
F :
(| m! 1G]
F G’
[[wicly == |lact! == surjective
F G H
| wt [Gl
injecive
v
[F1

SHughes 2005 ; StraBburger RTA2007

m
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Reassembling the pieces
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Combinatorial Proofs

What we have:
@ RB-cograph: a graphical syntax for MLL proofs
@ Skew fibrations: graph homomorphisms representing
{W!, Cl}-derivations
What do we what:
@ Combine them to have a graphical syntax for LK = MLL U {W, C}

I
T " A, B

CF,A,A A,B,C ~ ?
\
A A,BvC
A
AAA(BVC)
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Combinatorial Proofs

What we have:
@ RB-cograph: a graphical syntax for MLL proofs
@ Skew fibrations: graph homomorphisms representing
{W!, Cl}-derivations
What do we what:
@ Combine them to have a graphical syntax for LK = MLL U {W, C}

I
T rAA
A, B
I w
rALA AB.C -
C Vv
rA A.BVC

"T.AAA(BVC)

vi ”
NnMAvA A,B

AF,A,(AVA)/\B
ClI',A,(AvA)/\(BvC)
AAAN(BVC)
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Combinatorial Proofs

Theorem (Decomposition)

LK MLL (wi,ch
—F=—=—F — F

HLK
F

Theorem
Every LK derivation can be represented by a combinatorial proof J
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Combinatorial Proofs

Theorem (Decomposition)

LK MLL (wi,ch
—F=—=—F — F

Z)/HMLL
LK F
F Dl {whct}
F
Theorem
Every LK derivation can be represented by a combinatorial proof J
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Combinatorial Proofs

Theorem (Decomposition)

LK MLL (wi,ch
—F=—=—F — F

D/HMLL [RB-cograph encoding Z)’}
LK F’ L
- skew fibration for D
F Dl {whct} g
F cograph of F
Theorem
Every LK derivation can be represented by a combinatorial proof J
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Combinatorial Proofs

Theorem

Every combinatorial proof can be sequentialized into a derivation in
LK U {cut}

Where is the problem?
Hughes’s example:

ax —= ax —=
b,b b,b
= ax—— V = _ -
a,a bvb a,a bvb i—a b a—a—b—=>b
A = A =
an(bvb),a an(bvb).a,
A = =
an(bvb),an(bvb),ana, =
ax ——

an(bvb),ana c,c
A =
(an(bvb))rc,ana,c
asso —————————————
wl an((bvb)ac),anac
an(((bvb)ac)vd),an

ax— Vv

c—cC

Zé rafvian ((tb}v*ES'/\ cfvd)v ve

o1

.C

Theorem

{(Wicl,=)
F’ — F <= thereis a skew fibrationf: [F'] — [F]
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Combinatorial Proofs form a Proof System

Fact (Cook-Reckhow)

Check whether a syntactic object represents a valid proof can be done by
means of a polynomial time algorithm.

@ Check if a graph is a cograph

@ Check if a RB-cograph is ee-connected and ae-acyclic

@ Checkifamap f: ‘H — G between cograph is a skew fibration
@ Check if f is axiom-preserving

Theorem
Combinatorial Proofs form a proof system for classical logic. J
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The (current) realm of
Combinatorial Proofs
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CPs for Relevant and Affine Logics®

@ Relevant Logic = LK without weakening
@ Affine Logic = LK without contraction

{wl,m}:Inj (whamoscl) {wl,m,cl}: SkFib
(Prop.7.2) " (prop. 5.4)

(wsel)

{wl,cl} : SkFib
(brop. 5.4)

{wl} :Finj (et} {wl,acL} : FSkFib
(Prop. 7.1) - (Prop. 7.7)
{swl.m} {owdm,scl} {omt,m.cl}
{swl,scl} :Fib) {owl, cl}: WFib
(Prop. 87) (Frop. 8.16)
{swi} :FIFib {swi,sacl}:FFib __ {sw),acl}: FWFib
(Prop. 85) (Prop. 810 (Prop. 8.17)
m}: Bij - m, cl}:Sur
Fide ] m3c) s
{scl}:SFib {cl}: SWFib
(Prop. 59) (Frop. 8.14)
{=}:1s0 {sacl}:FSFib __{acl}:FSur = FSWFib
(Prop. 66) (Prop. 8.11) (Prop. 74,8.15)

*figure from Ralph and StraBburger paper

@ Entailment Logic (non associative connectives)

5Ralph & StraBburger Tablueaux2019; Acclavio & StraBburger Wollic2019
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Modal Logic S4”’

Modal Formulas
A,B:=ala|AAB|AVB|OA|CA

Sequent Calculus Rules

AT A,T c{Al C{o0A|
LKU<{ K , D , T , o4l —
oA, ol OA, T C{<>A} C{<>A}
m| .
o&\o:
\m.
((oééy vob) A T::év) v *<>y ;y

"Acclavio & StraBburger Tabuleaux2019
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Multiplicative Linear Logic with Exponentials®

8 Acclavio TLLA2020
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First Order Classical Logic °

Formulas
t:= le(t‘],...,tn)
a.= p(t‘],...,tn)|ﬁ(t1,...,tn)
A,B= a|AAB|AVB|VYxA|IxA
M A[x/t] A
Rules LK U El , v X notfreein
I, 3x.A LVx.A
° °
° o\o
Axp(x)Vyp(y)

9Hughes 2019; Hughes & StraBburger & Wu LICS2021
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Intuitionistic Logic'®
Formulas
AB=a|AAB|A>B

Sequent Calculus Rules

BrA . NB,CrA rN-A A+B r-A A,Bi—CL

R

D L I»)
ara TrBoA T,BACFA TArAAB T,AASBFC

rB,BrA reA
—1 ——c w
F 1 BrA MBrA
b=-====> b e - |
b-====p a=—— - a

OHeijltjes, Hughes & StraBburger LICS2019
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Constructive Modal Logic"
Modal Formulas

A B=al|AAB|ADB|DOA|OA |1
Additional Sequent Calculus Rules

Nr-A B,T+A B,lT+A

O

Ko K D
ol oA oB,al - OA al + OA

b=——"=sb

O

o( b > b )> ¢ a )oo(ana)

" Acclavio, Catta & StraBburger 2021
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Combinatorial Proofs
and
Proof Equivalence
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Combinatorial Proofs and Proof equivalence

Claim

Two proofs are the same iff they can be represented by the same CP J
*—o—0—0 *—o—0—0—0 o
A Y Y A i « 4 }74 3 >
a a—a a a a—a a

@ Combinatorial Proofs and sequent calculus'?
@ Combinatorial Proofs and deep inference'?

@ Combinatorial Proofs and Resolution and Analytic Tableaux'*

2Hughes, 2005
3StraBburger, FSCD2017
4 Acclavio & StraBburger, IJCAR2018
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Comparing Proofs from Different Proof Systems

— AX -
P ad" t
Feod" rd.c.d Ve |N Mava
= w —— w
+(aAb),c.cd +(aAb),dec.d s =
— A ((cve)ad)vd
+(anb),(cAd),cd S—T—=
P ——— v (cad)vdve
+(anb),(cAd),cd =
= = v
= = f -
+( /\_b)V C/\_d),Cd wi——=|V(@Ead)vevd
r(aab)v(ead)ved anb
+(@aAb)v(erd)vevd T @Ab)v(eAd)vevd
.
- Y Y A\
(aab)v( ¢ Jv( d v ¢
(avb)A(cvd)acad
pd -
A [(avb)Aa(cvd)acAd]

b.c.cag I3
sofeffels Solafd]

Matteo Acclavio An Introduction to Combinatorial Proofs

avolicvdncnrg
[avbllcvdErd
[avb][]

d
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Proof Equivalence in Sequent Calculus

A,B,.C %D AA %,B,C rAXY

Rules permutations

rAX

A

AA "BAT.BCAD="T.AANBC XD

rAB raAB AC

P T
A Y= TIAB

ALY AAB,CAD AI',A,Z,A/\B,C/\D

p A
NAB AC=~ T,AABAC

‘T.AB “T.AB

A P
rAABAC rAABAC

Matteo Acclavio
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Proof Equivalence in Sequent Calculus

AB.C £.D AA %BC
AA "BAT.BCAD="T.AANBC XD
FATAABCAD 'T.ASAABCAD

A

Rules permutations

rAB raAB AC

p AN
rAB AC= T,AABAC

A 13
MAABAC IAABAC

I A1, A, Ag I, A1, A, Ag
M ALA ~ T,AA3
rA c rA ¢

Comonoid transformations

rA A
TA CarAA
w
TAA

rA
TAAY~rA
rA°

Matteo Acclavio
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Proof Equivalence in Sequent Calculus

A,B,.C %D AA %L,B.C

AA "BAT.BCAD="T.AANBC XD

A

ALY AAB,CAD AI',A,Z,A/\B,C/\D

Rules permutations

LAY [AY r.AaB rAB AC
"TAT=~"T.AB ’T.AB AC="T.AABAC
TAaB "TAB "T.a.ABrC "T.AABAC

Comonoid transformations

I A1, A2, Az I A1 Az, Az rAA rA
TALA = TAA TA CarAA rAAY 1A
C C w C
rA rA rAA rA
<1 AT <1
,(" A B,BA ,,'n
,," B,B,A AN—— ,," A
C——= TlA AAB,B,A w ~ A
rA BA N—e— / ———— rA B,A We—e——
A AAB,T,AAB,A AN rAAB,A
IAABA _— LAABA
LAABA
unfolding excising

Matteo Acclavio An Introduction to Combinatorial Proofs
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Proof Equivalence in LJ

Definition
The proof equivalence in

Natural Deduction = A-calculus = Winning Innocent Strategies
is given by

Rules permutations + Comonoid transformations + Unfolding + Excising

Definition
The proof equivalence in

Intuitionistic Combinatorial Proofs
is given by

Rules permutations + Comonoid transformations + Exchising

Matteo Acclavio An Introduction to Combinatorial Proofs 47/58




Proof Equivalence in LJ

——AX ——AX
brb brb
SR ——AX of
Fbob ara rbD>b
(bob)oara N
(bob)oa,(bob)oarana
c
(bob)oarana

R

AX
ara .

(bob)oara >
AR

be====sh  ,g="""=g

be====r] b—»a—k‘ ]

((Z;:»l;)a;}a(:a/\;)

AX AX AX AX
ara ara ara ara
—AX ——t —AX —t
brb a,arana brb a,arana
of c of
Fbob arana Fbob arana

(bob)oarana (bob)oarana

be====sh ,g="""=:3

\>a-§r‘ ]

(b > b) >a) > (@na)

Both these proofs correspond to a derivation of
f:(bob)>atr (f(/lx.x), f(/ly.y)): ana

Are two proofs using different amounts of the same resources equal?

Matteo Acclavio

An Introduction to Combinatorial Proofs
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Compositionality
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How to represent cut'®

Combinatorial proofs allows to represent cut-free proofs

SHughes 2005
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How to represent cut'

Combinatorial proofs allows to represent cut-free proofs
Fact

Proof of I with a cut on a formula A < Proofof LA A A

SHughes 2005
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How to represent cut'®

Combinatorial proofs allows to represent cut-free proofs
Fact

Proof of I with a cut on a formula A < Proofof LA A A

rA AA
cut —— 0 >
rA
Q
> >
Y Y

0

SHughes 2005
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How to represent cut'®

Combinatorial proofs allows to represent cut-free proofs
Fact

Proof of I with a cut on a formula A < Proofof LA A A

_ A AA
NnA AA A
cut —— ~ NAANAA ~
rA hide ————
MA
® @)

Y Y Y Y
@) 4]

SHughes 2005
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How to represent cut'®

Combinatorial proofs allows to represent cut-free proofs
Fact

Proof of I with a cut on a formula A < Proofof LA A A

_ rA AA _
rnA AA A— A AA
cut ——— ~ MAANAA ~ N—————
rA hidel_’T MNAAAA
0 0 ®
N

Y Y Y Y Y _V
@) CEENGROSONO

SHughes 2005
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Cut-elimination®

Cut-elimination = elimination of contradictions

6 Acclavio TLLA2020
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Cut-elimination'”

A different approach:
anr((and)v(dn(cvb)))
] [ () LD g NN
yat (@va)n(@vevh)vay @nd)(dn(cvb)
(ava)a(avevd)

7StraBburger FSCD2017
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Related and Future works

An Introduction to Combinatorial Proofs 53/58



Proof Certificates

Proof certificates desiderata

@ A certificate contains all the information in a proof

@ A certificate contains only the information in a proof

e A certificate can be checked in polynomial time if it is correct
e Certificates can be composed
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Game Semantics

There is a relation between ICPs and winning innocent strategies:

a a
A ——

1

S :{ b0:b1:a§a1: }
by by aza;
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Game Semantics

There is a relation between ICPs and winning innocent strategies:

a\ T-a

- T TTep
a a*
b,

S:{ b0:b1:a§a1: } —
by by aza;
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Game Semantics

There is a relation between ICPs and winning innocent strategies:

g _ | bobiagay
bgbjaza; | «
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Game Semantics

There is a relation between ICPs and winning innocent strategies:

I N "a
a\\) PETI
b==" —)
a Y |
2 v 1 v
\a0\>b1 \bo
o _ [ bsbasa
bebsasal

This is an intuitionistic combinatorial proof!
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New Game Semantics'®

You can use combinatorial proofs to design game semantics

O--¢ O--0O0
O--0 € €
b b a, a
O--0--0--0
O--0 € €
b b a, a

€ € 0O--0O
<><>aoa

8 Acclavio, Catta & StraBburger 2021
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@ Combinatorial proofs are a proof system
@ Combinatorial proofs capture proof equivalence
@ We have combinatorial proofs for different logics

What next?
@ More combinatorial proofs !
@ Combinatorial proofs compositionality
@ Implement proof certificates
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Thank you

Questions?

Notes of this presentation will be available soon at matteoacclavio.com
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