
Non-wellfounded parsimonious proofs
and non-uniform complexity

Matteo Acclavio

University of Southern Denmark

macclavio@gmail.com

Gianluca Curzi

University of Gothenburg

gianluca.curzi@gu.se

Giulio Guerrieri

Aix Marseille Université

giulio.guerrieri@lis-lab.fr

ABSTRACT
In this paper we investigate the complexity-theoretical aspects of

cyclic and non-wellfounded proofs in the context of parsimonious

logic, a variant of linear logic where the exponential modality ! is

interpreted as a constructor for streams over finite data. We present

non-wellfounded parsimonious proof systems capturing the classes

FP and FP/poly. Soundness is established via a polynomial modulus

of continuity for continuous cut-elimination. Completeness relies

on an encoding of polynomial Turing machines with advice.

As a byproduct of our proof methods, we establish a series of

characterisation results for various finitary proof systems.
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1 INTRODUCTION
In its modern guise, non-wellfounded proof theory emerged for the

first time in the context of the modal 𝜇-calculus [23, 43]. Since

then, this area of proof-theory has provided a promising theoretical

framework for studying least and greatest fixed points, hence for

reasoning about induction and coinduction. What is more, its ap-

plications have spanned, over the years, a number of rather diverse

topics, such as predicate logic [9, 10], algebras [21, 22], arithmetic [8,

19, 45], proofs-as-programs interpretations [4, 18, 20, 24, 33], and

continuous cut-elimination [26, 41].

Non-wellfounded proof-theory studies proofs whose underlying

tree structure is possibly infinite (but finitely branching). In this

setting logical consistency is guaranteed by appropriate global

proof-theoretic conditions, called progressing criteria. In particular,

those non-wellfounded proofs with a regular tree structure have
received special attention in the literature because they admit a

finite description, typically based on cyclic directed graphs. Because

of their graph-theoretic representation, these regular proofs are

commonly named circular or cyclic.
In [18, 20, 33] non-wellfounded proof-theory has been investi-

gated from the perspective of the Curry-Howard correspondence
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paradigm, where proofs are interpreted as (functional) programs,

and program execution is given in terms of cut-elimination. Non-

wellfounded proofs can be understood as programs defined by a

possibly infinite list of instructions, where the progressing criterion

ensures totality, i.e., that those programs are always well-defined

on all arguments. On the other hand, the regularity condition on

proof trees has a natural counterpart in the notion of uniformity:
regular proofs can be properly regarded as programs, i.e. as finite

sets of machine instructions, thus having a “computable” behaviour.

In [12] this computational reading of non-wellfounded proofs

is extended to the realm of computational complexity, introduc-
ing circular proof systems capturing the class of functions com-

putable in polynomial time (FP) and the elementary functions

(FELEMENTARY). These proof systems are defined by identify-

ing global conditions on circular progressing proofs motivated by

ideas from Implicit Computational Complexity (ICC), i.e., the study

of machine-free and bound-free characterisations of complexity

classes. More specifically, these circular proof systems are based on

Bellantoni and Cook’s algebra of functions for safe recursion [7],

one of the cornerstones of ICC. These results have been generalized

in [14] to capture the class of functions computable in polyno-

mial time by Turing machines with access to polynomial advice
(FP/poly) or, equivalently, computable by non-uniform families of

polynomial-size circuits [3]. Specifically, non-uniform complexity
is modeled by more permissive non-wellfounded proof systems

(compared to circular proof systems), obtained by weakening the

regularity condition, hence relaxing finite presentability of proofs
1
.

In this paper we take an alternative route to non-wellfounded

approaches for ICC, which is based on linear logic [30]. Linear logic
(LL) is a refinement of both classical and intuitionistic logic that

allows a better control over computational resources thanks to the

so-called exponential modalities (denoted by ! and ?), which mark

the distinction between those assumptions that can be used linearly

(that is, exactly once), and the ones that are reusable at will. Accord-

ing to the Curry-Howard reading of linear logic, these modalities

introduce non-linearity in functional programs: a proof of the linear

implication !𝐴 ⊸ 𝐵 is interpreted as a program returning an output

of type 𝐵 using an arbitrary number of times an input of type 𝐴.

Linear logic has inspired a variety of methods for taming com-

plexity. The central idea is to weaken the exponential rules for

inducing a bound on cut-elimination, which reduces the compu-

tational strength of the system. These restricted systems of linear

logic are called “light logics”. Examples are soft linear logic [34] or
light linear logic [29] for FP, and elementary linear logic [5, 16] for

1
Note that FP/poly includes undecidable problems, and so cannot be characterised by

purely circular proof systems, which typically represent only computable functions.
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FELEMENTARY. Light logics are typically endowed with second-

order quantifiers, which allow for a direct encoding of (resource-

bounded) Turing machines, the crucial step for proving complete-

ness w.r.t. a complexity class.

Continuing this tradition, in a series of papers [38–40] Mazza

introduced parsimonious logic (PL), a variant of linear logic (defined
in a type-theoretical fashion) where the exponential modality !

satisfies Milner’s law (i.e., !𝐴 ˛ 𝐴 ⊗ !𝐴) and invalidates the im-

plications !𝐴 ⊸ ‼𝐴 (digging) and !𝐴 ⊸ !𝐴 ⊗ !𝐴 (contraction). In
parsimonious logic, a proof of !𝐴 can be interpreted as a stream
over proofs of 𝐴, i.e., as a greatest fixed point. The linear implica-

tions 𝐴 ⊗ !𝐴 ⊸ !𝐴 (co-absorption) and !𝐴 ⊸ 𝐴 ⊗ !𝐴 (absorption),
which form the two directions of Milner’s law, can be computation-

ally read as the push and pop operations on streams. In particular,

in [40] Mazza and Terui presented non-uniform parsimonious logic
(nuPL), an extension of PL equipped with an infinitely branching

rule ib!p (see Figure 2) that constructs a stream (D𝑓 (0) ,D𝑓 (1) , . . . ,
D𝑓 (𝑛) , . . .) of type !𝐴 from a finite set of proofs D1, . . . ,D𝑛 of 𝐴

and a (possibly non-recursive) function 𝑓 : N→ {1, . . . , 𝑛}.
The fundamental result of [40] is that, when endowed with re-

stricted second-order quantifiers, the logic PL (resp. nuPL) char-
acterises the class P of problems decidable in polynomial time

(resp. the class P/poly of problems decidable by polynomial size

families of circuits)
2
. On the one hand, the infinitely branching rule

can be used to encode streams, hence to model Turing machines

querying an advice [3]; on the other hand, the absence of digging

and contraction induces a polynomial bound on normalisation.

The analysis of parsimonious logic conducted in [38–40] reveals

that fixed point definitions of the exponentials are better behaving

when digging and contraction are discarded. However, these results

rely on the co-absorption rule (?b in Figure 2) which is not admissi-

ble in LL. Proper subsystems of LL (free of the co-absorption rule)

admitting a stream-based interpretation of the exponentials have

been provided in [2], where the authors define parsimonious linear
logic (PLL) and its non-uniform version, called non-uniform parsimo-
nious linear logic (nuPLL). Furthermore, the authors recast PLL and

nuPLL in a non-wellfounded framework by identifying appropriate

global conditions that duly reflect the proof-theoretic features of

these systems. As a result, they introduce regular parsimonious lin-
ear logic (rPLL), defined in terms of regular non-wellfounded proofs,

and weakly regular parsimonious linear logic (wrPLL), where regu-
larity is relaxed to model non-uniform computation. The main con-

tribution of [2] is a continuous cut-elimination theorem for rPLL and

wrPLL, i.e., a cut-elimination result in a non-wellfounded setting.

Contributions. We consider second-order extensions of the proof

systems presented in [2], establishing the characterizations below:

• wrPLL∞
2
(and nuPLL2) characterise FP/poly;

• rPLL∞
2
(and PLL2) characterise FP.

The interconnections between our results are summarised in Fig-

ure 1. The key contribution is the polynomial modulus of continuity

on cut-elimination for wrPLL∞
2

and rPLL∞
2
, from which we infer

that wrPLL∞
2

is sound for FP/poly, and that rPLL∞
2

is sound for FP.
Completeness requires a series of intermediate steps. We first intro-

duce a type system (nuPTA2) implementing a form of stream-based

2
Despite not explicitly stated in [40], the characterisation of P is a direct byproduct.

rPLL∞
2

wrPLL∞
2

FP PLL2 nuPLL2 FP/poly

PTA2 nuPTA2

⊆
Theorem 51.1

Theorem 51.2

Theorem 56.1

⊆
Theorem 24.1 Theorem 24.2

Theorem 56.2

⊆
Theorem 57.2 Theorem 57.1

Figure 1: Grand tour diagram of the main results.

computation. Then we describe an encoding of polynomial time

Turingmachines with (polynomial) advice within nuPTA2, by adapt-
ing standard methods from [28, 37] to the setting of non-uniform

computation. This allows us to prove that nuPTA2 is complete for

FP/poly. Thirdly, we define a translation from nuPTA2 to nuPLL2.
Finally, we show that computation over strings in nuPLL2 can be

simulated within wrPLL∞
2
. A similar completeness argument can

be restated for rPLL∞
2
and PLL2.

On a technical side, the present paper contributes to the previ-

ous literature on parsimonious logic [38–40] in many directions.

First, since our systems are free of the co-absorption rule, Theo-

rem 58 establishes completeness without a “push” operation on

streams, unlike [40]. Secondly, we generalise the characterisation

of classes of problems given in [40] (i.e., P/poly and P) to classes of

functions (i.e., FP/poly and FP), and put them into the realm of (non-

wellfounded) LL. Last, the advantage of wrPLL∞
2
over the system

nuPL is that non-wellfounded proofs replace the infinitely branch-

ing rule ib!p, avoiding the introduction of the constant growth-rate

function 𝑓 : N→ {1, . . . , 𝑛} and making our characterisations more

“implicit”, thus closer to ICC.

Outline of the paper. Section 2 recalls some preliminaries on lin-

ear logic, non-wellfounded proofs and non-uniform complexity.

In Section 3 we introduce parsimonious linear logic and the induc-

tive proof systems PLL2, nuPLL2. In Section 4 we define their non-

wellfounded counterpart, i.e., rPLL∞
2
and wrPLL∞

2
. Finally, sound-

ness and completeness results are discussed in Sections 5 and 6.

Due to space constraints, most of our proofs and technical de-

velopment is devolved to appendices.

2 PRELIMINARY NOTIONS
In this section we recall some basic notions from (non-wellfounded)

proof theory, fixing the notation that will be adopted in this paper.

2.1 Derivations and coderivations
We assume that the reader is familiar with the syntax of sequent

calculus, e.g. [46]. Here we specify some conventions adopted to

simplify the content of this paper.

We consider (sequent) rules of the form r
Γ

or

Γ1
r
Γ

or

Γ1 Γ2
r

Γ
,

and we refer to the sequents Γ1 and Γ2 as the premises, and to the

sequent Γ as the conclusion of the rule r. To avoid technicalities

of the sequents-as-lists presentation, we follow [4] and we consider

sequents as sets of occurrences of formulas from a given set of

formulas. In particular, when we refer to a formula in a sequent we

always consider a specific occurrence of it.
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Definition 1. A (binary, possibly infinite) tree T is a subset of

words in {1, 2}∗ that contains the empty word 𝜖 (the root of T ) and

is ordered-prefix-closed (i.e., if 𝑛 ∈ {1, 2} and 𝑣𝑛 ∈ T , then 𝑣 ∈ T ,

and if moreover 𝑣2 ∈ T , then 𝑣1 ∈ T ). The elements of T are called

nodes and their height is the length of the word. A child of 𝑣 ∈ T
is any 𝑣𝑛 ∈ T with 𝑛 ∈ {1, 2}. The prefix order is a partial order
≤T on T defined by: for any 𝑣, 𝑣 ′ ∈ T , 𝑣 ≤T 𝑣 ′ if 𝑣 ′ = 𝑣𝑤 for some

𝑤 ∈ {1, 2}∗. A maximal element of ≤T is a leaf of T . A branch of

T is a set B ⊆ T such that 𝜖 ∈ B and if 𝑤 ∈ B is not a leaf of T
then𝑤 has exactly one child in B.

A coderivation over a set of rulesS is a labelingD of a treeT by

sequents such that if 𝑣 is a node of T with children 𝑣1, . . . , 𝑣𝑛 (with

𝑛 ∈ {0, 1, 2}), then there is an occurrence of a rule r inS with conclu-

sion the sequentD(𝑣) and premises the sequentsD(𝑣1), . . . ,D(𝑣𝑛).
The height of r in D is the height of 𝑣 ∈ T such that D(𝑣) is the
conclusion of r. The conclusion of D is the sequent D(𝜖). If 𝑣 is
a node of the tree, the sub-coderivation of D rooted at 𝑣 is the

coderivation D𝑣 defined by D𝑣 (𝑤) = D(𝑣𝑤).
It is regular if it has finitely many distinct sub-coderivations; it is

non-wellfounded if it labels an infinite tree, and it is a derivation
(with size |D| ∈ N) if it labels a finite tree (with |D| nodes).

Regular coderivations (often called circular or cyclic) can be

represented as finite directed (possibly cyclic) graphs: a cycle is

created by linking the roots of two identical subcoderivations.

Definition 2. Let D be a coderivation labeling a tree T . A bar
(resp. prebar) of D is a setV ⊆ T where:

• any (resp. infinite) branch of T contains a node inV;

• nodes inV are pairwise ≤T -incomparable.

2.2 Non-uniform complexity classes
Our goal is a proof theoretic characterisation of the complexity class

FP/poly [3], i.e., the class of functions computable in polynomial

time (with respect to the length of the input) by a Turing machine

having access to a “polynomial amount of advice” (determined only

by the length of the input). If FP is class of functions computable in

polynomial time by a Turing machine, FP/poly is defined as follows.

Definition 3. FP/poly is the class of functions 𝑓 ( ®𝑥) for which,
for all 𝑛 ∈ N, there is a string (called the advice) 𝛼𝑛 of length

polynomial in 𝑛 and 𝑓 ′ (𝑦, ®𝑥) ∈ FP such that 𝑓 ( ®𝑥) = 𝑓 ′ (𝛼 | ®𝑥 | , ®𝑥).

FP/poly extends FP and contains some incomputable functions,

for instance the characteristic function of undecidable unary lan-

guages [3, Example 6.4]. The class FP/poly can be also defined in

terms of non-uniform families of circuits.

Theorem 4 ([3], Thm. 6.11). A function 𝑓 is in FP/poly iff there
is polynomial-size familiy of circuits computing 𝑓 .

We adopt a different presentation of FP/poly that eases the proof
of completeness. A relation is a function 𝑟 : N𝑘 → {0, 1} with 𝑘 ∈ N.

Definition 5. Let 𝑅 be a set of relations. The class FP(𝑅) consists
of just the functions computable in polynomial time by a Turing

machine with access to an oracle for each relation 𝑟 ∈ 𝑅.

Let R B {𝑟 : N𝑘 → {0, 1} | ∃𝑘 ∈ N, | ®𝑥 | = | ®𝑦 | =⇒ 𝑟 ( ®𝑥) = 𝑟 ( ®𝑦)}.
Note that the notation R is suggestive here, since its elements

are maps from lengths/positions to Booleans, and so they may be

identified with Boolean streams.

Proposition 6 (See, e.g., [14]). FP/poly = FP(R).

3 2ND ORDER PARSIMONIOUS LINEAR LOGIC
In this paper we consider the set of formulas for second-order
multiplicative-exponential linear logic with units (MELL2). These
are generated by a countable set of propositional variables A =

{𝑋,𝑌, . . .} using the following grammar:

𝐴 F 𝑋 | 𝑋⊥ | 𝐴 ⊗𝐴 | 𝐴`𝐴 | !𝐴 | ?𝐴 | 1 | ⊥ | ∀𝑋 .𝐴 | ∃𝑋 .𝐴

A !-formula (resp. ?-formula) is a formula of the form !𝐴 (resp. ?𝐴).

We denote by FV(𝐴) the set of propositional variables occurring
free in 𝐴, and by 𝐴[𝐵/𝑋 ] the standard meta-level capture-avoiding

substitution of 𝐵 for the free occurrences of the propositional vari-

able 𝑋 in 𝐴. Linear negation (·)⊥ is defined by De Morgan’s laws

(𝐴⊥)⊥ = 𝐴, (𝐴 ⊗ 𝐵)⊥ = 𝐴⊥ ` 𝐵⊥, (!𝐴)⊥ = ?𝐴⊥
, (1)⊥ = ⊥, and

(∀𝑋 .𝐴)⊥ = ∃𝑋 .𝐴⊥
, while linear implication is 𝐴 ⊸ 𝐵 B 𝐴⊥ ` 𝐵.

Definition 7. Second-order parsimonious linear logic, noted
PLL2, is the set of rules in Figure 2 on the left, i.e., axiom (ax), cut
(cut), tensor (⊗), par (`), one (1), bottom (⊥), functorial promotion
(f!p), weakening (?w), absorption (?b), (second-order) universal quan-
tifier (∀), (second-order) existential quantifier (∃). Rules ax, ⊗, `, 1
and ⊥ are multiplicative, rules f!p, ?w and ?b are exponential, rules
∀ and ∃ are second-order3. The set of derivations over the rules in
PLL2 is also denoted by PLL2. The propositional fragment of PLL2
(both the set of rules and the set of its derivations) is denoted by PLL.

We set nuPLL2 B {ax, cut, ⊗,`, 1,⊥, ?b, ?w, ib!p,∀, ∃} and the

set of derivations over the rules in nuPLL2 is also noted nuPLL2.4.

Akin to light linear logics [30, 35, 44], the exponential rules of

PLL2 are weaker than those in MELL2: the usual promotion rule is

replaced by f!p (functorial promotion), and the usual contraction and
dereliction rules by ?b. As a consequence, the digging formula !𝐴 ⊸
‼𝐴 and the contraction formula !𝐴 ⊸ !𝐴 ⊗ !𝐴 are not provable in

PLL2 (unlike the dereliction formula, Example 8). It is easy to show

thatMELL2 = PLL2 ∪ { ??d }: if we add the digging formula as an

axiom (or equivalently, the digging rule??d in Figure 2) to PLL2, then
the contraction formula becomes provable, and the expressivity of

the obtained proof system coincides withMELL2.
The system nuPLL2 is our formulation of Mazza and Terui’s

nuPL∀ℓ [40], but unlike the latter, the co-absorbtion rule ?b (Figure 2
on the right) is not in nuPLL2. Despite it, we shall prove that nuPLL2
still captures FP/poly.

Example 8. Figure 3 gives some examples of derivation in PLL2.
The (distinct) derivations 0 and 1 prove the same formula B = ∀𝑋 .

(𝑋⊥`𝑋⊥)` (𝑋 ⊗𝑋 ), where𝑋1, 𝑋2, 𝑋3, 𝑋4 are distinct occurrences

of the variable 𝑋 . Derivations Dabs and Dder respectively prove

the absorption law !𝐴 ⊸ 𝐴 ⊗ !𝐴 and the dereliction law !𝐴 ⊸ 𝐴.

3
The (!, ?)-freeness of the formula instantiated in the existential rule (∃) is crucial for
establishing a polynomial bound on cut-elimination. This linearity restriction prevents

the encoding of exponential functions (see Remark 92 in Appendix D.5).

4
This requires a slight change in Definition 1: the tree labelled by a derivation in

nuPLL2 must be over N𝜔 instead of {1, 2}∗ , to deal with infinitely branching deriva-

tions. Basically, nuPLL2 is obtained from PLL2 by replacing the rule f!p with ib!p.
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ax
𝐴,𝐴⊥

Γ, 𝐴 𝐴⊥,Δ
cut

Γ,Δ

Γ, 𝐴, 𝐵`
Γ, 𝐴` 𝐵

Γ, 𝐴 𝐵,Δ
⊗
Γ,Δ, 𝐴 ⊗ 𝐵

1
1

Γ
⊥
Γ,⊥

D0

Γ, 𝐴 · · ·
D𝑛

Γ, 𝐴 · · ·
ib!p {D𝑖 | 𝑖 ∈ N} is finite

?Γ, !𝐴
Γ, 𝐴

f!p
?Γ, !𝐴

Γ
?w

Γ, ?𝐴

Γ, 𝐴, ?𝐴
?b

Γ, ?𝐴

Γ, 𝐴
∀ 𝑋 ∉ 𝐹𝑉 (Γ)
Γ,∀𝑋 .𝐴

Γ, 𝐴[𝐵/𝑋 ]
∃ 𝐵 is (!,?)-free

Γ, ∃𝑋 .𝐴
!w

!𝐴

Γ, 𝐴 Δ, !𝐴
!b

Γ,Δ, !𝐴

Γ,??𝐴
??d

Γ, ?𝐴

Γ, 𝐴 ?Γ, !𝐴
c!p

?Γ, !𝐴

Figure 2: Sequent calculus rules of PLL2 (on the right) and other rules we consider in this paper (on the left)

1 0 Dabs Dder D⊥ D?

ax
𝑋⊥
1
, 𝑋3

ax
𝑋⊥
2
, 𝑋4

⊗
𝑋⊥
1
, 𝑋⊥

2
, 𝑋3 ⊗ 𝑋4`

(𝑋⊥
1
` 𝑋⊥

2
), (𝑋3 ⊗ 𝑋4)`

(𝑋⊥
1
` 𝑋⊥

2
) ` (𝑋3 ⊗ 𝑋4)

∀
∀𝑋 .(𝑋⊥ ` 𝑋⊥) ` (𝑋 ⊗ 𝑋 )

ax
𝑋⊥
1
, 𝑋4

ax
𝑋⊥
2
, 𝑋3

⊗
𝑋⊥
1
, 𝑋⊥

2
, 𝑋3 ⊗ 𝑋4`

(𝑋⊥
1
` 𝑋⊥

2
), (𝑋3 ⊗ 𝑋4)`

(𝑋⊥
1
` 𝑋⊥

2
) ` (𝑋3 ⊗ 𝑋4)

∀
∀𝑋 .(𝑋⊥ ` 𝑋⊥) ` (𝑋 ⊗ 𝑋 )

ax
𝐴⊥, 𝐴

ax
?𝐴⊥, !𝐴

⊗
𝐴⊥, ?𝐴⊥, 𝐴 ⊗ !𝐴

?b
?𝐴⊥, 𝐴 ⊗ !𝐴`

?𝐴⊥ ` (𝐴 ⊗ !𝐴)

ax
𝐴⊥, 𝐴

?w
𝐴⊥, ?𝐴⊥, 𝐴

?b
?𝐴⊥, 𝐴`
?𝐴⊥ `𝐴

ax
𝐴⊥, 𝐴

ax
𝐴⊥, 𝐴

...
cut

Γ, 𝐴
cut

Γ, 𝐴
cut

Γ, 𝐴

...
?b
𝐴,𝐴, ?𝐴

?b
𝐴, ?𝐴

?b
?𝐴

Figure 3: Examples of derivations in PLL2 (1, 0,Dabs,Dder, on the left) and of coderivations in PLL∞
2
(D⊥,D?, on the right).

The cut-elimination relation →cut in PLL2 is the union of cut-

elimination steps in Figure 4 (the non-commutative steps are called

principal). The reflexive-transitive closure of→cut is noted →∗
cut.

Termination of cut-elimination in PLL has been proved in [2],

and extends straightforwardly to PLL2.

Theorem 9 ([2]). For every D ∈ PLL2, there is a cut-free D′ ∈
PLL2 such that D →∗

cut D′.

A byproduct of our grand tour diagram in Figure 1 is that PLL2
represents exactly the class of functions in FP. To see this, we

introduce a rather permissive notion of representability for PLL2,
along the lines of [28]. This notion smoothly adapts to other proof

systems we shall study in this paper.

Definition 10 (Representability). A set 𝑇 is represented in PLL2
by a formula T if there is an injection ( · ) from 𝑇 to the set of

cut-free derivations in PLL2 with conclusion T.
A derivation D in PLL2 represents a (total) function 𝑓 : 𝑇1 ×

. . .×𝑇𝑛 → 𝑇 if it proves T1 ⊸ . . . ⊸ Tn ⊸ T where T1, . . . ,Tn, T
represent 𝑇1, . . . ,𝑇𝑛,𝑇 respectively, and for all 𝑥1 ∈ 𝑇1, . . . , 𝑥𝑛 ∈ 𝑇𝑛 ,

the reduction in Figure 5 holds. A (total) function 𝑓 : 𝑇1 × . . . ×
𝑇𝑛 → 𝑇 is representable in PLL2 if there is a derivation in PLL2
representing 𝑓 . We denote by 𝑓 a derivation representing 𝑓 .

Example 11. The set of Booleans B = {0, 1} is represented in PLL2
by the formula B in Example 8 thanks to the derivations 0 and 1
in Figure 3. The set {0, 1}∗ of Boolean strings is represented by the

formula S B ∀𝑋 .!(B ⊸ 𝑋 ⊸ 𝑋 ) ⊸ 𝑋 ⊸ 𝑋 . We will actually

mainly work with a parametric version of S, i.e., the instantiation
S[𝐴] B !(B ⊸ 𝐴 ⊸ 𝐴) ⊸ 𝐴 ⊸ 𝐴 for any formula 𝐴. We write

S[] to denote S[𝐴] for some 𝐴. Each string 𝑏1 · · ·𝑏𝑛 ∈ {0, 1}∗ is

then encoded in PLL2 by the derivation 𝑏1 · · ·𝑏𝑛 of S[𝐴] below.

𝑏1

B
· · · 𝑏𝑛−1

B

𝑏𝑛

B

ax
𝐴⊥, 𝐴

ax
𝐴⊥, 𝐴

?w
?(B ⊗ 𝐴 ⊗ 𝐴⊥), 𝐴⊥, 𝐴

⊗
𝐴 ⊗ 𝐴⊥, ?(B ⊗ 𝐴 ⊗ 𝐴⊥), 𝐴⊥, 𝐴

⊗
B ⊗ 𝐴 ⊗ 𝐴⊥, ?(B ⊗ 𝐴 ⊗ 𝐴⊥), 𝐴⊥, 𝐴

?b
?(B ⊗ 𝐴 ⊗ 𝐴⊥), 𝐴⊥, 𝐴

?(B ⊗ 𝐴 ⊗ 𝐴⊥), 𝐴⊥, 𝐴`
𝑆 [𝐴]

4 NON-WELLFOUNDED SECOND ORDER
PARSIMONIOUS LINEAR LOGIC

4.1 From infinite branching to non-wellfounded
In this paper we explore a dual approach to the one developed

in [40]: instead of considering (wellfounded) derivations with in-

finite branching, like nuPLL2, we introduce (non-wellfounded)

coderivations with finite branching. For this purpose, the infinitary

rule ib!p of nuPLL2 is replaced by the binary rule called condi-
tional promotion (c!p) from Figure 2, and we define PLL∞

2
as the

set of coderivations generated by the same rules as PLL2, except
that f!p is replaced by c!p.

Definition 12. We setPLL∞
2
B {ax, ⊗,`, 1,⊥, cut, ?b, ?w, c!p,∀, ∃}.

The set of coderivations over the rules in PLL∞
2

is also noted PLL∞
2
.

From now on, we only consider coderivations in PLL∞
2
.

We can embed PLL2 and nuPLL2 into PLL∞
2
via the conclusion-

preserving translations (·)◦ and (·)• defined in Figure 8. These

translations expand the promotion rules f!p and ib!p into non-

wellfounded coderivations as in Figure 7 defined as follows.

Definition 13. A non-wellfounded box (nwb for short) is a

coderivation𝔖 ∈ PLL∞
2
with an infinite branch {𝜖, 2, 22, . . . } (called

themain branch) made of conclusions of c!p-rules (see Figure 7).
We write𝔖 = c!p(D0,...,D𝑛,...) if the sub-coderivation rooted in

𝑣𝑖 = 1
𝑖+1

(i.e., the word over {1} of length 𝑖 + 1) is D𝑖 = 𝔖𝑣𝑖 (also
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ax
𝐴,𝐴⊥ Γ, 𝐴

cut
Γ, 𝐴

→cut Γ, 𝐴

Γ, 𝐴, 𝐵`
Γ, 𝐴` 𝐵

Δ, 𝐴⊥ 𝐵⊥, Σ
⊗
Δ, 𝐴⊥ ⊗ 𝐵⊥, Σ

cut
Γ,Δ, Σ

→cut

Γ, 𝐵, 𝐴 𝐴⊥,Δ
cut

Γ,Δ, 𝐵 𝐵⊥, Σ
cut

Γ,Δ, Σ

Γ
⊥
Γ,⊥

1
1

cut
Γ

→cut Γ Multiplicative

Γ, 𝐴
f!p

?Γ, !𝐴

𝐴⊥,Δ, 𝐵
f!p

?𝐴⊥, ?Δ, !𝐵
cut

?Γ, ?Δ, !𝐵

→cut

Γ, 𝐴 𝐴⊥,Δ, 𝐵
cut

Γ,Δ, 𝐵
f!p

?Γ, ?Δ, !𝐵

Γ, 𝐴
f!p

?Γ, !𝐴

Δ
?w

Δ, ?𝐴⊥
cut

?Γ,Δ

→cut
Δ

?w
?Γ,Δ

Γ, 𝐴
f!p

?Γ, !𝐴

Δ, 𝐴⊥, ?𝐴⊥
?b

Δ, ?𝐴⊥
cut

?Γ,Δ

→cut
Γ, 𝐴

?Γ, !𝐴 Δ, 𝐴⊥, ?𝐴⊥
cut

?Γ,Δ, 𝐴⊥
cut

Γ, ?Γ,Δ
?b

?Γ,Δ

Exponential

(functorial)

Γ, 𝐴
∀
Γ,∀𝑋 .𝐴

Δ, 𝐴⊥ [𝐵/𝑋 ]
∃

Δ, ∃𝑋 .𝐴⊥
cut

Γ,Δ

→cut
Γ, 𝐴[𝐵/𝑋 ] Δ, 𝐴⊥ [𝐵/𝑋 ]

cut
Γ,Δ

Second-Order

Γ1, 𝐴
r1

Γ, 𝐴 𝐴⊥,Δ
cut

Γ,Δ

→cut

Γ1, 𝐴 𝐴⊥,Δ
cut

Γ1,Δ
r1

Γ,Δ

Γ1, 𝐴 Γ2
r2

Γ, 𝐴 Δ, 𝐴⊥
cut

Γ,Δ

→cut

Γ1, 𝐴 𝐴⊥,Δ
cut

Γ1,Δ Γ2
r2

Γ,Δ

with r2 ≠ cut. Commutative

Figure 4: Cut-elimination steps in PLL2.

D

T1 ⊸ . . . ⊸ Tn ⊸ T

𝑥1

T1
⊸𝑒

...

𝑥𝑛−1

Tn−1
⊸𝑒

Tn ⊸ T

𝑥𝑛

Tn
⊸𝑒

T

→∗
cut 𝑓 (𝑥1,...,𝑥𝑛 )

T

where

Γ, 𝐴 ⊸ 𝐵 Δ, 𝐴
⊸𝑒

Γ,Δ, 𝐵
B

Γ, 𝐴 ⊸ 𝐵

Δ, 𝐴
ax
𝐵⊥, 𝐵

⊗
Δ, (𝐴 ⊸ 𝐵)⊥, 𝐵

cut
Γ,Δ, 𝐵

Figure 5: Representability of a function 𝑓 : 𝑇1 × . . . ×𝑇𝑛 → 𝑇 .{
D𝑖

Γ, 𝐴

}
𝑖∈Nib!p

?Γ, !𝐴

{
D′

𝑖

𝐴⊥,Δ, 𝐵

}
𝑖∈Nib!p

?𝐴⊥, ?Δ, !𝐵
cut

?Γ, ?Δ, !𝐵

→cut


D𝑖

Γ, 𝐴

D′
𝑖

𝐴⊥,Δ, 𝐵
cut

Γ,Δ, 𝐵

𝑖∈Nib!p
?Γ, ?Δ, !𝐵

{
D𝑖

Γ, 𝐴

}
𝑖∈Nib!p

?Γ, !𝐴

Δ
?w

Δ, ?𝐴⊥
cut

?Γ,Δ

→cut
Δ

|Γ |×?w
?Γ,Δ

{
D𝑖

Γ, 𝐴

}
𝑖∈Nib!p

?Γ, !𝐴

Δ, 𝐴⊥, ?𝐴⊥
?b

Δ, ?𝐴⊥
cut

?Γ,Δ

→cut
D0

Γ, 𝐴

{
D𝑖+1

Γ, 𝐴

}
𝑖∈Nib!p

?Γ, !𝐴 Δ, 𝐴⊥, ?𝐴⊥
cut

?Γ,Δ, 𝐴⊥
cut

Γ, ?Γ,Δ
|Γ |×?b

?Γ,Δ

Exponential

(infinite branching)

Figure 6: Exponential cut-elimination steps in nuPLL2.

c!p(D0,...,D𝑛,...) = D0

Γ, 𝐴

D1

Γ, 𝐴

D𝑛

Γ, 𝐴

...
c!p

?Γ, !𝐴
c!p

...
c!p

?Γ, !𝐴
c!p

?Γ, !𝐴

Figure 7: A non-wellfounded box in PLL∞
2
.

noted𝔖(𝑖) and called the 𝑖th call of𝔖). The principal formula
of the nwb is the unique !-formula in the conclusion of𝔖.

Let Calls(𝔖) = {𝔖(𝑖) | 𝑖 ∈ N} be the set of calls of𝔖. We say

that𝔖 has finite support if Calls(𝔖) is finite. A coderivation D
has finite support if any nwb in D is so.

Example 14. A nwb 𝔖 = c!p(D0,...,D𝑛,...) as in Figure 7 with

conclusion !B and D𝑖 ∈ {0, 1} for each 𝑖 ∈ N has finite support.

The reader familiar with linear logic can see a nwb as a box

with possibly infinitely many distinct contents (its calls), in contrast

with regular boxes (identified with f!p-rules) that can only provide

infinitely many copies of the same content.
The cut-elimination steps →cut for PLL∞

2
are in Figure 4 (except

for exponentials) and Figure 9. Computationally, we interpret the

step c!p-vs-?b as the pop operator allowing us to access the head of
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©«
D

Γ, 𝐴
f!p

?Γ, !𝐴

ª®®¬
◦

=
D◦

Γ, 𝐴

D◦

Γ, 𝐴

...
c!p

?Γ, !𝐴
c!p

?Γ, !𝐴
c!p

?Γ, !𝐴

©«
D0

Γ, 𝐴 · · ·
D𝑛

Γ, 𝐴 · · ·
ib!p

?Γ, !𝐴

ª®®¬
•

= D•
0

Γ, 𝐴

D•
𝑛

Γ, 𝐴

...
c!p

?Γ, !𝐴
c!p

...
c!p

?Γ, !𝐴

Figure 8: Bottom-up translations (·)◦ : PLL2 → PLL∞
2
, and (·)• : nuPLL2 → PLL∞

2
. Rules in PLL2 \ {f!p} are translated to themselves.

a stream encoded by a nwb. Note that, unlike the streams encoded

using the rule ib!p, streams encoded by nwbs may have infinitely

many distinct elements (one for each call).

The notion of representability for PLL∞
2

can be obtained by

adapting Definition 10 to coderivations in PLL∞
2
.

4.2 Totality via a progressing criterion
A non-wellfounded system such as PLL∞

2
is inconsistent. Indeed,

the non-wellfounded coderivation D⊥ in Figure 3 (on the right)

shows that any non-empty sequent is provable in PLL∞
2
.

The coderivationD⊥ in Figure 3 is not cut-free, and ifD⊥ →cut
D thenD = D⊥. ThusD⊥ cannot reduce to a cut-free coderivation,
and the cut-elimination theorem cannot hold in PLL∞

2
. From a

computational point of view, this means that the proof system

PLL∞
2
can represent non-total functions.

In non-wellfounded proof theory, the usual way to recover logi-

cal consistency, and so—computationally—totality of representable

functions, is to introduce a global soundness condition on coderiva-

tions, the progressing criterion [18, 20, 33]. In PLL∞
2
, this criterion

relies on tracking occurrences of !-formulas in coderivations [2].

Definition 15. LetD be a coderivation in PLL∞
2
. An occurrence of

a formula in a premise of a rule r is the parent of an occurrence of

a formula in the conclusion if they are connected according to the

edges depicted in Figure 10. A !-thread (resp. ?-thread) in D is a

maximal sequence (𝐴𝑖 )𝑖∈𝐼 of !-formulas (resp. ?-formulas) for some

downward-closed 𝐼 ⊆ N such that 𝐴𝑖+1 is the parent of 𝐴𝑖 for all

𝑖 ∈ 𝐼 . A !-thread (𝐴𝑖 )𝑖∈𝐼 is progressing if𝐴 𝑗 is in the conclusion of

a c!p for infinitely many 𝑗 ∈ 𝐼 . D is progressing if every infinite

branch contains a progressing !-thread. We define pPLL∞
2

as the

set of progressing coderivations in PLL∞
2
.

Example 16. Coderivations in Figure 3 are not progressing: the

rightmost branch of D⊥, i.e., the branch {𝜖, 2, 22, . . .}, and the

unique branch of D? are infinite and contain no c!p-rules. By con-

trast, the nwb c!p(𝑖0,...,𝑖𝑛,...) discussed in Example 14 is progressing

since the only infinite branch is its main branch, which contains a

!-thread of formulas !𝐴, each one principal for a c!p rule.

The regular coderivation below is not progressing: the branch

{𝜖, 2, 21, 212, 2121, . . . } is infinite but has no progressing !-thread.

ax
𝑋, 𝑋⊥

ax
𝑋, 𝑋⊥

...
c!p

?𝑋⊥, !𝑋
ax
?𝑋⊥, !𝑋

cut
?𝑋⊥, !𝑋

c!p
?𝑋⊥, !𝑋

ax
?𝑋⊥, !𝑋

cut
?𝑋⊥ , !𝑋

c!p
?𝑋⊥ , !𝑋

Remark 17. Any infinite branch in a progressing coderivation

D contains exactly one progressing !-thread. This follows from

maximality of !-threads and the fact that conclusions of c!p-rules
contain at most one !-formula. As a consequence, any infinite !-

thread in a branch of D must be progressing.

Theorem 18 (Continuous cut-elimination [2]). For eachD ∈
pPLL∞

2
, there is a cut-free D′ ∈ pPLL∞

2
with the same conclusion.

This result has been proved in [2] for the propositional PLL∞
2
(i.e.,

without second-order). The proof smoothly extends to the whole

PLL∞
2
. Indeed, thanks to (!, ?)-freeness for the formula instantiated

in rule ∃, the cut-elimination step ∃-vs-∀ does not change the geom-
etry of the derivation, and !-threads never end in an instantiation.

4.3 Recovering (weak forms of) regularity
The progressing criterion cannot capture the finiteness condition

in the rule ib!p of nuPLL2, as the following example shows:

Example 19. Consider the nwb𝔖 = c!p(D0,...,D𝑛,...) as in Figure 7

with conclusion ‼B and with D𝑖 = c!p(1, 𝑖...1,0,...) . The nwb is pro-

gressing but is not in the image of a rule ib!p via (·)• (see Figure 8)
as it has infinitely many distinct calls.

To identify in pPLL∞
2

the coderivations corresponding to deriva-

tions in nuPLL2 and in PLL2 via the translations (·)• and (·)◦, re-
spectively, we need additional conditions.

Definition 20. A coderivation is weakly regular if it has only
finitely many distinct sub-coderivations whose conclusions are

left premises of c!p-rules; it is finitely expandable if any branch

contains finitely many cut and ?b rules. We denote by wrPLL∞
2

(resp. rPLL∞
2
) the set of weakly regular (resp. regular) and finitely

expandable coderivations in pPLL∞
2
.

Remark 21. Regularity implies weak regularity and the converse

fails, see Example 22 below, so rPLL∞
2

⊊ wrPLL∞
2
. A progressing

and finitely expandable D ∈ PLL∞
2

is weakly regular if and only if

any nwb in D has finite support.

Example 22. D⊥ andD? in Figure 3 (on the right) are weakly regu-

lar (they have no c!p rules) but not finitely expandable (their infinite
branch has infinitely many cut or ?b). Coderivation in Example 19

is not weakly regular (it has infinitely many distinct calls).

An example of a weakly regular but not regular coderivation is

the nwb c!p(𝑖0,...,𝑖𝑛,...) in Example 14 when the infinite sequence

(𝑖 𝑗 ) 𝑗∈N ∈ {0, 1}𝜔 is not periodic: 0 and 1 are the only coderivations
ending in the left premise of a c!p rule (so the nwb is weakly regular),
but there are infinitely many distinct coderivations ending in the

right premise of a c!p rule (so the nwb is not regular). Moreover,

that nwb is finitely expandable, as it contains no ?b or cut.

By inspecting Figures 4 and 9 for PLL∞
2
, we prove the following.
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Γ, 𝐴 ?Γ, !𝐴
c!p

?Γ, !𝐴

𝐴⊥,Δ, 𝐵 ?𝐴⊥, ?Δ, !𝐵
c!p

?𝐴⊥, ?Δ, !𝐵
cut

?Γ, ?Δ, !𝐵

→cut

Γ, 𝐴 𝐴⊥,Δ, 𝐵
cut

Γ,Δ, 𝐵

?Γ, !𝐴 ?𝐴⊥, ?Δ, !𝐵
cut

?Γ, ?Δ, !𝐵
c!p

?Γ, ?Δ, !𝐵

Γ, 𝐴 ?Γ, !𝐴
c!p

?Γ, !𝐴

Δ
?w

Δ, ?𝐴⊥
cut

?Γ,Δ

→cut
Δ

|Γ |×?w
?Γ,Δ

Γ, 𝐴 ?Γ, !𝐴
c!p

?Γ, !𝐴

Δ, 𝐴⊥, ?𝐴⊥
?b

Δ, ?𝐴⊥
cut

?Γ,Δ

→cut
?Γ, !𝐴

Γ, 𝐴 Δ, 𝐴⊥, ?𝐴⊥
cut

Γ,Δ, ?𝐴⊥
cut

Γ, ?Γ,Δ
|Γ |×?b

?Γ,Δ

Exponential

(conditional)

Figure 9: Exponential cut-elimination steps for coderivations of PLL∞
2
.

𝐹
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1
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𝑚
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1
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𝐹
1
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𝐹
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1
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𝑚

𝐹
1
, . . . , 𝐹

𝑛⊥
𝐹
1
, . . . , 𝐹

𝑛
,⊥

𝐹1, . . . , 𝐹𝑛, 𝐴 ?𝐹
1
, . . . , ?𝐹

𝑛
, !𝐴

c!p
?𝐹

1
, . . . , ?𝐹

𝑛
, !𝐴

𝐹
1
, . . . , 𝐹

𝑛
?w

𝐹
1
, . . . , 𝐹

𝑛
, ?𝐴

𝐹
1
, . . . , 𝐹

𝑛
, 𝐴, ?𝐴

?b
𝐹
1
, . . . , 𝐹

𝑛
, ?𝐴

Figure 10: PLL∞
2
rules: edges connect a formula in the conclusion with its parent(s) in a premise.

Proposition 23. Cut elimination preserves weak-regularity, reg-
ularity and finite expandability. Therefore, if D ∈ X with X ∈
{rPLL∞

2
,wrPLL∞

2
} and D →cut D′, then also D′ ∈ X.

By an argument similar to [12, Corollary 32] we have that it

is NL-decidable if a regular coderivation is in rPLL∞
2
. Of course

a similar decidability result cannot hold for wrPLL∞
2
, this proof

system containing continuously many coderivations, as hinted by

the nwb depicted in Example 14.

4.4 Simulation results
The translations (·)◦ and (·)• in Figure 8 map the rules f!p and ib!p
to infinite sequences of rules. So, the cut-elimination step f!p-vs-f!p
in PLL2 (resp. ib!p-vs-ib!p in nuPLL2) can only be simulated by

infinitely many cut-elimination steps in rPLL∞
2

(resp., wrPLL∞
2
).

However, as long as we consider representability of functions on

Boolean strings, we can show that those cut-elimination steps are

not needed to reduce a derivation of PLL2 (resp. nuPLL2) to a cut-

free one. As a consequence, computations over binary strings in

PLL2 (resp. nuPLL2) can be simulated in rPLL∞
2

(resp. wrPLL∞
2
)

using within a finite number of cut-elimination steps.

Theorem 24. [Simulation] Let 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗.

(1) If 𝑓 is representable in nuPLL2, then so it is in wrPLL∞
2
.

(2) If 𝑓 is representable in PLL2, then so it is in rPLL∞
2
.

Proof sketch. We only prove Item 1, as 2 is proven similarly.

Let D : S[] ⊸ 𝑛≥0. . . ⊸ S[] ⊸ S represent 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗
in nuPLL2 and let 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}∗. This means that the re-

duction in Figure 5 holds for T1 = . . . = T𝑛 = S[] and T = S.
Let 𝜎 B D0 →cut D1 →cut . . . →cut D𝑛 = 𝑓 (𝑠1, . . . , 𝑠𝑛) be
such a reduction sequence. It is easy to see that, if D ∈ nuPLL2
has !-free conclusion and is not cut-free, then D contains a cut

r ∉ {f!p-vs-f!p, ib!p-vs-ib!p}. Since each D𝑖 has S as a conclusion,
which is !-free, 𝜎 can be rewritten to another cut-elimination se-

quence 𝜎 that never applies the steps f!p-vs-f!p and ib!p-vs-ib!p.
We conclude by noticing that, if D1 →cut D2 does not reduce a

cut r ∉ {f!p-vs-f!p, ib!p-vs-ib!p}, then D• →cut D•
2
(see Figure 8),

and by observing that 𝑠• = 𝑠 for any binary string 𝑠 ∈ {0, 1}∗. □

4.5 Approximating coderivations
In this subsection we introduce open coderivations, which approxi-

mate coderivations, and show a decomposition property for finitely

expandable and progressing coderivations.

Definition 25. We define the set of rules oPLL∞
2
B PLL∞

2
∪{hyp},

where hyp B hyp
Γ

for any sequent Γ.5 We will also refer to

oPLL∞
2
as the set of coderivations over oPLL∞

2
, which we call open

coderivations. An open derivation is a derivation in oPLL∞
2
.

Definition 26. LetD be an open coderivation andV = {𝜈1, . . . , 𝜈𝑛}
⊆ {1, 2}∗ be a finite set of mutually incomparable nodes of D (w.r.t.

the prefix order). If {D′
𝑖
}1≤𝑖≤𝑛 is a set of open coderivations where

D′
𝑖
has the same conclusion as the subderivation D𝜈𝑖 of D, denote

by D(D′
1
/𝜈1, . . . ,D′

𝑛/𝜈𝑛), the open coderivation obtained by re-

placing each D𝜈𝑖 with D′
𝑖
. The pruning of D over V is the open

coderivation TDUV = D(hyp/𝜈1, . . . , hyp/𝜈𝑛).
If D and D′

are open coderivations, we say that D is an ap-
proximation of D′

(noted D ⪯ D′
) iff D = TD′UV for some

V ⊆ {1, 2}∗. An approximation is finite if it is an open derivation.

Cut-elimination steps do not increase the size of open derivations:

Proposition 27 (Cubic bound). Let D be an open derivation and
let S(D) be the maximum number of ?-formulas in the conclusion of
a c!p rule of D. If D = D0 →cut · · · →cut D𝑛 then:

(1) 𝑛 and |D𝑖 | are in O(S(D)3 · |D|3) for any 𝑖 ∈ {0, . . . , 𝑛}.
(2) If only principal cut-elimination steps are applied then 𝑛 and

|D𝑖 | are in O(S(D) · |D|) for any 𝑖 ∈ {0, . . . , 𝑛}.
(3) If the reduction sequence is maximal then D𝑛 is cut free.

Proof sketch. The only cut-elimination step that may increase

the number of rules of a derivation D is c!p-vs-?b, which intro-

duces at most S(D) new ?b rules. So, any cut-elimination sequence

starting from D has at most O(S(D) · |D|) principal steps, alter-
nated by sequences of commutative steps (each one having at most

a quadratic number of steps in the size of the derivation). □

Progressing and finitely expandable coderivations can be repre-

sented and approximated in a canonical way:

5
Previously introduced notions and definitions on coderivations extend to open

coderivations in the obvious way, e.g. the global conditions Definition 15 and Defini-

tion 20, as well as the cut-elimination relation→cut .
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Proposition 28. Let D ∈ pPLL∞
2

be finitely expandable. There is a
prebar V ⊆ {1, 2}∗ of D such that each 𝑣 ∈ V is the root of a nwb.

Definition 29. Let D ∈ pPLL∞
2

be finitely expandable. The de-
composition prebar of D is the minimal prebar V of D such

that, for all 𝜈 ∈ V , D𝜈 is a nwb. We denote with border(D) such
a prebar and we set base(D) B TDUborder(D) .

By weak König lemma, border(D) is finite and base(D) is a
finite approximation of D.

5 SOUNDNESS
In this section we establish the soundness theorem, i.e., every func-

tion over binary strings that is representable inwrPLL∞
2
(resp. rPLL∞

2
)

is in FP/poly (resp. FP). The key result is a polynomial modulus

of continuity for cut-elimination (Lemma 50), from which we can

extract a family of polynomial size circuits 𝐶𝑓 computing 𝑓 . We

conclude by observing that 𝐶𝑓 is, in fact, uniform whenever the

coderivation representing 𝑓 is regular.

5.1 Nesting, depth, cosize and truncation
Akin to linear logic, the depth of a coderivation is the maximal

number of nested nwbs.

Definition 30. Let D ∈ PLL∞
2
. The nesting level of a sequent

occurrence Γ in D is the number nlD (Γ) of nodes below it that

are the root of a call of a nwb. The nesting level of a formula (oc-
currence)𝐴 inD, noted nlD (𝐴), is the nesting level of the sequent
that contain that formula. The nesting level of a rule r inD, noted

nlD (r) (resp. of a sub-coderivation D′
of D, noted nlD (D′)), is

the nesting level of the conclusion of r (resp. conclusion of D′
).

The depth of D is d(D) B supr∈D {nlD (r)} ∈ N ∪ {∞}.
Remark 31. Let 𝔖 be a nwb with nlD (𝔖) = 𝑛. If 𝐴 is a for-

mula occurrences in the main branch of𝔖 then nlD (𝐴) = 𝑛, and

nlD (𝔖(𝑖)) = 𝑛 + 1 for every 𝑖 ≥ 0.

Proposition 32 ([2]). If D is weakly regular then d(D) ∈ N. More-
over, D →cut D′ implies d(D) ≥ d(D′).

We introduce a notion of (finite) size for coderivations inwrPLL∞
2
,

called cosize, relying on Proposition 32.

Definition 33. Let D ∈ wrPLL∞
2
, and border(D) = {𝜈1, . . . , 𝜈𝑘 }

be its decomposition prebar (thus𝔖𝑖 B D𝜈𝑖 is a nwb for all 1 ≤ 𝑖 ≤
𝑘). We define the cosize ofD, written | |D||, by induction on d(D).
If d(D) = 0 thenD = base(D) and we set | |D|| B |D|. Otherwise
d(D) > 0, and | |D|| B |base(D)| + ∑𝑘

𝑖=1

∑
D′∈Calls(𝔖𝑖 ) | |D

′ | |.
Notice that, by Remark 21, Calls(𝔖𝑖 ) is a finite set for any 𝑖 ∈
{1, . . . , 𝑘}. The cosize at depth 𝑑 , written | |D||𝑑 , is defined for all

𝑑 ≤ d(D) as | |D||0 = |base(D)|, and as | |D||𝑑+1 = max{| |D′ | |𝑑 |
D′ ∈ Calls(𝔖𝑖 ) for some 1 ≤ 𝑖 ≤ 𝑘}.

An 𝑛-(hyper)truncation is a particular finite approximation for

coderivations that only considers the first 𝑛 calls of each nwb.

Definition 34. A finite non-wellfounded promotion is defined

as a coderivation 𝔉 = c!p⟨D0,D1,...,D𝑛−1 ⟩ in Figure 11. We may

write𝔉(𝑖) to denote D𝑖 .

Let D ∈ wrPLL∞
2
with border(D) = {𝜈1, . . . , 𝜈𝑘 } (so𝔖𝑖 B D𝜈𝑖

is a nwb for all 1 ≤ 𝑖 ≤ 𝑘). The 𝑛-truncation TDU𝑛 and the 𝑛-
hypertruncation ⌊D⌋𝑛 of D are the open derivations defined

D0

Γ, 𝐴

D1

Γ, 𝐴

D𝑛−1

Γ, 𝐴

hyp
Γ, 𝐴

hyp
?Γ, !𝐴

c!p
?Γ, !𝐴

c!p
...

c!p
?Γ, !𝐴

c!p
?Γ, !𝐴

Figure 11: A finite non-wellfounded promotion.

for all 𝑛 > 0 as follows: if d(D) = 0, then TDU𝑛 = ⌊D⌋𝑛 B
base(D) = D, and if d(D) > 0, then

TDU𝑛 B base(D)( ®𝔉𝑖/ ®𝜈𝑖 ) ⌊D⌋𝑛 B base(D)( ®𝔉′
𝑖
/ ®𝜈𝑖 )

where for all 𝑖 ∈ {1, . . . , 𝑘}, 𝔉𝑖 = c!p⟨T𝔖𝑖 (0)U𝑛,...,T𝔖𝑖 (𝑛−1)U𝑛 ⟩ and
𝔉′
𝑖
= c!p⟨base(𝔖𝑖 (0) ),...,base(𝔖𝑖 (𝑛−1) ) ⟩ .

Notice that TDU𝑛 and ⌊D⌋𝑛 are finite, and ⌊D⌋𝑛 ⪯ TDU𝑛 .

5.2 Exponential flows
In this subsection we introduce the exponential graph of a coderiva-

tion D, a directed graph associated to D that allows us a static

analysis of the exponential cut-elimination steps performed at depth

0. Directed paths in this graph, called exponential flows, can be then

used to precompute the maximum number of calls of a nwb that de-
crease their nesting level by reducing a cut c!p-vs-?b. This number

will be called rank of D, and plays a crucial role for establishing a

polynomial bound on cut-elimination.

Definition 35 (Exponential flow). Let D ∈ wrPLL∞
2
. The expo-

nential graph of D, written G(D), is a directed acyclic graph

whose nodes are (labelled by) the ?-formulas and the !-formulas

with nesting level 0 that occur in D, and whose directed edges

connect a node 𝐴 to a node 𝐵 if:

• 𝐴 = ?𝐶⊥
and 𝐵 = !𝐶 are the conclusions of an ax rule;

• 𝐴 = ?𝐶⊥
and 𝐵 = !𝐶 are conclusions of a c!p rule;

• 𝐴 = ?𝐶 is principal for a ?b-rule with active formula 𝐵 = ?𝐶 ;

• 𝐴 = !𝐶 and 𝐵 = ?𝐶⊥
are the cut-formulas of a cut rule;

• 𝐴 and 𝐵 are ?-formulas (resp. !-formulas) in a context and 𝐵

(resp. 𝐴) is an immediate ancestor of 𝐴 (resp. 𝐵).

see, e.g., Example 36 and Figure 12. A !-node (resp., ?-node) is a
node labelled by a !-formula (resp., ?-formula). A b-node (resp.,

w-node) is a node labelled by the principal formula for a ?b rule

(resp., for a ?w rule). A p-node (resp., a-node) is a node labelled
by the principal !-formula (resp., principal ?-formula) for a c!p rule

in the main branch of a nwb.
If 𝜙 is a directed path of G(D) crossing a node 𝐴, then 𝜙 [𝐴]

is the maximal directed subpath of 𝜙 that starts at 𝐴. We also say

that 𝜙 crosses a cut rule (resp., a nwb) when it crosses its active

formulas (resp., when it crosses its principal !-formula and one of its

principal ?-formulas). An exponential flow is a maximal directed

path of G(D) that does not cross infinitely p- and a-nodes.

Example 36. LetD be the following nwb with conclusion ?𝐴⊥, !𝐴
and whose calls are axioms:
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ax
𝐴⊥, 𝐴

ax
𝐴⊥, 𝐴

ax
𝐴⊥, 𝐴

ax
𝐴⊥, 𝐴

...
c!p

?𝐴⊥ , !𝐴

c!p

c!p

?𝐴⊥ , !𝐴

c!p

?𝐴⊥ , !𝐴

. .
.

. .
. (1)

The nodes of G(D) are the formula occurrences ?𝐴⊥
, !𝐴 in the

main branch of D, as they all have nesting level 0 by Remark 31.

The exponential flows of D are all finite directed paths from the

bottommost occurrence of ?𝐴⊥
to the bottommost occurrence of !𝐴.

We introduce some useful measures on exponential flows, e.g.

rank. We then show some basic properties of the exponential flows.

Definition 37 (Measures). LetD ∈ wrPLL∞
2
, and let𝜙 be a directed

path in G(D). If𝔖 is a nwb with principal !-formula !𝐴, we define

p(𝜙,𝔖) as the number of p-nodes of the nwb𝔖 crossed by 𝜙 .

The rank of 𝜙 , written b(𝜙), is the number of b-nodes 𝜙 crosses.

The rank of D, written rk (D), is the number b-nodes of G(D).

Remark 38. IfD ∈ wrPLL∞
2
then any exponential flow𝜙 of G(D)

is finite and b(𝜙) ≤ rk (D) ∈ N.

Residues allow us to track exponential flows during cut-elimination.

Definition 39 (Residue). Let D ∈ wrPLL∞
2
, and let 𝜙 be an ex-

ponential flow of D. A residue of 𝜙 along D →∗
cut D′

is an

exponential flow 𝜙 of D′
such that all nodes 𝐴 ∈ G(D) ∩ G(D′)

crossed by 𝜙 are also crossed by 𝜙 .

The following example shows that the rank of a residue of an

exponential flow 𝜙 can have rank greater than the rank of 𝜙 .

Example 40. SupposeD →cut D′
be the following multiplicative

cut-elimination step reducing a cut with active formulas 𝐴` 𝐵 and

𝐴⊥ ⊗𝐵⊥, where𝐴 is a !-node of G(D) and𝐴⊥
is a ?-node of G(D):

D1

Γ, 𝐴 , 𝐵
`

Γ, 𝐴` 𝐵

D2

Δ, 𝐴⊥
D3

𝐵⊥, Σ
⊗

Δ, 𝐴⊥ ⊗ 𝐵⊥, Σ
cut

Γ,Δ, Σ

→cut

D1

𝐵, 𝐴

D2

𝐴⊥ ,Δ
cut

Γ,Δ, 𝐵

D3

𝐵⊥, Σ
cut

Γ,Δ, Σ

𝑏

Let 𝜙 be and 𝜙 ′ be exponential flows of G(D) crossing 𝐴 and 𝐴⊥
,

respectively. It is easy to see that no node ofG(D) is crossed by both
𝜙 and 𝜙 ′. However, 𝜙 and 𝜙 ′ have the same residue in D′

, which

is the exponential flow 𝜙 = 𝜙𝑏𝜙 ′ such that b(𝜙) = b(𝜙) + b(𝜙 ′).

Despite the above example, as long aswe consider cut-elimination

steps reducing exponential cuts, residues of an exponential flow

cannot have greater rank.

Proposition 41. Let D ∈ wrPLL∞
2
, and let D →cut D′ be a cut-

elimination step reducing an exponential cut. If 𝜙 is a residue of the
exponential flow 𝜙 then rkD′ (𝜙) ≤ rkD (𝜙).

Proof sketch. The only interesting case is if D →cut D′
re-

duces a cut r = c!p-vs-?b, and 𝜙 crosses the active formulas of r
with an edge 𝑏, as in the rightmost cut-elimination step of Figure 12.

Then 𝜙 = 𝜙 ′𝑏𝑐𝜙 ′′, where 𝜙 ′ and 𝜙 ′′ are directed paths. We have

three subcases. 1) If 𝜙 does not cross any edge in ®𝑥, ®𝑦, ®𝑧 then there

is exactly a residue 𝜙 = 𝜙 ′𝑑𝑒𝜙 ′′, and rkD′ (𝜙) < rkD (𝜙). 2) If
𝜙 = 𝜙 ′𝑥𝑖𝑧𝑖𝜙 ′′𝑏𝑐𝜙 ′′′, then there are two distinct residues 𝜙1 = 𝜙 ′

and 𝜙2 = 𝜙 ′′′; indeed, any path 𝜙∗ = 𝜙 ′𝜓𝜙 ′′′ cannot be a residue,
as it would cross the !-node !𝐴 ∈ G(D) ∩ G(D′), which is not

crossed by 𝜙 . 3) If 𝜙 = 𝜙 ′𝑥𝑖𝑦𝑖𝜙 ′′𝑎𝑏𝑐𝜙 ′′′, and so there is exactly one

residue 𝜙 = 𝜙 ′𝑢𝑖𝑣𝑖𝜙 ′′′𝑑𝑒𝜙 ′′′; but then rkD′ (𝜙) = rkD (𝜙). □

We now define special exponential flows, called balanced, which
have at most one residue along cut-elimination steps reducing ex-

ponential cuts different from c!p-vs-c!p.

Definition 42 (Balanced exponential flows). LetD ∈ wrPLL∞
2
. An

exponential flow 𝜙 is balanced if every !-node crossed is a p-node,
and p(𝜙,𝔖) > b(𝜙 [!𝐴]) for any nwb𝔖 with principal !-formula !𝐴

that is crossed by 𝜙 .

Proposition 43 (Invariance). Let D ∈ wrPLL∞
2
be a coderivation,

and letD →cut D′ be a cut-elimination step reducing an exponential
cut r ≠ c!p-vs-c!p. Then, any balanced exponential flow has at most
one residue, and it is balanced.

Proof sketch. The only interesting case is when D →cut D′

reduces a cut r = c!p-vs-?b, and 𝜙 crosses the active formulas of

r with an edge 𝑏, as in the rightmost cut-elimination step of Fig-

ure 12. Since 𝜙 is balanced, every !-node crossed is a p-node, and so
the nodes !𝐴 are in the main branch of a nwb𝔖. Moreover, since

p(𝜙,𝔖) > b(𝜙 [!𝐴]) the exponential flow 𝜙 must be of the form

𝜙 ′𝑥𝑖𝑦𝑖𝜙 ′′𝑎𝑏𝑐𝜙 ′′′, for some directed paths 𝜙 ′, 𝜙 ′′, 𝜙 ′′′, and there is

exactly one residue 𝜙 = 𝜙 ′𝑢𝑖𝑣𝑖𝜙 ′′𝑑𝑒𝜙 ′′′. □

5.3 Shallow cut-elimination strategy
Proving cut-elimination for wrPLL∞

2
(and rPLL∞

2
) requires infini-

tary rewriting techniques (see, e.g., [2]). However, if we consider

those coderivations of wrPLL∞
2

with !-free conclusions, we can de-

fine cut-elimination strategies that always halt after a finite number

of steps. This restricted form of cut-elimination suffices for our char-

acterisation results, as computation over binary strings can be duly

simulated by cut-elimination over these particular coderivations.

We first classify some special cut rules and introduce a notion of

residue that tracks cut rules along cut-elimination.

Definition 44 (Cut rules). Let D ∈ wrPLL∞
2
, and let r be a cut. We

say that r is shallow if nlD (r) = 0. It is bordered if it is of the

form c!p-vs-c!p, c!p-vs-?b, or c!p-vs-?w and its active !-formula is

principal for a nwb of D.

Given a cut-elimination step D →cut D′
and an exponential

cut of D, a residue of r (along D →cut D′) is a cut rule r̂ of D′

that satisfies the following condition: either r̂ B r, if D →cut D′

does not reduce (or erase) r, or r̂ is the only cut that is obtained by

reducing r and has same active formulas of r (see Figure 9).

Remark 45. Notice that the residue of a exponential cut r along
a cut-elimination step is unique. Moreover, if the exponential cut

is shallow, it has no residue exactly when r = c!p-vs-?w and the

cut-elimination step reduces r (since r is shallow, it is never erased
by reducing another cut r′ = c!p-vs-?w). Finally, observe that every
residue of a shallow bordered cut is shallow and bordered.
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D1

Γ, 𝐴

D2

?Γ !𝐴

c!p

?Γ !𝐴

D3

Δ
?w

?𝐴⊥ Δ
cut

?Γ Δ

→cut

D2

Δ
|Γ |×?w

?Γ Δ

®𝑥

𝑎

®𝑦
®𝑧

𝑏

D1

Γ, 𝐴

D2

?Γ !𝐴

c!p

?Γ !𝐴

D3

𝐴⊥
?𝐴⊥ Δ

?b

?𝐴⊥ Δ
cut

?Γ Δ

→cut

D2

?Γ !𝐴

D1

Γ, 𝐴

D3

𝐴⊥
?𝐴⊥ Δ

cut

?𝐴⊥ Γ Δ
cut

?Γ Γ Δ

... |Γ | × ?b

?Γ Δ

®𝑥

𝑎

®𝑦
®𝑧

𝑏

𝑐
𝑑

®𝑢

𝑒

®𝑣

Figure 12: From left, a cut-elimination step D →cut D′ reducing c!p-vs-?w and c!p-vs-?b, and the corresponding exponential
graphs (only the relevant nodes and edges are displayed). Double circles (resp., double edges) represent multiple nodes (resp.,
multiple edges), while squared nodes are nodes shared by G(D) andG(D′). Edges are labelled by letters, and vectors ®𝑥 = 𝑥1, . . . , 𝑥𝑛
represent a list of labels, one for each edge.

Definition 46 (Shallow rewriting strategy). Let D ∈ wrPLL∞
2
be

a coderivation of a !-free sequent. The shallow cut-elimination
strategy iterates d(D) + 1 times the following two phases

6
:

• Phase 1. Reduce all shallow cuts that are not bordered.

• Phase 2. Reduce hereditarily all the residues of shallow

bordered cuts except c!p-vs-c!p.

We call each iteration of the two phases above a round.
We set D0 B D and, for all 1 ≤ 𝑑 ≤ d(D) + 1, D𝑑

to be the

coderivation obtained after the 𝑑-th round. For all 1 ≤ 𝑑 ≤ d(D)+1
we set D𝑑

e as the coderivation obtained from D𝑑−1
by applying

Phase 1. We write D𝑑 →∗m
cut D𝑑

e + 1 to denote that D𝑑
e + 1 has

been obtained in a finite number of steps from D𝑑
by applying

Phase 1; D𝑑
e →∗e

cut D𝑑
to denote that D𝑑

has been obtained in a

finite number of steps from D𝑑
e by applying Phase 2; D𝑑 →∗r

cut
D𝑑+1 B D𝑑 →∗m

cut D𝑑+1
e →∗e

cut D𝑑+1
.

Termination of the shallow cut-elimination strategy is an imme-

diate consequence of the following technical lemma.

Lemma 47. Let D ∈ wrPLL∞
2

with !-free conclusion. Then, the
shallow cut-elimination strategy applied to D satisfies the following
properties for every 1 ≤ 𝑑 ≤ d(D) + 1:

(1) base(D𝑑−1) →∗
cut base(D𝑑

e ).
(2) either d(D𝑑−1) = 0 or d(D𝑑 ) = d(D𝑑−1) − 1.
(3) ⌊D𝑑

e ⌋rk (D𝑑
e ) →

∗
cut base(D𝑑 ).

Proof. Item 1 follows from the fact that shallow cuts that are

not bordered only affect base(D𝑑−1), so that base(D𝑑−1) →∗
cut

base(D𝑑
e ) by Proposition 27. Let us prove Item 2 and Item 3, and let

𝔖1, . . . ,𝔖𝑛 (𝑛 ≥ 0) be the nwbs of D𝑑
e (and of D𝑑−1

) with nesting

level 0. Since all shallow cuts are bordered, there are exactly 𝑛

shallow cuts r1, . . . , r𝑛 and the active !-formula of each r𝑖 , say !𝐴𝑖 , is

principal for𝔖𝑖 . This means that all !-nodes of G(D𝑑
e ) are p-nodes

So there is a (possibly repeating) list of balanced exponential flows

𝜙1, . . . , 𝜙𝑛 of G(D𝑑
e ) such that the node !𝐴𝑖 is crossed by 𝜙𝑖 .

By Proposition 43, if we reduce a cut 𝑟 ≠ c!p-vs-c!p crossed

by a balanced exponential flow we obtain exactly one balanced

exponential flow 𝜙 . By Definition 44, 𝜙 crosses the residue r̂ of r,
which is shallow and bordered by Remark 45.

6
To make the strategy deterministic, we can give priority to the rightmost reducible

cut with smallest height. This would ensure that the strategy eventually applies a

cut-elimination step to every reducible cut.

We can easily show that, as long as there are shallow bordered

cuts in balanced exponential flows there are also cuts 𝑟 ≠ c!p-vs-c!p
crossed by them, so if Phase 2 can only terminate whenever there

is hereditarily no (shallow bordered) residue of r1, . . . , r𝑛 , i.e., if the
nwbs𝔖1, . . . ,𝔖𝑛 are eventually erased by a c!p-vs-?w by Remark 45.

Hence, if 𝑛 ≥ 0 then Phase 2 decreases D𝑑
e by 1, and so d(D𝑑 ) =

d(D𝑑
e ) − 1 = d(D𝑑−1) − 1. This proves Item 2.

Finally, let𝑚 ≥ 0 andD𝑑
e = D0 →cut D1 →cut . . . →cut D𝑚 be

the first𝑚 cut-elimination steps of Phase 2 on D𝑑
e . Since Phase 2

only reduces shallow bordered cuts crossed by 𝜙1, . . . , 𝜙𝑛 and their

(unique) residues, by Proposition 41 there are at most rkD (𝜙𝑖 )
(≤ rk (D𝑑

e )) c!p-vs-?b steps involving a c!p rule in (the main branch

of)𝔖𝑖 . Moreover, since c!p-vs-c!p is never reduced, only the first

rk (D𝑑
e ) c!p rules of𝔖𝑖 (from bottom) are affected by Phase 2. This

means that ⌊D𝑑
e ⌋rk (D𝑑

e ) = ⌊D0⌋rk (D𝑑
e ) →cut D′

1
. . . →cut D′

𝑚

for some finite approximations (D′
𝑖
)1≤𝑖≤𝑚 such that base(D′

𝑖
) =

base(D𝑖 ). Moreover, since ⌊D𝑑
e ⌋rk (D𝑑

e ) is a finite approximation,

𝑚 is bounded by Proposition 27, and so ⌊D𝑑
e ⌋rk (D𝑑

e ) →
∗
cut D∗

, for

some finite approximation D∗
such thay base(D∗) = base(D𝑑 ).

By Item 2 it must be that d(D∗) = 0, and so D∗ = base(D∗). □

Theorem 48 (Termination). Let D ∈ wrPLL∞
2
with !-free con-

clusion. Then, the shallow cut-elimination strategy applied to D ter-
minates in a finite number of steps returning a cut-free derivation.

5.4 Polynomial modulus of continuity
In this subsection we establish our characterisation theorems. They

rely on a key result, i.e. Lemma 50, which shows that shallow cut-

elimination requires a number of steps that can be polynomially

bounded w.r.t. the cosize of the starting coderivation.

Lemma 49. Let D ∈ wrPLL∞
2

be a coderivation of a !-free sequent.

Then, | |D𝑑 | |0 ∈ O
(∏𝑑

𝑖=0

(
| |D0 | |𝑖

)
6
𝑑+1−𝑖

)
for all 0 ≤ 𝑑 ≤ d(D) + 1.

Proof. First, we notice that, since D is weakly regular and pro-

gressing, there is a bound 𝑠∗ ≥ 0 on the maximum number of ?-

formulas in the conclusion of a c!p rule ofD, i.e., S(D) (see Propo-
sition 27). Moreover, by Proposition 23, we can assume that 𝑠∗ ≥ 0

bounds S(D𝑑
e ) and S(D𝑑 ). Hence S(D𝑑

e ) and S(D𝑑 ) will be con-
sidered as constants throughout this proof.

We prove the statement by induction on 0 ≤ 𝑑 ≤ d(D) + 1.

The case 𝑑 = 0 is trivial. If 𝑑 > 0 then, by Theorem 48.3, we
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have ⌊D𝑑
e ⌋rk (D𝑑

e ) →
∗
cut base(D𝑑+1). Then | |D𝑑 | |0 = base(D𝑑 ) ∈

O(S(⌊D𝑑
e ⌋rk (D𝑑

e ) ) · | ⌊D
𝑑
e ⌋rk (D𝑑

e ) |) = O(|⌊D𝑑
e ⌋rk (D𝑑

e ) |) by Propo-
sition 27.2. Moreover, if𝔖1, . . . ,𝔖𝑛 are the nwbs ofD𝑑

e with nesting

level 0, since 𝑛, rk (D𝑑
e ) ≤ ||D𝑑

e | |0 and base(𝔖𝑖 ( 𝑗)) ≤ ||D𝑑
e | |1, then

| ⌊D𝑑
e ⌋rk (D𝑑

e ) | = |base(D𝑑
e ) | +

∑𝑛
𝑖=0

∑rk (D𝑑+1
e )

𝑗=0
|base(𝔖𝑖 ( 𝑗)) | ∈

O
(
| |D𝑑

e | |0 +
(
| |D𝑑

e | |0
)
2

· | |D𝑑
e | |1

)
= O

((
| |D𝑑

e | |0
)
2

· | |D𝑑
e | |1

)
.

On the other hand, by Proposition 27.1 we have

| |D𝑑
e | |0 = base(D𝑑

e ) ∈ O(S(base(D𝑑−1)3 · base(D𝑑−1)3) =
= O(S(base(D𝑑−1)3 · | |D𝑑−1 | |3

0
) = O(

(
| |D𝑑−1 | |

)
3

0

)

Finally, we notice that | |D𝑑
e | |1 = | |D𝑑−1 | |1 = | |D0 | |𝑑 as by The-

orem 48.3 the rules of D0
with nesting level 𝑑 are unaffected in

the first 𝑑 − 1 rounds of cut-elimination, and by Theorem 48.2 each

round decreases the depth. Then, by inductive hypothesis,

| |D𝑑 | |0 ∈ O
((
| |D𝑑

e | |0
)
2

· | |D𝑑
e | |1

)
= O

((
| |D𝑑

e | |0
)
2

· | |D0 | |𝑑
)
=

= O
((
| |D𝑑−1 | |0

)
6

· | |D0 | |𝑑
)
= O

((∏𝑑−1
𝑖=0

(
| |D0 | |𝑖

)
6
𝑑−𝑖

)
6

· | |D0 | |𝑑

)
=

= O
(∏𝑑−1

𝑖=0

(
| |D0 | |𝑖

)
6
𝑑+1−𝑖

· | |D0 | |𝑑
)
= O

(∏𝑑
𝑖=0

(
| |D0 | |𝑖

)
6
𝑑+1−𝑖

)
.

□

Lemma 50 (Polynomial modulus of continuity). Let D ∈ wrPLL∞
2

be a coderivation of a !-free sequent. Then, for some polynomial
𝑝 : N→ N depending solely on d(D), TDU𝑝 ( | |D | | ) rewrites by the
shallow cut-elimination strategy to a cut-free hyp-free derivation.

Proof sketch. It is a straightforward consequence of Theo-

rem 48.1-3, Lemma 49 and the fact that rk (D𝑑
e ) ∈ O(| |D𝑑 | |0). □

Theorem 51. [Soundness] Let 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗:
(1) If 𝑓 is representable in wrPLL∞

2
then 𝑓 ∈ FP/poly;

(2) If 𝑓 is representable in rPLL∞
2
then 𝑓 ∈ FP.

Proof sketch. We construct a family of circuits C = (𝐶𝑛)𝑛≥0
such that, on input 𝑠 = 𝑏1, . . . , 𝑏𝑛 ∈ {0, 1}∗, 𝐶𝑛 (𝑠) evaluates the

coderivation

𝑓

S[] ⊸ S

𝑠

S[]
⊸𝑒

S

to 𝑓 (𝑠), and returns 𝑓 (𝑠). The

size of𝐶𝑛 is polynomial in𝑛 by Lemma 50 and the property |TDU𝑚 | ∈
O(𝑚d(D)+1·| |D||d(D)+1), which relates the size of the𝑚-truncation

of D and the cosize of D. Therefore, 𝑓 ∈ FP/poly. If moreover 𝑓

is representable in rPLL∞
2
, then 𝑓 is a regular coderivation, and so

the function 𝑛 ↦→ 𝐶𝑛 can be constructed uniformly by a polytime

Turing machine. Therefore, 𝑓 ∈ FP. □

6 COMPLETENESS
In this section we establish the completeness theorem for wrPLL∞

2

and rPLL∞
2

(Theorem 58). To this end we introduce nuPTA2, a type
system designed to express computation with access to bits of

streams, and we show that the system can encode polynomial time

Turing machines with advice. By a similar reasoning, polynomial

time computable functions can be represented in PTA2, a stream-

free subsystem of nuPTA2. We then translate the type systems into

nuPLL2 and PLL2, respectively (Theorem 57), and conclude by the

simulation theorem relating the inductive and non-wellfounded

proof systems (Theorem 24).

6.1 The type systems PTA2 and nuPTA2

The type system nuPTA2 is a type-theoretical counterpart of nuPLL2,
where the linearity restriction in the second-order rules of Figure 2

is duly reflected by a weaker polymorphism, and modal formu-

las “𝜔𝜎" express types of streams. We also introduce PTA2, the
stream-free subsystem of nuPTA2 corresponding to PLL2.

Definition 52. [Λstream] We define Λstream as the set of terms

generated by the following grammar:

𝑀 B 𝑥 | I | let I = 𝑥 in𝑀 | 𝑀 ⊗ 𝑀 | let 𝑥1 ⊗ 𝑥2 = 𝑀 in𝑀

𝜆𝑥.𝑀 | 𝑀𝑀 | M | disc | pop

where 𝑥 ranges over a countable set of term variables and M =

M(0) :: M(1) :: . . . is a stream of terms. Meta-level substitution

for terms, written 𝑀 [𝑁 /𝑥], is defined in the standard way. The

reduction rules for Λstream are the following:

(𝜆𝑥.𝑀 )𝑁 →𝛽 𝑀 [𝑁 /𝑥 ]
let 𝑥1 ⊗ 𝑥2 = 𝑀 ⊗ 𝑁 in 𝑃 →𝛽 𝑃 [𝑀/𝑥1, 𝑁 /𝑥2 ] let I = I in𝑀 →𝛽 𝑀

popM →𝛽 ℎ𝑑 (M) ⊗ 𝑡𝑙 (M) discM →𝛽 I

and apply to any context, where ℎ𝑑 (M) and 𝑡𝑙 (M) are meta op-

erations returning, respectively, head and tail ofM. With→∗
𝛽
we

denote the reflexive and transitive closure of→𝛽 .

Type assignment systems based on linear logic typically do not

satisfy subject reduction, i.e., preservation of typing under normal-

isation [27]. A key tool to recast this property is to introduce the

so-called essential types from [28], whose main feature is to prevent

these system expressing forms of sharing and duplication of data,

which bring about the failure of subject reduction. Consequently,

we will define PTA2 and nuPTA2 via essential types.

Definition 53 (PTA2 and nuPTA2). The essential types are gener-
ated by the following grammar:

𝐴 B 𝑋 | 1 | 𝜎 ⊸ 𝐴 | ∀𝑋 .𝐴 𝜎 B 𝐴 | 𝜎 ⊗ 𝜎 | !𝜎 | 𝜔𝜎 (2)

where 𝑋 ranges over a countable set of type variables. We denote

by 𝜎 [𝜏/𝑋 ] the meta-level substitution of 𝜏 for the free occurrences

of the type variable 𝑋 in 𝜎 . A context is a set of the form 𝑥1 :

𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛 for some 𝑛 ≥ 0, where the 𝑥𝑖 ’s are pairwise distinct

term variables and 𝜎𝑖 are types. Contexts range over Γ,Δ, Σ, . . .. We

denote by !Γ a context of the form 𝑥1 : !𝜎1, . . . , 𝑥𝑛 : !𝜎𝑛 . The type

assignment system for Λstream, called nuPTA2, derives judgements
of the form Γ ⊢ 𝑀 : 𝜎 according to the typing rules in Figure 13.

The restriction of nuPTA2 without the typing rules stream, disc and
pop is called PTA2. We write Γ ⊢nuPTA2

𝑀 : 𝜎 (resp. Γ ⊢PTA2
𝑀 : 𝜎)

when the judgement Γ ⊢ 𝑀 : 𝜎 is derivable in nuPTA2 (resp. PTA2),
omitting the subscript when it is clear from the context. If D is a

typing derivation of Γ ⊢ 𝑀 : 𝜎 then we write D : Γ ⊢ 𝑀 : 𝜎 .

Essential types ensure subject reduction for PTA2 and nuPTA2.

Proposition 54 (Subject reduction). LetD : Γ ⊢ 𝑀 : 𝜎 . If𝑀 →𝛽 𝑁

then there is D′ such that D′
: Γ ⊢ 𝑁 : 𝜎 .
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ax
𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

Γ, 𝑥 : 𝜎 ⊢ 𝑀 : 𝐵
⊸𝑖

Γ ⊢ 𝜆𝑥 .𝑀 : 𝜎 ⊸ 𝐵

Γ ⊢ 𝑀 : 𝜎 ⊸ 𝐵 Δ ⊢ 𝑁 : 𝜎
⊸𝑒

Γ,Δ ⊢ 𝑀𝑁 : 𝐵

Γ ⊢ 𝑀 : 𝜎 Δ ⊢ 𝑁 : 𝜏
⊗𝑖

Γ,Δ ⊢ 𝑀 ⊗ 𝑁 : 𝜎 ⊗ 𝜏

Γ ⊢ 𝑀 : 𝜎 ⊗ 𝜏 Δ, 𝑥 : 𝜎,𝑦 : 𝜏 ⊢ 𝑃 : 𝐶
⊗𝑒

Γ,Δ ⊢ let 𝑥 ⊗ 𝑦 = 𝑀 in 𝑃 : 𝐶

Γ ⊢ 𝑀 : 𝐴
∀𝑖

Γ ⊢ 𝑀 : ∀𝑋 .𝐴

Γ ⊢ 𝑀 : ∀𝑋 .𝐴
∀𝑒 (★)

Γ ⊢ 𝑀 : 𝐴[𝐵/𝑋 ]
I𝑖 ⊢ I : 1

Γ ⊢ 𝑁 : 1 Δ ⊢ 𝑀 : 𝐶
I𝑒
Γ,Δ ⊢ let I = 𝑁 in𝑀 : 𝐶

Γ ⊢ 𝑀 : 𝜎
f!p

!Γ ⊢ 𝑀 : !𝜎

Γ ⊢ 𝑀 : 𝜏
?w

Γ, 𝑥 : !𝜎 ⊢ 𝑀 : 𝜏

Γ, 𝑦 : 𝜎, 𝑧 : !𝜎 ⊢ 𝑀 : 𝜏
?b

Γ, 𝑥 : !𝜎 ⊢ 𝑀 [𝑥/𝑦, 𝑥/𝑧] : 𝜏
⊢ M : (0) : 𝜎 ⊢ M : (1) : 𝜎 . . . ⊢ M : (𝑛) : 𝜎 . . .

stream {M(𝑖 ) | 𝑖 ∈ N} is finite
⊢ M : 𝜔𝜎

disc
⊢ disc : 𝜔𝜎 ⊸ 1

pop
⊢ pop : 𝜔𝜎 ⊸ 𝜎 ⊗ 𝜔𝜎

Figure 13: Typing rules for system nuPTA2 with (★) B 𝐵 is (!, 𝜔)-free.

6.2 The completeness theorem
In this subsection we show the completeness of nuPTA2 and PTA2
for, respectively, FP/poly and FP. The proof adapts to our setting

the encoding of polynomial time Turing machines from [28, 37].

Definition 55. Booleans, Boolean strings and natural numbers are

encoded as follows, for any 𝑛 ≥ 0 and 𝑠 = 𝑏1 · · ·𝑏𝑛 ∈ {0, 1}∗:

1 B 𝜆𝑥.𝜆𝑦.𝑥 ⊗ 𝑦 𝑛 B 𝜆𝑓 .𝜆𝑧.𝑓 𝑛𝑧

0 B 𝜆𝑥.𝜆𝑦.𝑦 ⊗ 𝑥 𝑠 B 𝜆𝑓 .𝜆𝑧.𝑓 𝑏𝑛 (𝑓 𝑏𝑛−1 (. . . (𝑓 𝑏1 𝑧) . . .))
Booleans can be typed by B B ∀𝑋 .(𝑋 ⊗ 𝑋 ) ⊸ (𝑋 ⊗ 𝑋 ). Moreover,

for any type 𝐴, natural numbers and Boolean strings can be typed,

respectively, by N[𝐴] B !(𝐴 ⊸ 𝐴) ⊸ 𝐴 ⊸ 𝐴 and S[𝐴] B !(B ⊸
𝐴 ⊸ 𝐴) ⊸ 𝐴 ⊸ 𝐴. With N[] we denote N[𝐴] for some 𝐴, and

similarly for S[]. We say that a function 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗ is
representable in nuPTA2 (resp. PTA2) if there is a term 𝑓 ∈ Λstream

such that ⊢ 𝑓 : S[] ⊸ . . . ⊸ S[] ⊸ S in nuPTA2 (resp. PTA2) and
𝑓 𝑠1 . . . 𝑠𝑛 →∗

𝛽
𝑓 (𝑠1, . . . , 𝑠𝑛).

Theorem 56. Let 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗:
(1) If 𝑓 ∈ FP/poly then 𝑓 is representable in nuPTA2;
(2) If 𝑓 ∈ FP then 𝑓 is representable in PTA2.

Proof idea. Item 1 boils down to proving that any polynomial

Turing machine M with access to (polynomially many) bits of a

Boolean stream can be encoded in nuPTA2, essentially leveraging

on Proposition 6. To this end, we first show that any polynomial

𝑝 : N→ N can be encoded by a term ⊢ 𝑝 : N[] → N[]. Then, we
construct the following typable terms:

• ⊢ length : S[] ⊸ N[], which returns the length of a string

• ⊢ init : N[] ⊸ Stream ⊸ TM, taking a natural number 𝑛

and a stream 𝛼 , and returning a blank tape of length 𝑛 and

an extra tape storing the bits of 𝛼

• ⊢ In : S[TM] ⊸ TM ⊸ TM, taking the input string 𝑠 and a

blank tape, and returning the tape filled with the bits of 𝑠

• ⊢ Tr : TM ⊸ TM, encoding the transition function ofM
• ⊢ Ext : TM ⊸ S, extracting the output string out of a tape

By composing the above encodings we obtain the following term:

𝑠 : S[], 𝑛 : N[],𝑚 : N[] ⊢ Ext((𝑛 Tr) (In 𝑠 (init𝑚𝛼))) : S (3)

Intuitively, it iterates 𝑛 times the transition function on an initial

configuration containing a tape of length𝑚 storing the input 𝑠 and

an extra tape storing the stream 𝛼 ; after the 𝑛-th iteration it returns

the output string written on the tape.

Now, let 𝑝 (𝑥) be a polynomial bounding time and space ofM.

The term 𝑠 : !
𝑘S[] ⊢ 𝑝 [length 𝑠/𝑥] : N[] takes the input string 𝑠

and returns a polynomial in the length of 𝑠 . By composing this term

along the variables 𝑛 and𝑚 of the term in Equation (3), we obtain

a term 𝑠 : S[] ⊢ 𝑓 : S representing 𝑓 .

Item 2 follows directly from Item 1 by stripping away streams

from the above encoding. □

We can compare the computational strength of type systems and

inductive proof systems based on parsimonious linear logic.

Theorem 57. Let 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗:
(1) If 𝑓 is representable in nuPTA2 then so it is in nuPLL2;
(2) If 𝑓 is representable in PTA2 then it is in PLL2.

Proof. We define a translation (_)† : nuPTA2 → nuPLL2 map-

ping typing derivations of nuPTA2 to derivations of nuPLL2 such
that, when restricted to typing derivations of PTA2, it returns deriva-
tions of PLL2. The translation essentially turns the modality 𝜔 to

!, and the typing rules stream, pop and disc to gadgets of nuPLL2
containing the inference rules ib!p, ?b and ?w, respectively. Simu-

lation is established by a stronger version of subject reduction: if

D1 : Γ ⊢ 𝑀1 : 𝜎 and 𝑀1 →𝛽 𝑀2 then there is a typing derivation

D2 : Γ ⊢ 𝑀2 : 𝜎 such that D†
1
→∗

cut D
†
2
. □

Theorem 58 (Completeness). Let 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗:
(1) If 𝑓 is representable in wrPLL∞

2
then so it is in nuPLL2;

(2) If 𝑓 is representable in rPLL∞
2
then it is in PLL2.

Proof. For 𝑖 ∈ {1, 2}, Item (i) follows from Theorem 56.(i), The-

orem 57.(i) and Theorem 24.(i). □

7 CONCLUSION AND FUTUREWORK
This paper builds on a series of recent works aimed at develop-

ing implicit computational complexity in the setting of circular

and non-wellfounded proof theory [12, 14]. We proved that the

non-wellfounded proof systems wrPLL∞
2

and rPLL∞
2

capture the

complexity classes FP/poly and FP respectively. We then establish

a series of characterisations for various finitary proof systems.

We envisage extending the contributions of this paper, among

others, to the following research directions.

Polynomial time over the reals. [31] introduces a characterisation
of Ko’s class of polynomial time computable functions over real

numbers [32] based on parsimonious logic. By employing the rule

!b to represent the pop operation on streams, this complexity class

could be modelled within PLL∞
2
via cut-elimination as in [2].

Probabilistic complexity. De-randomisation methods showing

the inclusion of the complexity class BPP (bounded-error proba-

bilistic polynomial time) in FP/poly suggest that this class can be

characterised within wrPLL∞
2
. Challenges are expected, since BPP
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is defined by explicit (error) bounds, as observed in [36] (so, not

entirely in the style of ICC), but we conjecture that error bounds

can be traded for appropriate global proof-theoretic conditions on

wrPLL∞
2
that restrict computationally the access to streams.

Logarithmic Space. In [39, 40] the authors characterize the com-

plexity classes L (logarithmic space problems) and its non-uniform

counterpart L/poly (problems decided by polynomial size branch-

ing programs) by stripping away second-order quantifiers from

their proof systems capturing P and P/poly. We expect that a simi-

lar result can be obtained for our non-wellfounded proof systems.

Non-uniform Proofs-as-Processes. Processes such as a scheduler

sorting tasks among a (finite) set of servers according to a predeter-

mined order (e.g., a token ring of servers) may easily be modelled

by nwbs, making wrPLL∞
2

appealing for the study of the proofs-as-

processes correspondence and its applications [1, 11, 17, 42, 47].
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A PROOFS OF SECTION 2
Proposition 6 (See, e.g., [14]). FP/poly = FP(R).

Proof sketch. For the left-right inclusion, let 𝑝 (𝑛) be a poly-
nomial and C = (𝐶𝑛)𝑛<𝜔 be a circuit family with each 𝐶𝑛 taking 𝑛

Boolean inputs and having size < 𝑝 (𝑛). We need to show that the

language computed by C is also computed in FP(R). Let 𝑐 ∈ R be

the function that, on inputs 𝑥,𝑦 returns the |𝑦 |th bit of 𝐶 |𝑥 | . Using
this oracle we can compute 𝐶 |𝑥 | by polynomially queries to 𝑐 , and

this may be evaluated as usual using a polynomial-time evaluator

in FP.
For the right-left inclusion, notice that a polynomial-time ma-

chine can only make polynomially many calls to oracles with inputs

of only polynomial size. Thus, if 𝑓 ∈ FP(R) then there is some 𝑝 𝑓

with 𝑓 ∈ FP(R<𝑝𝑓 ), where R<𝑝𝑓
is the restriction of each 𝑟 ∈ R

to only its first 𝑝 𝑓 ( | ®𝑥 |) many bits. Now, since 𝑓 can only call a

fixed number of oracles from R, we can collect these finitely many

polynomial-length prefixes into a single advice string for computa-

tion in FP/poly. □

B PROOFS OF SECTION 4
B.1 Some properties of wrPLL∞

2
and rPLL∞

2

The sets rPLL∞
2
andwrPLL∞

2
are the non-wellfounded counterparts

of PLL2 and nuPLL2, respectively. Indeed, we have the following
correspondence via the translations (·)◦ and (·)• in Figure 8.

Proposition 59. The following statements hold:
• If D ∈ PLL2 (resp. D ∈ nuPLL2) with conclusion Γ, then
D◦ ∈ rPLL∞

2
(resp. D• ∈ wrPLL∞

2
) with conclusion Γ, and

every c!p in D◦ (resp. D•) belongs to a nwb.
• If D′ ∈ rPLL∞

2
(resp. D′ ∈ wrPLL∞

2
) and every c!p in D′

belongs to a nwb, then there is D ∈ PLL2 (resp. D ∈ nuPLL2)
such that D◦ = D′ (resp. D• = D′).

Proof. The first statement is proven by induction on D ∈ PLL2
(resp.D ∈ nuPLL2). The second is by proven by induction on d(D),
since d(D) is finite by Proposition 32. □

Definition 60. A coderivationD in PLL∞
2
isweakly progressing

if every infinite branch contains infinitely many right premises

of c!p-rules. We define wpPLL∞
2
as the set of weakly progressing

coderivations of PLL∞
2
.

Progressing andweak progressing coincide in finitely expandable

coderivations.

Lemma 61. Let D ∈ PLL∞
2
be finitely expandable. If D ∈ wpPLL∞

2

then any infinite branch contains the main branch of a nwb. Moreover,
D ∈ pPLL∞

2
if and only if D ∈ wpPLL∞

2
.

Proof. Let D ∈ wpPLL∞
2
be finitely expandable, and let B be

an infinite branch in D. By finite expandability there is ℎ ∈ N such

that B contains no conclusion of a cut or ?b with height greater

than ℎ. Moreover, by weak progressing condition there is an infinite

sequence ℎ ≤ ℎ0 < ℎ1 < . . . < ℎ𝑛 < . . . such that the sequent of B
at height ℎ𝑖 has shape ?Γ𝑖 , !𝐴𝑖 . By inspecting the rules in Figure 2,

each such ?Γ𝑖 , !𝐴𝑖 can be the conclusion of either a ?w or a c!p (with

right premise ?Γ𝑖 , !𝐴𝑖 ). So, there is a 𝑘 large enough such that, for

any 𝑖 ≥ 𝑘 , only the latter case applies (and, in particular, Γ𝑖 = Γ and

𝐴𝑖 = 𝐴 for some Γ, 𝐴). Therefore, ℎ𝑘 is the root of a nwb. This also
shows D ∈ pPLL∞

2
⊆ wpPLL∞

2
. □

Proposition 28. Let D ∈ pPLL∞
2

be finitely expandable. There is a
prebar V ⊆ {1, 2}∗ of D such that each 𝑣 ∈ V is the root of a nwb.

Proof. A straightforward consequence of Lemma 61. □

Proposition 62. It is NL-decidable if a regular coderivation is in
rPLL∞

2
.

Proof. A regular coderivation is represented by a finite cyclic

graph. By Lemma 61 checking progressiveness comes down to

checking that no branch has infinitely many occurrences of a par-

ticular rule, which in turn reduces to checking acyclicity for this

graph (see [13]). We conclude since checking acyclicity is a well-

known coNL problem, and coNL = NL[3]. □

B.2 Proofs of Subsection 4.4
Lemma 63. Let D ∈ nuPLL2 (resp. D ∈ PLL2) have !-free conclu-
sion. Then

(1) eitherD is cut-free or it has a cut rule different from f!p-vs-f!p
and ib!p-vs-ib!p.

(2) for any cut-elimination sequence 𝜎 rewriting D to a cut-
free derivation D̂ there is another cut-elimination sequence 𝜎
rewriting D to D̂ that never applies the steps f!p-vs-f!p and
ib!p-vs-ib!p.

Proof. Concerning Item 1, suppose towards contradiction that

there is a derivation D ∈ nuPLL2 that is not cut-free and whose

cut rules are all of the form f!p-vs-f!p and ib!p-vs-ib!p. We now

establish the following facts:

• There is a sequent in D containing a !-formula

• If the premise of a rule r in D contains ! than so the conclu-

sion of r does.

The first fact follows from the assumption that there is at least

one cut rule and that all cuts contain a !-formula. Concerning the

second fact we have two cases. If r = cut then it is either f!p-vs-f!p
or ib!p-vs-ib!p, and in both cases r contains a !-formula in the

conclusion. Otherwise, r is not a cut, and the property follows by

inspecting the rules of nuPLL2, recalling that instantiation in the ∃
rule requires !-freeness. So, the conclusion of D must contain a !,

contradicting our assumptions.

Let us now prove Item 2. On the one hand, it is easy to check that

the cut-elimination steps f!p-vs-f!p and ib!p-vs-ib!p commute with

any other cut-elimination step, and so we can rewrite 𝜎 into another

sequence 𝜎 where all such cut-elimination steps are postponed. This

means that there is a derivation D′
in 𝜎 such that D →∗

cut D′

is free of the cut-elimination steps f!p-vs-f!p and ib!p-vs-ib!p, and
D′ →∗

cut D̂ only contains those steps. However, since D̂ is cut-free,

by Lemma 63.1 it must be that D′ = D̂. □

Lemma 64. Let D1 ∈ nuPLL2 (resp. D1 ∈ PLL2). If D1 →cut
D2 by applying a cut-elimination step different from f!p-vs-f!p and
ib!p-vs-ib!p then D• →cut D•

2
.

Theorem 24. [Simulation] Let 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗.
(1) If 𝑓 is representable in nuPLL2, then so it is in wrPLL∞

2
.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY M. Acclavio, G. Curzi and G. Guerrieri

(2) If 𝑓 is representable in PLL2, then so it is in rPLL∞
2
.

Proof. We only prove Item 1, as 2 is proven similarly. Let D :

S[] ⊸ 𝑛≥0. . . ⊸ S[] ⊸ S represent 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗ in

nuPLL2 and let 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}∗. This means that the reduc-

tion in Figure 5 holds for T1 = . . . = T𝑛 = S[] and T = S. Let
𝜎 B D0 →cut D1 →cut . . . →cut D𝑛 = 𝑓 (𝑠1, . . . , 𝑠𝑛) be such a

reduction sequence, and notice that 𝑓 (𝑠1, . . . , 𝑠𝑛) is cut-free by defi-

nition. By Lemma 63.2 we can assume, w.l.o.g., that 𝜎 never applies

the cut-elimination steps f!p-vs-f!p and ib!p-vs-ib!p. We conclude

by applying Lemma 64, observing that 𝑠• = 𝑠 for any binary string

𝑠 ∈ {0, 1}∗. □

B.3 Proofs of Subsection 4.5
Proposition 27 (Cubic bound). Let D be an open derivation and
let S(D) be the maximum number of ?-formulas in the conclusion of
a c!p rule of D. If D = D0 →cut · · · →cut D𝑛 then:

(1) 𝑛 and |D𝑖 | are in O(S(D)3 · |D|3) for any 𝑖 ∈ {0, . . . , 𝑛}.
(2) If only principal cut-elimination steps are applied then 𝑛 and

|D𝑖 | are in O(S(D) · |D|) for any 𝑖 ∈ {0, . . . , 𝑛}.
(3) If the reduction sequence is maximal then D𝑛 is cut free.

Proof. For D an open derivation, let C(D) be the number of

c!p in D and H(D) be the sum of the sizes of all subderivations of

D whose root is the conclusion of a cut rule. If D →cut D′
via:

• a commutative cut-elimination step (Figure 4), then C(D) =
C(D′), |D| = |D′ | and H(D) > H(D′);

• a multiplicative cut-elimination step, then C(D) = C(D′)
and |D| > |D′ |;

• an exponential cut-elimination step (Figure 9), then and

C(D) > C(D′)
Since the lexicographic order over the tuple (C(D), |D|,H(D)) is
wellfounded, we conclude that there is no infinite sequence (D𝑖 )𝑖∈N
such that D0 = D and D𝑖 →cut D𝑖+1.

Now, let D = D0 →cut · · · →cut D𝑛 with D𝑛 normal. First, we

show that the number 𝑛𝑝 of its principal cut-elimination steps is

bounded byW(D) B S(D) · C(D) +M(D), whereM(D) is the
number of inference rules different from c!p in D. This boils down

to showing that D′ →cut D′′
implies W(D′′) < W(D′). Indeed:

• every cut-elimination step can only decrease S(D)
• every multiplicative cut-elimination step strictly decreases

M(D) and does not increase C(D)
• the exponential steps c!p-vs-?w and c!p-vs-?b strictly de-

crease C(D) and do not increase C(D)
• ifD′ →cut D′′

is obtained by applying a c!p-vs-?b step then

W(D′′) B S(D′′) · C(D′′) +M(D′′)
≤ S(D′) · C(D′′) + (M(D′) − 1 + S(D′))
= S(D′) · (C(D′) − 1) +M(D′) − 1 + S(D′)
= S(D′) · C(D′) +M(D′) − 1 < W(D′)

At the same time, the number𝑛𝑖𝑐 of commutative steps performed

after the 𝑖-th principal is bounded by the square of the maximum

size of the proof during rewriting, which can be bounded byW(D).

Hence, we have:

𝑛 = 𝑛𝑝 + ∑𝑛𝑝
𝑖=1

𝑛𝑖𝑐 ≤ 𝑛𝑝 + 𝑛𝑝 max𝑖 {𝑛𝑖𝑐 }
≤ 𝑛𝑝

(
max𝑖 {𝑛𝑖𝑐 } + 1

)
≤ W(D) · (W(D)2 + 1)

≤ 2W(D)3

We conclude as W(D) ∈ O(S(D) · |D|) and |D𝑖 | ≤ W(D𝑖 ) ≤
W(D). □

Lemma 65 ([2]). →cut over open derivations is strongly normalizing
and confluent.

Proof. Strong normalisation is a consequence of Proposition 27.

Moreover, since cut-elimination →cut is strongly normalizing over

open derivations and it is locally confluent by inspection of critical

pairs, by Newman’s lemma it is also confluent. □

C PROOF OF SECTION 5
C.1 Proofs of Subsection 5.2
Proposition 66 (Basic properties). LetD ∈ wrPLL∞

2
be a coderiva-

tion. For every exponential flow 𝜙 of G(D):
(1) 𝜙 is finite and b(𝜙) ≤ rk (D) ∈ N.
(2) if 𝜙 crosses a nwb𝔖 then, for every 𝑛 ≥ 1, there is an expo-

nential flow 𝜙𝑛 such that:
• 𝜙𝑛 crosses all nodes of 𝜙
• p(𝜙𝑛,𝔖) = 𝑛

Proof. Let us prove Item 1. By Proposition 28 there is a de-

composition prebar border(D) = {𝜈1, . . . , 𝜈𝑛} so that each 𝑣𝑖 ∈
border(D) is the root of a nwb𝔖𝑖 . By definition, we havenlD (𝔖𝑖 ) =
0. Hence, the nodes of G(D) are:

• the occurrences of exponential formulas in base(D)
• for all 1 ≤ 𝑖 ≤ 𝑛, the occurrences of the exponential formulas

in the main branch of𝔖𝑖 .

Since base(D) is finite, it has finitely many nodes in G(D). Also,
by definition, only finitely many nodes of the main branch of each

𝔖𝑖 can be crossed by the same exponential flow. Since G(D) is
acyclic, this means that any exponential flow must be finite.

Moreover, we observe that only finitely many formulas with

nesting level 0 in D are principal formulas for a b rule, and so

G(D) has finitely many b-nodes.
Let us now prove Item 2. It suffices to show how to construct𝜙𝑛+1

from 𝜙𝑛 for all 𝑛 ≥ 1. We first notice that 𝜙𝑛 can only cross in𝔖 oc-

currences of the same ?-formula, say ?𝐴. So, let r1, r2, . . . the infinite
sequence of c!p rules in the main branch of𝔖 (starting from the bot-

tommost one), and let 𝑎𝑖 (resp., 𝑏𝑖 ) be the edge of G(D) connecting
the occurrence of ?𝐴 (resp., !𝐵) in the conclusion of r𝑖 (resp., r𝑖+1) to
the occurrence of ?𝐴 (resp., !𝐵) in the conclusion of r𝑖+1 (resp., r𝑖 ).
Finally, let𝑏𝑖 be the edge of G(D) connecting the occurrences of ?𝐴
and !𝐵 in the conclusion of r𝑖 . We have that 𝜙𝑛 must be a directed

path of the form 𝜙 ′𝑎1 . . . 𝑎𝑛𝑏𝑛𝑐𝑛 . . . 𝑐1𝜙
′′
, for some directed paths

𝜙 ′, 𝜙 ′′. Then, we set 𝜙𝑛+1 B 𝜙 ′𝑎1 . . . 𝑎𝑛𝑎𝑛+1𝑏𝑛+1𝑐𝑛+1 . . . 𝑐1𝜙 ′′. □

Proposition 67. Let D ∈ wrPLL∞
2

be a coderivation with !-free
conclusion and with only exponential cuts. Then, for every exponential
flow 𝜙 :

(1) 𝜙 ends at a w-node.
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(2) If 𝜙 crosses a p-node, and every !-node crossed is a p-node, then
𝜙 crosses a cut rule r ≠ c!p-vs-c!p.

Proof. Let us prove Item 1. By assumption, an exponential flow

cannot end at the conclusion of D and, since instantiations of

∃ are !, ?-free, it cannot end at an active formula of a ∃ rule. So,

since exponential flows are maximal paths, they must end at the

the principal formula of a ?w rule or at an active formula of a

multiplicative rule. The latter case is impossible, as D has a !-free

conclusion and only exponential cuts.

Concerning Item 1, Proposition 66.1 𝜙 is finite. Let us denote

with ♯(𝜙 ′) the length of a path 𝜙 ′. Among the (finitely many) !-

nodes of 𝜙 there exists one, say !𝐴, with minimal ♯(𝜙 [!𝐴]). From
the fact that every !-node is a p-node, i.e., every !-formula is in fact

the principal formula of a c!p rule in the main branch of a nwb,
we infer that !𝐴 is both in the conclusion of a nwb and an active

formula of a cut r. Moreover, by definition, 𝜙 also crosses the dual

active formula of r, i.e., ?𝐴⊥
. If the latter were in the conclusion

of a c!p rule (and so in the conclusion of a nwb), by definition of

exponential flow, 𝜙 would also cross its principal !-formula, say !𝐵.

But then ♯(𝜙 [!𝐵]) < ♯(𝜙 [!𝐴]), contradicting our hypothesis. So, it

must be that r ≠ c!p-vs-c!p. □

Proposition 41. Let D ∈ wrPLL∞
2
, and let D →cut D′ be a cut-

elimination step reducing an exponential cut. If 𝜙 is a residue of the
exponential flow 𝜙 then rkD′ (𝜙) ≤ rkD (𝜙).

Proof. The statement is straightforward if D →cut D′
is a

commuting cut-elimination step or if it reduces a cut that is not

crossed by 𝜙 . Indeed, notice that 𝜙 cannot be erased by the cut-

elimination step, since nodes crossed by 𝜙 have nesting level 0. So,

let us suppose that the cut r reduced by D →cut D′
is crossed by

𝜙 . There are four cases:

• If r = c!p-vs-ax then there is exactly one residue 𝜙 and

rkD′ (𝜙) = rkD (𝜙).
• r = c!p-vs-?w and 𝜙 crosses the active formulas of r with an

edge 𝑏, as in the leftmost cut-elimination step of Figure 12.

We have three subcases. If𝜙 does not cross any edge in ®𝑥, ®𝑦, ®𝑧,
then 𝜙 = 𝜙 ′𝑎𝑏, where 𝜙 ′ is a directed path. But then there

is no residue, so the statement holds vacuously. Otherwise,

there is exactly one residue 𝜙 and either 𝜙 = 𝜙 ′𝑥𝑖𝑧𝑖𝜙 ′′𝑏 or

𝜙 = 𝜙 ′𝑥𝑖𝑦𝑖𝜙 ′′𝑎𝑏𝜙 ′′, where 𝜙 ′, 𝜙 ′′, 𝜙 ′′′ are directed paths. In

any case 𝜙 = 𝜙 ′, so rkD′ (𝜙) ≤ rkD (𝜙).
• r = c!p-vs-?b and 𝜙 crosses the active formulas of r with an

edge 𝑏, as in the rightmost cut-elimination step of Figure 12.

Let ?Γ = ?𝐶1, . . . , ?𝐶𝑛 . Then 𝜙 = 𝜙 ′𝑏𝑐𝜙 ′′, where 𝜙 ′, 𝜙 ′′ are
directed paths. We have three subcases:

– If 𝜙 does not cross any edge in ®𝑥, ®𝑦, ®𝑧 then there is exactly

one residue 𝜙 = 𝜙 ′𝑑𝑒𝜙 ′′, and rkD′ (𝜙) < rkD (𝜙).
– If 𝜙 = 𝜙 ′𝑥𝑖𝑧𝑖𝜙 ′′𝑏𝑐𝜙 ′′′ there are two distinct residues

𝜙1 = 𝜙 ′ and 𝜙2 = 𝜙 ′′′. Notice, indeed, that any path

𝜙∗ = 𝜙 ′𝜓𝜙 ′′′ cannot be a residue, as it would cross the

!-node !𝐴 ∈ G(D) ∩ G(D′), which is not crossed by 𝜙 .

– The last case is where𝜙 = 𝜙 ′𝑥𝑖𝑦𝑖𝜙 ′′𝑎𝑏𝑐𝜙 ′′′, and so there is
exactly one residue𝜙 = 𝜙 ′𝑢𝑖𝑣𝑖𝜙 ′′′𝑑𝑒𝜙 ′′′. But then rkD′ (𝜙) =
rkD (𝜙).

• The case where r = c!p-vs-c!p is similar to the previous

one. □

Proposition 43 (Invariance). Let D ∈ wrPLL∞
2
be a coderivation,

and letD →cut D′ be a cut-elimination step reducing an exponential
cut r ≠ c!p-vs-c!p. Then, any balanced exponential flow has at most
one residue, and it is balanced.

Proof. The statement is straightforward if D →cut D′
is a

commuting cut-elimination step or if it reduces a cut that is not

crossed by 𝜙 . Indeed, notice that 𝜙 cannot be erased by the cut-

elimination step, since 𝜙 has nesting level 0. So, let us suppose that

the cut r reduced by D →cut D′
is crossed by 𝜙 . Notice that it

cannot be the case that r = c!p-vs-ax, so there are two cases:

• r = c!p-vs-?w and 𝜙 crosses the active formulas of r with an

edge 𝑏, as in the leftmost cut-elimination step of Figure 12.

Since 𝜙 is balanced, every !-node crossed is a p-node, and
so the nodes !𝐴 are in the main branch of a nwb𝔖. Since

p(𝜙,𝔖) > b(𝜙 [!𝐴]) = 0, if ?Γ is not empty then the exponen-

tial flow𝜙 must be of the form𝜙 ′𝑥𝑖𝑦𝑖𝜙 ′′𝑎𝑏, for some directed

paths 𝜙 ′, 𝜙 ′′. In this case there is exactly one residue 𝜙 = 𝜙 ′.
Notice that if ?Γ were empty then there would be no residue.

• r = c!p-vs-?b and 𝜙 crosses the active formulas of r with
an edge 𝑏, as in the rightmost cut-elimination step of Fig-

ure 12. Since 𝜙 is balanced, every !-node crossed is a p-
node, and so the nodes !𝐴 are in the main branch of a nwb
𝔖. Moreover, since p(𝜙,𝔖) > b(𝜙 [!𝐴]) the exponential

flow 𝜙 must be of the form 𝜙 ′𝑥𝑖𝑦𝑖𝜙 ′′𝑎𝑏𝑐𝜙 ′′′, for some di-

rected paths 𝜙 ′, 𝜙 ′′, 𝜙 ′′′, and there is exactly one residue

𝜙 = 𝜙 ′𝑢𝑖𝑣𝑖𝜙 ′′𝑑𝑒𝜙 ′′′. □

C.2 Proofs of Subsection 5.3
Lemma 47. Let D ∈ wrPLL∞

2
with !-free conclusion. Then, the

shallow cut-elimination strategy applied to D satisfies the following
properties for every 1 ≤ 𝑑 ≤ d(D) + 1:

(1) base(D𝑑−1) →∗
cut base(D𝑑

e ).
(2) either d(D𝑑−1) = 0 or d(D𝑑 ) = d(D𝑑−1) − 1.
(3) ⌊D𝑑

e ⌋rk (D𝑑
e ) →

∗
cut base(D𝑑 ).

Proof. Item 1 follows from the fact that shallow cuts that are

not bordered only affect base(D𝑑−1), so that base(D𝑑−1) →∗
cut

base(D𝑑
e ) by Proposition 27.

Let us prove Item 2 and Item 3, and let 𝔖1, . . . ,𝔖𝑛 (𝑛 ≥ 0) be

the nwbs of D𝑑
e (and of D𝑑−1

) with nesting level 0. By Proposi-

tion 68.1, since all shallow cuts are bordered, there are exactly 𝑛

shallow cuts r1, . . . , r𝑛 and the active !-formula of each r𝑖 , say !𝐴𝑖 , is

principal for𝔖𝑖 . This means that all !-nodes of G(D𝑑
e ) are p-nodes

So by Proposition 66.2 there is a (possibly repeating) list of balanced

exponential flows 𝜙1, . . . , 𝜙𝑛 of G(D𝑑
e ) such that the node !𝐴𝑖 is

crossed by 𝜙𝑖 .

By Proposition 43, if we reduce a cut 𝑟 ≠ c!p-vs-c!p crossed

by a balanced exponential flow we obtain exactly one balanced

exponential flow 𝜙 . By Definition 44, 𝜙 crosses the residue r̂ of r,
which is shallow and bordered by Remark 45.

Proposition 67.2 ensures that, as long as there are shallow bor-

dered cuts in balanced exponential flows there are also cuts 𝑟 ≠
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c!p-vs-c!p crossed by them, so if Phase 2 can only terminate when-

ever there is hereditarily no (shallow bordered) residue of r1, . . . , r𝑛 ,
i.e., if the nwbs 𝔖1, . . . ,𝔖𝑛 are eventually erased by a c!p-vs-?w
by Remark 45. Hence, if 𝑛 ≥ 0 then Phase 2 decreases D𝑑

e by 1,

and so d(D𝑑 ) = d(D𝑑
e ) − 1 = d(D𝑑−1) − 1. This proves Item 2.

Finally, let𝑚 ≥ 0 andD𝑑
e = D0 →cut D1 →cut . . . →cut D𝑚 be

the first𝑚 cut-elimination steps of Phase 2 on D𝑑
e . Since Phase 2

only reduces shallow bordered cuts crossed by 𝜙1, . . . , 𝜙𝑛 and their

(unique) residues, by Proposition 41 there are at most rkD (𝜙𝑖 )
(≤ rk (D𝑑

e )) c!p-vs-?b steps involving a c!p rule in (the main branch

of)𝔖𝑖 . Moreover, since c!p-vs-c!p is never reduced, only the first

rk (D𝑑
e ) c!p rules of𝔖𝑖 (from bottom) are affected by Phase 2. This

means that ⌊D𝑑
e ⌋rk (D𝑑

e ) = ⌊D0⌋rk (D𝑑
e ) →cut D′

1
. . . →cut D′

𝑚

for some finite approximations (D′
𝑖
)1≤𝑖≤𝑚 such that base(D′

𝑖
) =

base(D𝑖 ). Moreover, since ⌊D𝑑
e ⌋rk (D𝑑

e ) is a finite approximation,

𝑚 is bounded by Proposition 27, and so ⌊D𝑑
e ⌋rk (D𝑑

e ) →
∗
cut D∗

, for

some finite approximation D∗
such thay base(D∗) = base(D𝑑 ).

By Item 2 it must be that d(D∗) = 0, and so D∗ = base(D∗). □

Proposition 68. Let D ∈ pPLL∞
2

be a coderivation of a !-free
sequent. Then:

(1) If any cut of D with nesting level 0 is exponential, then any
!-thread starts with the active formula of a cut.

(2) If D is cut-free, it is a derivation.

Proof. Item 1 is straightforward. As for Item 2. It suffices notice

that if one of the premises of an inference rule r ≠ cut of pPLL∞
2

contains a ! then so the conclusion of r does, recalling that instan-
tiation in the ∃ rule requires !-freeness. As a consequence, D has

no occurrence of ! and so it has no infinite branch by progressing

condition of D. By weak König lemma, D must be finite (hence, a

derivation). □

Theorem 48 (Termination). Let D ∈ wrPLL∞
2
with !-free con-

clusion. Then, the shallow cut-elimination strategy applied to D ter-
minates in a finite number of steps returning a cut-free derivation.

Proof. On the one hand, base(D𝑑−1) →∗
cut base(D𝑑

e ) implies

D𝑑−1 →∗m
cut D𝑑

e . On the other hand, TD𝑑
e Urk (D𝑑

e ) →∗
cut D𝑑

im-

plies D𝑑
e →∗e

cut D𝑑
. Therefore, D𝑑−1 →∗r

cut D𝑑
for every 1 ≤ 𝑑 ≤

d(D) +1. This means that every round is performed in a finite num-

ber of steps and, since there are only finitely many rounds, the strat-

egy terminates. Moreover, by Item 2 we have d(Dd(D) ) = 0, and

so no !-formula is in a sequent of Dd(D)
by Remark 17. By Propo-

sition 68, this implies that Dd(D)
is a derivation (i.e., it is a finite

coderivation). Therefore, by Proposition 27.3,Dd(D)+1
is a cut-free

derivation. □

C.3 Proofs of Subsection 5.4
Lemma 50 (Polynomial modulus of continuity). Let D ∈ wrPLL∞

2

be a coderivation of a !-free sequent. Then, for some polynomial
𝑝 : N→ N depending solely on d(D), TDU𝑝 ( | |D | | ) rewrites by the
shallow cut-elimination strategy to a cut-free hyp-free derivation.

Proof. By Lemma 49 we have:

| |D𝑑 | |0 ∈ O
(∏𝑑

𝑖=0 | |D0 | |6𝑑+1−𝑖
𝑖

)
Lemma 49

= O
(∏d(D)

𝑖=0
| |D0 | |6d(D)+1−𝑖

𝑖

)
Proposition 32

= O
(
| |D0 | |d(D) ·6d(D)+1

)
= O

(
| |D||d(D) ·6d(D)+1

)
Hence, since Proposition 27.2 implies rk (D𝑑

e ) ≤ |base(D𝑑
e ) | ∈

O(|base(D𝑑 ) |) = O(||D𝑑 | |0), by Theorem 48.1,3 there is some

𝑘 > 0 depending solely on d(D) and a constant 𝑐 > 0 such that:

TD𝑑−1U𝑐 · | |D | |𝑘 →∗
cut TD𝑑

e U𝑐 · | |D | |𝑘 →∗
cut TD𝑑U𝑐 · | |D | |𝑘

for any 0 ≤ 𝑑 ≤ d(D) + 1. Moreover, TDd(D)+1U𝑐 · | |D | |𝑘 =

Dd(D)+1
by Theorem 48.2. Therefore, by Theorem 48 we have

that TDU𝑐 · | |D | |𝑘 rewrites by the shallow cut-elimination strategy

to a cut-free hyp-free derivation. □

The following relation between the size of TDU𝑛 and the cosize

of D holds.

Proposition 69. Let D ∈ wrPLL∞
2
. Then

|TDU𝑛 | ∈ O(𝑛d(D)+1 · | |D||d(D)+1) .

Proof. Let𝔖𝑖 = D𝜈𝑖 with 𝜈𝑖 ∈ border(D). If d(D) = 0, then

|TDU𝑛 | = |D| = | |D||. If d(D) = 𝑑+1, then |TDU𝑛 | B |base(D)|+∑𝑘
𝑖=1

∑𝑛
𝑗=0 |T𝔖𝑖 ( 𝑗)U𝑛 | by definition. By the induction hypothesis

|T𝔖𝑖 ( 𝑗)U𝑛 | ∈ O(𝑛𝑑 · | |𝔖𝑖 ( 𝑗) | |𝑑 ), hence |T𝔖𝑖 ( 𝑗)U𝑛 | ∈ O(𝑛𝑑 · | |D||𝑑 ).
Since 𝑘 ≤ ||D||, then we have |TDU𝑛 | ∈ O(| |D|| + 𝑛 · | |D|| · 𝑛𝑑 ·
| |D||𝑑 ), and we conclude that |TDU𝑛 | ∈ O(𝑛𝑑+1 · | |D||𝑑+1). □

Theorem 51. [Soundness] Let 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗:
(1) If 𝑓 is representable in wrPLL∞

2
then 𝑓 ∈ FP/poly;

(2) If 𝑓 is representable in rPLL∞
2
then 𝑓 ∈ FP.

Proof. We only show the case where 𝑓 is unary for the sake

of simplicity. Let 𝑓 ∈ wrPLL∞
2
represent 𝑓 , and let us consider the

following coderivation, with 𝑠 = 𝑏1, . . . , 𝑏𝑛 ∈ {0, 1}∗:

D𝑓 (𝑠 ) B

𝑓

S[ ] ⊸ S

𝑠

S[ ]
⊸𝑒

S

By Lemma 50 there are D0,D1, . . . ,D𝑚 such that:

TD𝑓 (𝑠 )U𝑐 · | |D𝑓 (𝑠 ) | |𝑘 = D0 →cut D1 →cut . . . →cut D𝑚 = 𝑓 (𝑠)

for some constant 𝑐 > 0, and for some 𝑘 > 0 depending solely

on d(D𝑓 (𝑠 ) ) = d(𝑓 ) (since d(𝑠) = 0). In particular, | |D𝑓 (𝑠 ) | | ∈
O(| |𝑠 | |) = O(|𝑠 |) = O(|𝑠 |), where |𝑠 | is the size of the string 𝑠 . So,
we have:

TD𝑓 (𝑠 )U𝑐 · |𝑠 |𝑘 = D0 →cut D1 →cut . . . →cut D𝑚 = 𝑓 (𝑠)
for some constant 𝑐 > 0 and some 𝑘 > 0 depending solely on d(𝑓 ).
Moreover:

• By Proposition 69 we have

|TD𝑓 (𝑠 )U𝑐 · |𝑠 |𝑘 | ∈ O(|𝑠 |𝑘 ·d(D𝑓 (𝑠 ) )+1 · | |D𝑓 (𝑠 ) | |d(D𝑓 (𝑠 ) )+1)
= O(|𝑠 |𝑘 ·d(D𝑓 )+1 · |𝑠 |d(D𝑓 )+1)
= O(|𝑠 |𝑘 ·d(𝑓 )+1 · |𝑠 |d(𝑓 )+1) = O(|𝑠 |ℎ)



Non-wellfounded parsimonious proofs and non-uniform complexity Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

for some ℎ > 0 depending solely on d(𝑓 ).
• By Proposition 27, we have𝑚 ∈ O(|𝑠 |3ℎ) and |D𝑖 | ∈ O(|𝑠 |3ℎ).

This means that we can construct a polysize family of circuits C =

(𝐶𝑛)𝑛≥0 such that, for any 𝑛 ≥ 0, on input 𝑠 = 𝑏1, . . . , 𝑏𝑛 ∈ {0, 1}∗,
𝐶𝑛 (𝑠) evaluates D𝑓 (𝑠 ) to 𝑓 (𝑠) and returns 𝑓 (𝑠). Therefore, 𝑓 ∈
FP/poly. Suppose now that 𝑓 is representable in rPLL∞

2
. This means

that 𝑓 is regular, and so the function 𝑛 ↦→ 𝐶𝑛 can be constructed

uniformly by a polytime Turing machine. Therefore, 𝑓 ∈ FP. □

D PROOF OF SECTION 6
D.1 Proof of Proposition 54
We start with a structural property of the type systems that is

straightforward consequence of the linearity restrictions introduced

by the essential types.

Proposition 70. If D : Γ ⊢ 𝑀 : !𝜎 then Γ = !Γ′ and D is obtained
from a typing derivation D′ by one application of f!p, followed by a
series of applications of ?w and ?b.

Proof. Straightforward, by induction on D. □

We now introduce substitution properties for both types and

typable terms.

Lemma 71. If Γ ⊢ 𝑀 : 𝜎 then Γ [ ®𝐶/ ®𝑋 ] ⊢ 𝑀 : 𝜎 [ ®𝐶/ ®𝑋 ] for every
®𝐶 = 𝐶1, . . . ,𝐶𝑛 and ®𝑋 = 𝑋1, . . . , 𝑋𝑛 .

Lemma 72 (Substitution). If D1 : Γ, 𝑥 : 𝜏 ⊢ 𝑀 : 𝜎 and D2 : Δ ⊢ 𝑁 :

𝜏 then there is a typing derivation 𝑆 (D1,D2) of Γ,Δ ⊢ 𝑀 [𝑁 /𝑥] : 𝜎 .

Proof. The proof is by induction on the lexicographic order

over (ℎ(D1), 𝑠 (𝜏)), where ℎ(D1) is the height of D1 and 𝑠 (𝜏) is
the number of symbols of the formula 𝜏 . The only interesting case

is when D1 is obtained from D′
1
by applying a ?b rule, where

𝑀 = 𝑀′ [𝑥/𝑦, 𝑥/𝑧], 𝜏 = !𝜏 ′, and D′
1
is

D′
1

Γ, 𝑦 : 𝜏 ′, 𝑧 : !𝜏 ′ ⊢ 𝑀′
: 𝜎

?b
Γ, 𝑥 : !𝜏 ′ ⊢ 𝑀′ [𝑥/𝑦, 𝑥/𝑧] : 𝜎

By Proposition 70 we have that Δ = !Σ and

D2 B
D′

2

!Σ′ ⊢ 𝑁 ′
: !𝜏 ′

?b,?w
!Σ ⊢ 𝑁 : !𝜏 ′

D′
2
B

D′′
2

Σ′ ⊢ 𝑁 ′
: 𝜏 ′

f!p
!Σ′ ⊢ 𝑁 ′

: !𝜏 ′

Since ℎ(D′
1
) < ℎ(D1) then (ℎ(D′

1
), 𝑠 (!𝜏)) < (ℎ(D1), 𝑠 (!𝜏)) and

by induction hypothesis we have a typing derivation 𝑆 (D′
1
,D2)

of Γ, !Σ′ ⊢ 𝑀′ [𝑁 ′/𝑧] : 𝜎 . Moreover, since 𝑠 (𝜏) < 𝑠 (!𝜏) then

(ℎ(𝑆 (D′
1
,D2)), 𝑠 (𝜏)) < (ℎ(D1), 𝑠 (!𝜏)), and by applying the induc-

tion hypothesis again there is a typing derivation 𝑆 (𝑆 (D′
1
,D2),D′

2
)

of Γ, Σ′, !Σ′ ⊢ 𝑀′ [𝑁 ′/𝑧, 𝑁 ′/𝑦] : 𝜎 . We conclude by applying a series

of ?b rules and ?w rules. □

Proposition 54 (Subject reduction). LetD : Γ ⊢ 𝑀 : 𝜎 . If𝑀 →𝛽 𝑁

then there is D′ such that D′
: Γ ⊢ 𝑁 : 𝜎 .

Proof. It suffices to check that the reduction rules given in Defi-

nition 52 preserve types.We consider themost interesting reduction

rule, i.e.,𝑀 = (𝜆𝑥 .𝑃)𝑄 →𝛽 𝑃 [𝑄/𝑥] = 𝑁 . By inspecting the typing

rules in Figure 13, D must have the following structure:

D1

Σ′ ⊢ 𝜆𝑥.𝑃 ′ : 𝜏 ⊸ 𝐵′
D2

Δ′ ⊢ 𝑄 ′
: 𝜏

⊸𝑒

Σ′,Δ′ ⊢ (𝜆𝑥.𝑃 ′)𝑄 ′
: 𝐵′

𝛿
...

Σ,Δ ⊢ (𝜆𝑥 .𝑃)𝑄 : 𝜎

where:

• Γ = Σ,Δ and 𝜎 = !
𝑛. . .!∀ ®𝑋 .𝐵, for some 𝑛 ≥ 0, ®𝑋 , and 𝐵.

• 𝛿 is a sequence of rules in {?w, ?b, f!p,∀𝑖 ,∀𝑒 },
• 𝐵 = 𝐵′ [ ®𝐶/®𝑌 ], for some ®𝐶 and ®𝑌 not free in Σ′,Δ′

• 𝑃 ′ [®𝑥/®𝑦] = 𝑃 and 𝑄 ′ [®𝑥/®𝑦] = 𝑄 , for some ®𝑥, ®𝑦.
By a similar reasoning, D1 has the following shape:

D′
1

Σ′′, 𝑥 : 𝜏 ′ ⊢ 𝑃 ′′ : 𝐵′′
⊸𝑖

Σ′′ ⊢ 𝜆𝑥.𝑃 ′′ : 𝜏 ′ ⊸ 𝐵′′

𝜀
...

Σ′ ⊢ 𝜆𝑥 .𝑃 ′ : 𝜏 ⊸ 𝐵′

where:

• 𝜀 is sequences of typing rules in {?w, ?b,∀𝑖 ,∀𝑒 },
• 𝐵′ = 𝐵′′ [ ®𝐷/ ®𝑍 ] and 𝜏 = 𝜏 ′ [ ®𝐷/ ®𝑍 ], for some ®𝐷 and ®𝑍 not free

in Σ′′

• 𝑃 ′′ [®𝑧/ ®𝑤] = 𝑃 ′ for some ®𝑧, ®𝑤 .

Since 𝜏 = 𝜏 ′ [ ®𝐷/ ®𝑍 ], 𝐵′ = 𝐵′′ [ ®𝐷/ ®𝑍 ] and ®𝑍 do not occur free in Σ′′,
by Lemma 71 there is a typing derivation D′′

1
of Σ′′, 𝑥 : 𝜏 ⊢ 𝑃 ′′ : 𝐵′.

By Lemma 72 there is a typing derivation 𝑆 (D′′
1
,D2) of Δ′, Σ′′ ⊢

𝑃 ′′ [𝑄 ′/𝑥] : 𝐵′. Finally, by applying the sequences of rules 𝛿 and 𝜀

we obtain:

𝑆 (D′′
1
,D2 )

Δ′, Σ′′ ⊢ 𝑃 ′′ [𝑄 ′/𝑥] : 𝐵′
...

Δ′, Σ′ ⊢ 𝑃 ′ [𝑄 ′/𝑥] : 𝐵′
...

Σ,Δ ⊢ 𝑃 [𝑄/𝑥] : 𝜎
□

D.2 Definability and data types in PTA2 and
nuPTA2

Polymorphic type systems based on linear logic typically encode

inductive datatypes by universally quantified types (see, e.g., [28]).

Examples are natural numbers, defined by N B !(𝑋 ⊸ 𝑋 ) ⊸
𝑋 ⊸ 𝑋 . Because of linearity restrictions on polymorphism, how-

ever, parsimonious logic cannot freely apply instantiation when

encoding functions over inductive datatypes. As a consequence,
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its computational strength relative to standard notions of repre-

sentability [6] would be fairly poor. To circumvent this technical

issue, following previous works on parsimonious logic [39, 40],

we adopt a parametric notion of representability, where natural

numbers are defined by types of the form !(𝐴 ⊸ 𝐴) ⊸ 𝐴 ⊸ 𝐴,

i.e., by instantiations of N.
To this end, we generalise the usual notion of lambda definabil-

ity [6] to different kinds of input data:

Definition 73 (Representability [28]). Let 𝑓 : I1 × . . . × I𝑛 → O be

a total function and let the elements 𝑜 ∈ O and 𝑖 𝑗 ∈ I𝑗 for 0 ≤ 𝑗 ≤ 𝑛

be encoded by terms 𝑜 and 𝑖 𝑗 such that ⊢ 𝑜 : O and ⊢ 𝑖 𝑗 : I𝑗 . Then, 𝑓
is representable in nuPTA2 (resp. PTA2) if there is a term 𝑓 ∈ Λstream

such that ⊢ 𝑓 : I1 ⊸ . . . ⊸ I𝑛 ⊸ O in nuPTA2 (resp. PTA2) and

𝑓 𝑖1 . . . 𝑖𝑛 = 𝑜 ⇐⇒ 𝑓 𝑖1 . . . 𝑖𝑛 →∗
𝛽
𝑜

We adopt the usual notational convention𝑀𝑛 𝑁 (𝑛 ≥ 0) defined

inductively as 𝑀0 (𝑁 ) B 𝑁 and 𝑀𝑛+1 (𝑁 ) B 𝑀 (𝑀𝑛 (𝑁 )). We

also set 𝑀 ◦ 𝑁 B 𝜆𝑧.𝑀 (𝑁𝑧), which generalises to the 𝑛-ary case

𝑀1 ◦ . . . ◦𝑀𝑛 B 𝜆𝑧.𝑀1 (𝑀2 (. . . (𝑀𝑛𝑧))). Finally, the 𝑛-ary tensor

product (with 𝑛 ≥ 3) can be defined from the binary one by setting

𝑀1 ⊗ . . . ⊗ 𝑀𝑛 B (𝑀1 ⊗ . . . ⊗ 𝑀𝑛−1) ⊗ 𝑀𝑛 , 𝜎1 ⊗ . . . ⊗ 𝜎𝑛 B
(𝜎1 ⊗ . . . ⊗ 𝜎𝑛−1) ⊗ 𝜎𝑛 , and let 𝑥1 ⊗ . . . ⊗ 𝑥𝑛 = 𝑧 in𝑀 B let 𝑦 ⊗
𝑥𝑛 = 𝑧 in (let 𝑥1 ⊗ . . . ⊗ 𝑥𝑛−1 = 𝑦 in𝑀). We also use the shorthand

notation 𝜎𝑛 B 𝜎 ⊗ 𝑛. . . ⊗ 𝜎 .

In what follows we encode some relevant data types and their

basic operations in nuPTA2 (and PTA2).

Definition 74 (Booleans). Booleans 0, 1 and basic Boolean op-

erations are encoded as in Figure 14. The can be typed by B B
∀𝑋 .(𝑋 ⊗ 𝑋 ) ⊸ (𝑋 ⊗ 𝑋 ).

The following is a straightforward consequence of the encodings

in Figure 14.

Proposition 75 (Functional completeness). Every Boolean function
𝑓 : {0, 1}𝑛 → {0, 1}𝑚 with 𝑛 ≥ 0,𝑚 > 0 can be represented by a
term 𝑓 ∈ Λstream such that ⊢ 𝑓 : B𝑛 ⊸ B𝑚 .

Notice that Proposition 75 crucially relies on the terms CB and

WB, which duplicate and erase Booleans in a purely linear fashion.

Following [37], we can generalise linear erasure of data to a fairly

large class of types.

Definition 76 (Π1 and 𝑒Π1 types [37]). Let 𝐴 be a type build from

1, ⊗,⊸,∀. We say that 𝐴 is 𝑒Π1 if every ∀-type occurring in it is

inhabited.

Proposition 77 (Linear erasure [15, 37]). For any closed type 𝐴 in
𝑒Π1 there is a termW𝐴 in a term that inhabits 𝐴 ⊸ 1.

Proposition 78 (Conditional). For any 𝐴 in 𝑒Π1, the following rule
is derivable:

⊢ 𝑅 : 𝐴 ⊢ 𝐿 : 𝐴
cond

𝑥 : B ⊢ if 𝑥 then𝑅 else𝐿 : 𝐴

where if 𝑥 then𝑅 else𝐿 satisfies the following reductions:

if 1 then𝑅 else𝐿 →∗
𝛽
𝑅

if 0 then𝑅 else𝐿 →∗
𝛽
𝐿

Proof. We set if 𝑥 then𝑅 else𝐿 B 𝜋2
1
(𝑥𝑅𝐿), where 𝜋2

1
is as

in Figure 14. □

Definition 79 (Streams of Booleans). A stream (of Booleans) 𝛼 is

encoded by a term M such that M(𝑖) B 𝛼 (𝑖). We write 𝛼 for the

encoding of 𝛼 . Streams can be typed by Stream B 𝜔B.

Definition 80 (Natural numbers and Boolean strings). The encod-

ing of Boolean strings and natural numbers is as follows, for any

𝑛 ≥ 0 and 𝑠 = 𝑏1 · · ·𝑏𝑛 ∈ {0, 1}∗:
𝑛 B 𝜆𝑓 .𝜆𝑧.𝑓 𝑛𝑧

𝑠 B 𝜆𝑓 .𝜆𝑧.𝑓 𝑏𝑛 (𝑓 𝑏𝑛−1 (. . . (𝑓 𝑏1 𝑧) . . .))
For any type 𝐴, natural numbers and Boolean strings can be typed,

respectively, by

N[𝐴] B !(𝐴 ⊸ 𝐴) ⊸ 𝐴 ⊸ 𝐴

S[𝐴] B !(B ⊸ 𝐴 ⊸ 𝐴) ⊸ 𝐴 ⊸ 𝐴

With N[] we denote N[𝐴] for some 𝐴, and similarly for S[].
We need to encode the function that, when applied to a Boolean

string, returns its length:

Proposition 81 (Length). There exists a term length of type S[𝐴] ⊸
N[𝐴] satisfying the following reduction, for all 𝑠 = 𝑏1 · · ·𝑏𝑛 ∈
{0, 1}∗:

length 𝑠 →∗
𝛽
𝑛

Proof. We set length B 𝜆𝑠.𝜆𝑓 .𝑠 (𝜆𝑥.𝜆𝑦.let I = WB 𝑥 in 𝑓 𝑦),
whereWB is as in Figure 14. □

The following proposition shows that encodings of natural num-

bers and Boolean strings can be used as iterators.

Proposition 82 (Iteration). For any𝐴, the following rule is derivable

!Γ ⊢ 𝑆 : !(𝐴 ⊸ 𝐴) Δ ⊢ 𝐵 : 𝐴
iterN

!Γ,Δ, 𝑛 : N[𝐴] ⊢ iterN 𝑛 𝑆 𝐵 : 𝐴

where iterN 𝑛 𝑆 𝐵 satisfies the reduction

iterN 𝑛 𝑆 𝐵 →∗
𝛽

𝑆𝑛𝐵

Similarly, the following rule is derivable:

!Γ ⊢ 𝑆0 : !(𝐴 ⊸ 𝐴) !Γ ⊢ 𝑆1 : !(𝐴 ⊸ 𝐴) Δ ⊢ 𝐵 : 𝐴
iterS

‼Γ,Δ, 𝑛 : S[𝐴] ⊢ iterS 𝑛 𝑆0 𝑆1 : 𝐴
where iterS 𝑛 𝑆0 𝑆1 satisfies the reduction

iterN 𝑏1 · · ·𝑏𝑛 𝑆0 𝑆1𝐵 →∗
𝛽

𝑆𝑏𝑛 . . . 𝑆𝑏1𝐵

Proof. It suffices to set, respectively, iterNB 𝜆 𝑛.𝜆𝑠.𝜆𝑏.𝑛𝑠𝑏 and

iterSB 𝜆 𝑠𝜆𝑡 .𝜆𝑢.𝜆𝑏.𝑠𝑡𝑢𝑏. □

Our next goal is to show that any polynomial over natural num-

bers can be encoded in nuPTA2 (and PTA2). The encoding of poly-
nomials requires nesting types, so we introduce a notation for

denoting iterated nesting in a succinct way.

Definition 83 (Nesting). Let 𝐴 be a type. We define N𝐴 [𝑑] and
S𝐴 [𝑑] by induction on 𝑑 ≥ 0:

N𝐴 [0] B 𝐴

N𝐴 [𝑑 + 1] B N𝐴 [N𝐴 [𝑑]]
S𝐴 [0] B 𝐴

S𝐴 [𝑑 + 1] B S𝐴 [S𝐴 [𝑑]]
If 𝐴 is clear from the context, we simply write N[𝑑] and S[𝑑].
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1 B 𝜆𝑥.𝜆𝑦.𝑥 ⊗ 𝑦 : B
0 B 𝜆𝑥.𝜆𝑦.𝑦 ⊗ 𝑥 : B

WB B 𝜆𝑏.let 𝑥1 ⊗ 𝑥2 = 𝑏 (I ⊗ I) in let I = 𝑥2 in 𝑥1 : B ⊸ 1
𝜋2
1
B 𝜆𝑥.let 𝑥1 ⊗ 𝑥2 = 𝑥 in let I = WB 𝑥2 in 𝑥1 : B ⊗ B ⊸ B

CB B 𝜆𝑏.𝜋2
1
(𝑏 (1 ⊗ 1) ⊗ (0 ⊗ 0)) : B ⊸ B ⊗ B

¬ B 𝜆𝑏.𝜆𝑥 .𝜆𝑦.𝑏 (𝑦 ⊗ 𝑥) : B ⊸ B
∨ B 𝜆𝑏1 .𝜆𝑏2 .𝜋

2

1
(𝑏10𝑏2) : B ⊗ B ⊸ B

Figure 14: Encoding of basic operations on Booleans.

Proposition 84. For any 𝑑 ≥ 0, there exist a term down𝑑N of type
N[𝑑 + 1] ⊸ N[𝑑] and a term down𝑑S of type S[𝑑 + 1] ⊸ S[𝑑]
satisfying the following reductions:

down𝑑N 𝑛 →∗
𝛽

𝑛

down𝑑S 𝑛 →∗
𝛽

𝑛

Proof. Straightforward, by setting down𝑑N B 𝜆𝑥 .iterN 𝑥 succ 0
and down𝑑S B 𝜆𝑥 .iterN 𝑥 ( 𝜆𝑏.𝜆𝑠.𝜆𝑐.𝜆𝑧.𝑐𝑏 (𝑠𝑐𝑧))𝜖 . □

Definition 85 (Successor, addition, multiplication). Successor, ad-

dition and multiplication can be represented by the following terms:

succ B 𝜆𝑛.𝜆𝑓 .𝜆𝑧.𝑛(𝑓 ) (𝑓 𝑧)
add B 𝜆𝑛.𝜆𝑚.iterN 𝑛 ( succ)𝑚
mult B 𝜆𝑛.𝜆𝑚.iterN𝑚 (𝜆𝑦.add𝑛𝑦) 0

they are typable as follows:

⊢ succ : N[𝑖] ⊸ N[𝑖]
⊢ add : N[𝑖 + 1] ⊸ N[𝑖] ⊸ N[𝑖]
⊢ mult : !N[𝑖 + 1] ⊸ N[𝑖 + 1] ⊸ N[𝑖]

Theorem 86 (Polynomial completeness). Let 𝑝 (𝑥) : N→ N be
a polynomial with degree 𝛿 (𝑝) > 0. Then there is a term 𝑝 representing
𝑝 such that, for any 𝑖 ≥ 0:

𝑥 : !
𝛿 (𝑝 )−1N[𝛿 (𝑝) + 𝑖] ⊢ 𝑝 : N[𝑖]

Proof. For the sake of readability, we will avoid writing the

index 𝑖 in typing judgements. Thus, with N[𝑛] we mean N[𝑛 + 𝑖].
Consider a polynomial 𝑝 (𝑥) : N → N in Horner normal form,

i.e., 𝑝 (𝑥) = 𝑎0 + 𝑥 (𝑎1 + 𝑥 (. . . (𝑎𝑛−1 + 𝑥𝑎𝑛) . . .)). We actually show

something stronger:

𝑥0 : N[1], 𝑥1 : !N[2], . . . , 𝑥𝑛−1 : !𝑛−1N[𝑛] ⊢ 𝑝 : N[0] (4)

where 𝑝 = 𝑎0 + 𝑥0 (𝑎1 + 𝑥1 (. . . (𝑎𝑛−1 + 𝑥𝑛−1𝑎𝑛) . . .)). The proof is
by induction on 𝛿 (𝑝) = 𝑛. If 𝛿 (𝑝) = 1 then 𝑝 = 𝑎0 + 𝑥0𝑎1, and we

simply set 𝑝 B add𝑎0 (mult𝑎1 𝑥0). If 𝛿 (𝑝) > 1 then 𝑝 = 𝑎0 + 𝑥0𝑞

with 𝑞 B 𝑎1 + 𝑥1 (𝑎2 + 𝑥2 (. . . (𝑎𝑛−1 + 𝑥𝑛−1𝑎𝑛) . . .)). By induction

hypothesis on 𝑞 we have

𝑥1 : N[1], 𝑥2 : !N[2], . . . , 𝑥𝑛−1 : !𝑛−2N[𝑛 − 1] ⊢ 𝑞 : N[0]

By repeatedly applying down𝑘N for appropriate 𝑘 we obtain a term

𝑀 such that:

𝑥1 : N[2], 𝑥2 : !N[3], . . . , 𝑥𝑛−1 : !𝑛−2N[𝑛] ⊢ 𝑀 : N[0]

We set 𝑝 B add𝑎0 (mult𝑀 𝑥0), which is typable as:

𝑥0 : N[1], 𝑥1 : !N[2], . . . , 𝑥𝑛−1 : !𝑛−1N[𝑛] ⊢ 𝑝 : N[0]

and we can conclude since 𝛿 (𝑞) = 𝛿 (𝑝) − 1.

Now, to prove the theorem it suffices to repeatedly apply down𝑘N
for appropriate 𝑘 to the typable term in Equation (4) in order to get

a term 𝑁 that represents 𝑝 and typable as

𝑥0 : N[𝑛], 𝑥1 : !N[𝑛], . . . , 𝑥𝑛−1 : !𝑛−1N[𝑛] ⊢ 𝑝 : N[0]

By applying a series of ?b we obtain a term 𝑝 representing the

polynomial 𝑝 and such that 𝑥 : !
𝛿 (𝑝 )−1N[𝛿 (𝑝)] ⊢ 𝑝 : N[0]. □

D.3 Encoding polytime Turing machines with
polynomial advice in nuPTA2

In this subsection we show how to encode a Turing machine work-

ing in polynomial time with access to advice in nuPTA2, following
essentially [28, 37].

W.l.o.g., we will assume that the alphabet of the machine is

composed by the two symbols 1 and 07, and that final states are

divided into accepting and rejecting.

A configuration 𝐶 of the machine will be represented by a term

of the following form:

𝐶 B 𝜆𝑐.(𝑐𝑏𝑙
0
◦ . . . ◦ 𝑐𝑏𝑙𝑛) ⊗ (𝑐𝑏𝑟

0
◦ . . . ◦ 𝑐𝑏𝑟𝑚) ⊗ 𝑞 ⊗ 𝛼 (5)

where:

• 𝑏𝑟
0
∈ {0, 1} is the scanned symbol

• 𝑏𝑟
1
· · ·𝑏𝑟𝑚 ∈ {0, 1} are the symbols of the tape to the right of

the scanned symbol

• 𝑏𝑙𝑛 · · ·𝑏𝑙0 ∈ {0, 1} are the symbols of the tape to the left of the

scanned symbol (notice that we encode this tuple in reverse

order)

• 𝑞 = 𝑏1 · · ·𝑏𝑘 ∈ {0, 1} is the (encoding of the) current state

of the machine.

• 𝛼 represents the advice of the machine as a single Boolean

stream (see Proposition 6).

Terms as in Equation (5) have the following type:

TM B ∀𝑋 .!(B ⊸ 𝑋 ⊸ 𝑋 ) ⊸ ((𝑋 ⊸ 𝑋 )2 ⊗ B𝑘 ⊗ Stream)

where Stream is as in Definition 79.

The initial configuration 𝐶0 describes a machine with tape filled

by blank symbols (here 00s) the head at the beginning of the tape

7
We can clearly encode the alphabet Σ = {0, 1,⊔} within the alphabet {0, 1}, by
setting ⊔ B 00, 0 B 01 and 1 B 11.
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and in the initial state 𝑞0. To render the construction of the initial

configuration in nuPTA2, we define the following term:

init B 𝜆𝑛.𝜆𝑐.(𝜆𝑧.𝑧) ⊗ 𝑛(𝜆𝑧′ .𝑐0(𝑐0𝑧′)) ⊗ 𝑞0 ⊗ 𝛼 (6)

It takes the encoding of a natural number 𝑛 in input and returns

the term

𝐶0 B 𝜆𝑐.(𝜆𝑧.𝑧) ⊗ (𝑐0 ◦ 2𝑛. . . ◦ 𝑐0) ⊗ 𝑞 ⊗ 𝛼

representing the first 𝑛 blank symbols of the tape. Terms as in Equa-

tion (6) have the type below

N[𝑑] ⊸ Stream ⊸ TM

for all 𝑑 ≥ 0.

Following [28, 37], in order to show that Turing machine transi-

tions are representable we consider two distinct phases:

• A decomposition phase, where the encoding of the configura-

tion 𝐶 is decomposed to extract the symbols 𝑏𝑙
0
, 𝑏𝑟

0
.

• A composition phase, where the components of 𝐶 are assem-

bled back to get the configuration of the machine after the

transition.

The decomposition of a configuration has type ID:

ID B ∀𝑋 .!(B ⊸ 𝐴[𝑋 ]) ⊸ (𝐴[𝑋 ]2 ⊗ 𝐵 [𝑋 ]2 ⊗ B𝑘 ⊗ Stream)

where 𝐴[𝑋 ] B 𝑋 ⊸ 𝑋 and 𝐵 [𝑋 ] B (B ⊸ 𝐴[𝑋 ]) ⊗ B.
The decomposition phase is described by the term dec of type

TM ⊸ ID defined as follows:

dec B 𝜆𝑚.𝜆𝑐.let 𝑙 ⊗ 𝑟 ⊗ 𝑞 ⊗ 𝛼 =𝑚 (𝐹 [𝑐]) in

(let 𝑠𝑙 ⊗ 𝑐𝑙 ⊗ 𝑏𝑙
0
= 𝑙 (I ⊗ (𝜆𝑥 .let I = WB 𝑥 in I) ⊗ 0) in

(let 𝑠𝑟 ⊗ 𝑐𝑟 ⊗ 𝑏𝑟
0
= 𝑟 (I ⊗ (𝜆𝑥.let I = WB 𝑥 in I) ⊗ 0) in

𝑠𝑙 ⊗ 𝑠𝑟 ⊗ 𝑐𝑙 ⊗ ⊗𝑏𝑙
0
⊗ 𝑐𝑟 ⊗ 𝑏𝑟

0
⊗ 𝑞 ⊗ 𝛼)) (7)

where WB is the eraser for B given by Proposition 77, and 𝐹 [𝑥] B
𝜆𝑏.𝜆𝑧.let 𝑔 ⊗ ℎ ⊗ 𝑖 = 𝑧 in (ℎ 𝑖 ◦ 𝑔) ⊗ 𝑥 ⊗ 𝑏, which is typable as:

𝑥 : B ⊸ 𝐴[𝑋 ] ⊢ 𝐹 [𝑥] : 𝐵 [(𝐴[𝑋 ] ⊗ 𝐵 [𝑋 ])/𝑋 ]

The term dec in Equation (7) satisfies the reduction in Figure 15.

Analogously, the composition phase is described by the term

comp of type ID ⊸ TM defined as follows:

comp B 𝜆𝑠.𝜆𝑐.let 𝑙 ⊗ 𝑟 ⊗ 𝑐𝑙 ⊗ 𝑏𝑙 ⊗ 𝑐𝑟 ⊗ 𝑏𝑟 ⊗ 𝑞 ⊗ 𝛼 = 𝑠 𝑐 in

let ℎ ⊗ 𝑡 = pop𝛼 in (let 𝑏′ ⊗ 𝑞′ ⊗𝑚 = 𝛿 (𝑏𝑟 ⊗ ℎ ⊗ 𝑞) in
((if𝑚 then𝑅 else𝐿)𝑏′𝑞′ (𝑙 ⊗ 𝑟 ⊗ 𝑐𝑙 ⊗ 𝑏𝑙 ⊗ 𝑐𝑟 ) ⊗ 𝑡) (8)

where if𝑚 then𝑅 else𝐿 is defined as in Proposition 78, and

𝑅 B 𝜆𝑏′ .𝜆𝑞′ .𝜆𝑠 . let 𝑙 ⊗ 𝑟 ⊗ 𝑐𝑙 ⊗ 𝑏𝑙 ⊗ 𝑐𝑟 = 𝑠 in

(𝑐𝑟𝑏′ ◦ 𝑐𝑙𝑏𝑙 ◦ 𝑙) ⊗ 𝑟 ⊗ 𝑞′

𝐿 B 𝜆𝑏′ .𝜆𝑞′ .𝜆𝑠 . let 𝑙 ⊗ 𝑟 ⊗ 𝑐𝑙 ⊗ 𝑏𝑙 ⊗ 𝑐𝑟 = 𝑠 in

𝑙 ⊗ (𝑐𝑙𝑏𝑙 ◦ 𝑐𝑟𝑏′ ◦ 𝑟 ) ⊗ 𝑞′

The term comp in Equation (8) satisfies the reduction in Figure 15,

where 𝛿 : {0, 1}𝑘+2 → {0, 1}𝑘+3 is the transition function of the

Turing machine, which takes as an extra input the first bit of the

current advice stack, i.e., the head of the stream 𝛼 .

Remark 87. Notice that in comp the variable𝑚 has type B and is

applied to the terms 𝑅 and 𝐿. This requires to apply to the variable

𝑚 the rule ∀𝑒 , which instantiates the type variable 𝑋 with the !-free

type B ⊸ B𝑘 ⊸ ((𝑋 ⊸ 𝑋 )2 ⊗ (B ⊸ 𝑋 ⊸ 𝑋 ) ⊗ B ⊗ (B ⊸ 𝑋 ⊸
𝑋 )) ⊸ (𝑋 ⊸ 𝑋 )2 ⊗ B𝑘 .

By combining the above terms we obtain the encoding of the

Turing machine transition step:

Tr B comp ◦ dec (9)

with type TM ⊸ TM.

We nowneed a term that encodes the initialisation of themachine

with an input Boolean string. This is given by the term In of type

S[TM] ⊸ TM ⊸ TM defined as follows:

In B 𝜆𝑠.𝜆𝑚.𝑠 (𝜆𝑏.(𝑇𝑏) ◦ dec)𝑚 (10)

where dec is defined as in Equation (7) and

𝑇 B 𝜆𝑏.𝜆𝑠.𝜆𝑐. let 𝑙 ⊗ 𝑟 ⊗ 𝑐𝑙 ⊗ 𝑏𝑙 ⊗ 𝑐𝑟 ⊗ 𝑏𝑟 ⊗ 𝑞 ⊗ 𝛼 = 𝑠𝑐 in

(let I = WB 𝑏𝑟 in (𝑅𝑏𝑞(𝑙 ⊗ 𝑟 ⊗ 𝑐𝑙 ⊗ 𝑏𝑙 ⊗ 𝑐𝑟 )) ⊗ 𝛼)

𝑅 B 𝜆𝑏′ .𝜆𝑞′ .𝜆𝑠. let 𝑙 ⊗ 𝑟 ⊗ 𝑐𝑙 ⊗ 𝑏𝑙 ⊗ 𝑐𝑟 = 𝑠 in

((𝑐𝑟𝑏′ ◦ 𝑐𝑙𝑏𝑙 ◦ 𝑙) ⊗ 𝑟 ⊗ 𝑞′)

Intuitively, the term In defines a function that, when supplied with

a Boolean string 𝑠 and a Turing machine 𝑀 , writes 𝑠 as input on

the tape of𝑀 .

Finally, we need a term that extracts the output string from the

final configuration. This is given by the term Ext of type TM ⊸ S,
defined as follows:

Ext B 𝜆𝑠.𝜆𝑐. let 𝑙 ⊗ 𝑟 ⊗ 𝑞 ⊗ 𝛼 = 𝑠𝑐 in

let I = WB𝑘+1 (𝑞 ⊗ (disc𝛼)) in 𝑙 ◦ 𝑟
(11)

where disc is the eraser for streams (see Figure 13) and WB𝑘+1 is

the eraser for B𝑘+1 given by Proposition 77.

We can now prove our fundamental theorem:

Theorem 56. Let 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗:
(1) If 𝑓 ∈ FP/poly then 𝑓 is representable in nuPTA2;
(2) If 𝑓 ∈ FP then 𝑓 is representable in PTA2.

Proof. We only show the case where 𝑓 is a unary function

for the sake of simplicity. Let us prove Item 1. If 𝑓 ∈ FP/poly
then, 𝑓 ∈ FP(R) by Proposition 6, so there is a polynomial Turing

machine computing 𝑓 that performs polynomially many queries

to bits of a Boolean stream 𝛼 . Let 𝑝 (𝑥) and 𝑞(𝑥) be polynomials

bounding, respectively, the time and space of the Turing machine,

and let 𝛿 (𝑝) =𝑚 and 𝛿 (𝑞) = 𝑙 be their degrees. By Theorem 86 we

obtain 𝑝 and 𝑞 typable as:

𝑦 : !
𝑚−1N[𝑚 + 1] ⊢ 𝑝 : N[1]

𝑧 : !
𝑙−1N[𝑙 + 1] ⊢ 𝑞 : N[1]

where N[𝑖] is shorthand notation for NTM [𝑖] (see Definition 83).

By applying Lemma 72 and Proposition 81, we have:

𝑠′ : !𝑚−1S[𝑚 + 1] ⊢ 𝑃 : N[1]
𝑠′′ : !𝑙−1S[𝑙 + 1] ⊢ 𝑄 : N[1]
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dec (𝜆𝑐.(𝑐𝑏𝑙
0
◦ . . . ◦ 𝑐𝑏𝑙𝑛) ⊗ (𝑐𝑏𝑟

0
◦ . . . ◦ 𝑐𝑏𝑟𝑚) ⊗ 𝑞 ⊗ 𝛼) →∗

𝛽
𝜆𝑐.(𝑐𝑏𝑙

1
◦ . . . ◦ 𝑐𝑏𝑙𝑛) ⊗ (𝑐𝑏𝑟

1
◦ . . . ◦ 𝑐𝑏𝑟𝑚) ⊗ 𝑐 ⊗ 𝑏𝑙

0
⊗ 𝑐 ⊗ 𝑏𝑟

0
⊗ 𝑞 ⊗ 𝛼

comp (𝜆𝑐.(𝑐𝑏𝑙
1
◦ . . . ◦ 𝑐𝑏𝑙𝑛) ⊗ (𝑐𝑏𝑟

1
◦ . . . ◦ 𝑐𝑏𝑟𝑚) ⊗ 𝑐 ⊗ 𝑏𝑙

0
⊗ 𝑐 ⊗ 𝑏𝑟

0
⊗ 𝑞 ⊗ 𝛼)

→∗
𝛽


𝜆𝑐.(𝑐𝑏′ ◦ 𝑐𝑏𝑙

0
◦ . . . ◦ 𝑐𝑏𝑙𝑛) ⊗ (𝑐𝑏𝑟

1
◦ . . . ◦ 𝑐𝑏𝑟𝑚) ⊗ 𝑞′ ⊗ 𝑡𝑙 (𝛼) if 𝛿 (𝑏𝑟

0
, ℎ𝑑 (𝛼), 𝑞) = (𝑏′, 𝑞′, Right)

𝜆𝑐.(𝑐𝑏𝑙
1
◦ . . . ◦ 𝑐𝑏𝑙𝑛) ⊗ (𝑐𝑏𝑙

0
◦ 𝑐𝑏′ ◦ 𝑐𝑏𝑟

1
◦ . . . ◦ 𝑐𝑏𝑟𝑚) ⊗ 𝑞′ ⊗ 𝑡𝑙 (𝛼) if 𝛿 (𝑏𝑟

0
, ℎ𝑑 (𝛼), 𝑞) = (𝑏′, 𝑞′, Left)

Figure 15: Reductions for dec and comp.

where 𝑃 B 𝑝 [length 𝑠′/𝑦] : and 𝑄 B 𝑞 [length 𝑠′′/𝑧]. On the other

hand, by applying again Lemma 72 and Equations (6) and (9) to (11):

𝑡 : S[1], 𝑝 : N[1], 𝑞 : N[1] ⊢ Ext((𝑝 Tr) (In 𝑡 (init𝑞 𝛼))) : S

By putting everything together we have:

𝑠′ : !𝑚−1S[𝑚 + 1], 𝑠′′ : !𝑙−1S[𝑙 + 1], 𝑡 : S[1] ⊢ 𝑁 : S

where 𝑁 B Ext((𝑃 Tr) (In 𝑡 (init𝑄 𝛼))). By repeatedly applying ?b
and down𝑘S for appropriate 𝑘 we obtain a term 𝑀 representing 𝑓

such that:

𝑠 : !max(𝑚,𝑙 )S[max(𝑚, 𝑙) + 1] ⊢ 𝑀 : S

By applying down1S we obtain

𝑥 : S[!max(𝑚,𝑙 )S[max(𝑚, 𝑙) + 1]] ⊢ 𝑀 [down1S 𝑥/𝑠] : S

We set 𝑓 B 𝑀 [down1S 𝑥/𝑠], so that 𝑥 : S[] ⊢ 𝑓 : S.
Point Item 2 follows directly from Item 1 by stripping away

streams from the above encoding. □

D.4 Proof of Theorem 57
Definition 88 (Translation). We define a translation (_)† from

nuPTA2 to nuPLL2 mapping typing derivations of nuPTA2 to deriva-
tions of nuPLL2 such that, when restricted to typing derivations of

PTA2, it returns derivations of PLL2:

• It maps types of nuPTA2 to formulas of nuPLL2 according
to the following inductive definition:

𝑋 † B 𝑋

1† B 1
(𝜎 ⊸ 𝐴)† B 𝜎† ⊸ 𝐴†

(∀𝑋 .𝐴)† B ∀𝑋 .𝐴†

(𝜎 ⊗ 𝜏)† B 𝜎† ⊗ 𝜏†

(!𝜎)† B !𝜎†

(𝜔𝜎)† B !𝜎†

we notice that 𝜎† [𝜏†/𝑋 ] = (𝜎 [𝜏/𝑋 ])†.
• It maps a context Γ = 𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛 to a sequent

Γ† = 𝜎
†
1
, . . . , 𝜎

†
𝑛 .

• It maps judgements Γ ⊢ 𝑀 : 𝜏 to sequents Γ†
⊥
, 𝜏†.

• It maps a typing rule to gadgets as in Figure 16 and Figure 17.

The two lemmas below represent stronger versions of Lemma 72

and Proposition 54, respectively.

Lemma 89. For any D1 : Γ ⊢ 𝑀 : 𝜎 and D2 : Δ ⊢ 𝑁 : 𝜏 there is
𝑆 (D1,D2) such that:(

D1

Δ ⊢ 𝑁 : 𝜏

)† (
D2

Γ, 𝑥 : 𝜏 ⊢ 𝑀 : 𝜎

)†
cut

Γ†
⊥
,Δ†⊥, 𝜎†

→∗
cut

©«
𝑆 (D1,D2 )

Γ,Δ ⊢ 𝑀 [𝑁 /𝑥] : 𝜎

ª®®®®®¬

†

Proof. It suffices to check that the derivation 𝑆 (D1,D2) can be

stepwise computed by the cut-elimination rules. □

Lemma 90. Let D1 : Γ ⊢ 𝑀1 : 𝜎 . If 𝑀1 →𝛽 𝑀2 then there is a

typing derivation D2 : Γ ⊢ 𝑀2 : 𝜎 such that D†
1
→∗

cut D
†
2
.

Proof. It suffices to check the statement for the reduction rules

in Definition 52, by inspecting the cut-elimination rules of nuPLL2.
We consider the two most relevant cases. If𝑀1 = popM and𝑀2 =

ℎ𝑑 (M) ⊗ 𝑡𝑙 (M), then w.l.o.g. D1 has the following shape:

pop
⊢ pop : 𝜔𝜎 ⊸ 𝜎 ⊗ 𝜔𝜎

⊢ M(0) : 𝜎 ⊢ M(1) : 𝜎 . . . ⊢ M(𝑛) : 𝜎 . . .
stream

⊢ M : 𝜔𝜎
⊸𝑒 ⊢ popM : 𝜔𝜎 ⊗ 𝜔𝜎

We set D2 as the following typing derivation:

...

⊢ M(0) : 𝜎
⊢ M(1) : 𝜎 ⊢ M(2) : 𝜎 . . . ⊢ M(𝑛 + 1) : 𝜎 . . .

stream
⊢ 𝑡𝑙 (M) : 𝜔𝜎

⊗
⊢ M(0) ⊗ 𝑡𝑙 (M) : 𝜎 ⊗ 𝜔𝜎

It is easy to check that D†
1
→∗

cut D
†
2
.

Let𝑀1 = (𝜆𝑥 .𝑃)𝑁 and𝑀2 = 𝑃 [𝑁 /𝑥]. By inspecting the typing

rules in Figure 13 D must have the following structure:

D1

Σ′ ⊢ 𝜆𝑥.𝑃 ′ : 𝜏 ⊸ 𝐵′
D2

Δ′ ⊢ 𝑄 ′
: 𝜏

⊸𝑒

Σ′,Δ′ ⊢ (𝜆𝑥.𝑃 ′)𝑄 ′
: 𝐵′

𝛿
...

Σ,Δ ⊢ (𝜆𝑥 .𝑃)𝑄 : 𝜎

where:

• Γ = Σ,Δ and 𝜎 = !
𝑛. . .!∀ ®𝑋 .𝐵, for some 𝑛 ≥ 0, ®𝑋 , and 𝐵.

• 𝛿 is a sequence of rules in {?w, ?b, f!p,∀𝑖 ,∀𝑒 },
• 𝐵 = 𝐵′ [ ®𝐶/®𝑌 ], for some ®𝐶 and ®𝑌 not free in Σ′,Δ′

• 𝑃 ′ [®𝑥/®𝑦] = 𝑃 and 𝑄 ′ [®𝑥/®𝑦] = 𝑄 , for some ®𝑥, ®𝑦.
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ax
𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

↦→ ax
𝐴⊥, 𝐴

Γ, 𝑥 : 𝜎 ⊢ 𝑀 : 𝐵
⊸𝑖

Γ ⊢ 𝜆𝑥.𝑀 : 𝜎 ⊸ 𝐵
↦→

Γ†
⊥
, 𝜎†⊥, 𝐵†

`
Γ†

⊥
, (𝜎 ⊸ 𝐵)†

Γ ⊢ 𝑀 : 𝜎 ⊸ 𝐵 Δ ⊢ 𝑁 : 𝜎
⊸𝑒

Γ,Δ ⊢ 𝑀𝑁 : 𝐵
↦→

Γ†
⊥
, (𝜎 ⊸ 𝐵)†

Δ†⊥, 𝐴†
ax
𝐵†⊥, 𝐵†

⊗
Δ†⊥, 𝐴† ⊗ 𝐵†⊥, 𝐵†

cut
Γ†

⊥
,Δ†⊥, 𝐵†

I𝑖 ⊢ I : 1
↦→ 1

1

Γ ⊢ 𝑁 : 1 Δ ⊢ 𝑀 : 𝜎
I𝑒
Γ,Δ ⊢ let I = 𝑁 in𝑀 : 𝜎

↦→ Γ†
⊥
, 1†

Δ†⊥, 𝜎†
⊥
⊥,Δ†⊥, 𝜎†

cut
Γ†

⊥
,Δ†⊥, 𝜎†

Γ ⊢ 𝑀 : 𝜎 Δ ⊢ 𝑁 : 𝜏
⊗𝑖

Γ,Δ ⊢ 𝑀 ⊗ 𝑁 : 𝜎 ⊗ 𝜏
↦→

Γ†
⊥
, 𝜎† Δ†⊥, 𝜏†

⊗
Γ†

⊥
,Δ†⊥, (𝜎 ⊗ 𝜏 )†

Γ ⊢ 𝑀 ⊗ 𝑁 : 𝜎 ⊗ 𝜏 Δ, 𝑥 : 𝜎, 𝑦 : 𝜏 ⊢ 𝑃 : 𝐶
⊗𝑒

Γ,Δ ⊢ let 𝑥 ⊗ 𝑦 = 𝑀 ⊗ 𝑁 in 𝑃 : 𝐶
↦→ Γ†

⊥
, (𝜎 ⊗ 𝜏 )†

Δ†⊥, 𝜎†⊥, 𝜏†
⊥
,𝐶†

`
Δ†⊥, 𝜎†⊥ ` 𝜏†

⊥
,𝐶†

cut
Γ†

⊥
,Δ†⊥,𝐶†

Γ ⊢ 𝑀 : 𝐴
∀𝑖

Γ ⊢ 𝑀 : ∀𝑋 .𝐴
↦→

Γ†
⊥
, 𝐴†

∀
Γ†

⊥
, (∀𝑋 .𝐴)†

Γ ⊢ 𝑀 : ∀𝑋 .𝐴
∀𝑒

Γ ⊢ 𝑀 : 𝐴[𝐵/𝑋 ]
↦→

Γ†
⊥
, (∀𝑋 .𝐴)†

ax
𝐴†⊥ [𝐵†/𝑋 ], 𝐴† [𝐵†/𝑋 ]

∃
∃𝑋 .𝐴†⊥, 𝐴† [𝐵†/𝑋 ]

cut
Γ†

⊥
, (𝐴[𝐵/𝑋 ] )†

Γ ⊢ 𝑀 : 𝜎
f!p

!Γ ⊢ 𝑀 : !𝜎
↦→

Γ†
⊥
, 𝜎†

f!p
!Γ†

⊥
, (!𝜎 )†

Γ ⊢ 𝑀 : 𝜏
?w

Γ, 𝑥 : !𝜎 ⊢ 𝑀 : 𝜏
↦→

Γ†
⊥
, 𝜏†

?w
Γ†

⊥
, (!𝜎 )†⊥, 𝜏†

Γ, 𝑦 : 𝜎, 𝑧 : !𝜎 ⊢ 𝑀 : 𝜏
?b
Γ, 𝑥 : !𝜎 ⊢ 𝑀 [𝑥/𝑦, 𝑥/𝑧 ] : 𝜏

↦→
Γ†

⊥
, 𝜎†⊥, ?𝜎†⊥, 𝜏†

?b
Γ†

⊥
, (!𝜎 )†⊥, 𝜏†

Figure 16: Translation from PTA2 to PLL2.

⊢ M(0) : 𝜎 ⊢ M(1) : 𝜎 . . . ⊢ M(𝑛) : 𝜎 . . .
stream

⊢ M : 𝜔𝜎
↦→

𝜎† 𝜎† . . . 𝜎† . . .
ib!p

(𝜔𝜎 )†

disc
⊢ disc : 𝜔𝜎 ⊸ 1

↦→
1
1†

?w
(𝜔𝜎 )†⊥, 1†`
(𝜔𝜎 ⊸ 1)†

pop
⊢ pop : 𝜔𝜎 ⊸ 𝜎 ⊗ 𝜔𝜎

↦→
ax
𝜎†⊥, 𝜎†

ax
𝜎†⊥, 𝜎†

f!p
(𝜔𝜎 )†⊥, !𝜎†

⊗
𝜎†⊥, (𝜔𝜎 )†⊥, 𝜎† ⊗ !𝜎†

?b
(𝜔𝜎 )†⊥, (𝜎 ⊗ 𝜔𝜎 )†`
(𝜔𝜎 ⊸ 𝜎 ⊗ 𝜔𝜎 )†

Figure 17: Translation from nuPTA2 to nuPLL2.

By a similar reasoning, D1 has the following shape:

D′
1

Σ′′, 𝑥 : 𝜏 ′ ⊢ 𝑃 ′′ : 𝐵′′
⊸𝑖

Σ′′ ⊢ 𝜆𝑥.𝑃 ′′ : 𝜏 ′ ⊸ 𝐵′′

𝜀
...

Σ′ ⊢ 𝜆𝑥 .𝑃 ′ : 𝜏 ⊸ 𝐵′

where:

• 𝜀 is sequences of typing rules in {?w, ?b,∀𝑖 ,∀𝑒 },
• 𝐵′ = 𝐵′′ [ ®𝐷/ ®𝑍 ] and 𝜏 = 𝜏 ′ [ ®𝐷/ ®𝑍 ], for some ®𝐷 and ®𝑍 not free

in Σ′′

• 𝑃 ′′ [®𝑧/ ®𝑤] = 𝑃 for some ®𝑧, ®𝑤 .

Since 𝜏 = 𝜏 ′ [ ®𝐷/ ®𝑍 ], 𝐵′ = 𝐵′′ [ ®𝐷/ ®𝑍 ] and ®𝑍 do not occur free in Σ′′,
by Lemma 71 there is a typing derivation D′′

1
of Σ′′, 𝑥 : 𝜏 ⊢ 𝑃 ′′ : 𝐵′.

By Lemma 72 there is a typing derivation 𝑆 (D′′
1
,D2) of Δ′, Σ′′ ⊢

𝑃 ′′ [𝑄 ′/𝑥] : 𝐵′. Finally, by applying the sequences of rules 𝛿 and 𝜀

we obtain:

D̂ B

𝑆 (D′′
1
,D2 )

Δ′, Σ′′ ⊢ 𝑃 ′′ [𝑄 ′/𝑥] : 𝐵′
...

Δ′, Σ′ ⊢ 𝑃 ′ [𝑄 ′/𝑥] : 𝐵′
...

Σ,Δ ⊢ 𝑃 [𝑄/𝑥] : 𝜎
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Let us now show that D† →∗
cut D̂†

. First, notice that D†
is as

follows:

(D′
1
)†

(Σ′′)†⊥, (𝜏 ′)†⊥, (𝐵′′)†`
(Σ′′)†⊥, (𝜏 ′)†⊥ ` (𝐵′′)†

𝜀†
...

(Σ′)†⊥, 𝜏†⊥ ` (𝐵′)†

D†
2

(Δ′)†⊥, 𝜏†,
ax

(𝐵′)†⊥, (𝐵′)†
⊗

(Δ′)†⊥, 𝜏† ⊗ (𝐵′)†⊥, (𝐵′)†
cut

(Σ′)†⊥, (Δ′)†⊥, (𝐵′)†

𝛿†
...

Σ†
⊥
,Δ†⊥, 𝜎†

Moreover, since 𝜏 = 𝜏 ′ [ ®𝐷/ ®𝑍 ], 𝐵′ = 𝐵′′ [ ®𝐷/ ®𝑍 ] and ®𝑍 do not occur

free in Σ′′, the above derivation reduces by cut-elimination to the

following:

D†
2

(Δ′)†⊥, 𝜏†,

(D′′
1
)†

(Σ′′)†⊥, 𝜏†⊥, (𝐵′)†
cut

(Δ′)†⊥, (Σ′′)†⊥, (𝐵′)†
...

(Δ′)†⊥, (Σ′)†⊥, (𝐵′)†
...

Δ†⊥, Σ†
⊥
, 𝜎†

for some 𝜀† and 𝛿†. By Lemma 89 the above derivation reduces by

cut-elimination to the following:

©«
𝑆 (D′′

1
,D2 )

Δ′, Σ′′ ⊢ 𝑃 ′′ [𝑄 ′/𝑥] : 𝐵′

ª®®®®®®¬

†

...

(Δ′)†⊥, (Σ′)†⊥, (𝐵′)†
...

Δ†⊥, Σ†
⊥
, 𝜎†

which is D̂†
. □

Theorem 57. Let 𝑓 : ({0, 1}∗)𝑛 → {0, 1}∗:
(1) If 𝑓 is representable in nuPTA2 then so it is in nuPLL2;
(2) If 𝑓 is representable in PTA2 then it is in PLL2.

Proof. We only consider the case where 𝑓 is unary for the sake

of simplicity. Let 𝑓 be a typable term of nuPTA2 representing 𝑓 ,

so that 𝑓 𝑠 →∗
𝛽
𝑓 (𝑠) for any 𝑠 ∈ {0, 1}∗. Consider the following

derivation:

D =
D𝑓

⊢ 𝑓 : S[] ⊸ S[]

D𝑠

⊢ 𝑠 : S[]
⊸𝑒 ⊢ 𝑓 𝑠 : S[]

By repeatedly applying Lemma 90 there is D𝑓 (𝑠 ) such that

D† = D†
𝑓

S[] ⊸ S[]

D†
𝑠

S[]
ax
S[]⊥, S[]

⊗
S[] ⊗ S[]⊥, S[]

cut
S[]

→∗
cut D†

𝑓 (𝑠 )

S[]

in nuPLL2, where we can safely assume that D†
𝑠 →∗

cut 𝑠 and

D†
𝑓 (𝑠 ) →

∗
cut 𝑓 (𝑠) in nuPLL2. This means that D†

𝑓
represents 𝑓 in

nuPLL2. If moreover 𝑓 is typable term of PTA2 then D†
𝑓
represents

𝑓 in PLL2. □

D.5 Some remarks on the type system
The following observations justify the finiteness condition on the

typing rule ib!p, and the restriction on second-order instantiation

to (!, 𝜔)-free types in nuPTA2.

Remark 91. If the side condition on the typing rule stream (i.e.,

that {M(𝑖) | 𝑖 ∈ N} is finite) were dropped, then nuPTA2 would
represent any function on natural numbers. Indeed, given a function

𝑓 : N → N, we can define the term F B 𝑓 (0) :: 𝑓 (1) :: . . .

with type 𝜔!N, encoding all values of the function 𝑓 . We set 𝐴 B
N[1] ⊗ 𝜔N[1] and define:

step B 𝜆𝑥 .let 𝑦1 ⊗ 𝑦2 = 𝑥 in let I = 𝑦1 (𝜆𝑧.𝑧) I in pop𝑦2
𝑓 B 𝜆𝑛.let𝑥 ⊗ 𝑦 = (𝑛 step (pop F)) in let I = (disc𝑦) in 𝑥

where step has type 𝐴 ⊸ 𝐴 and 𝑓 has type N[𝐴] ⊸ N[1]. It is
easy to check that 𝑓 𝑛 →∗

𝛽
𝑓 (𝑛), for any 𝑛 ∈ N.

This observation can be easily adapted to the proof systems

nuPLL2 (w.r.t. the finiteness condition on ib!p) andwrPLL∞
2
(w.r.t. the

weak regularity condition).

Remark 92. If the (!, 𝜔)-freeness condition on ∀𝑒 were dropped
then nuPTA2 could represent exponential functions. Indeed, we can
define the following functions:

plustwo B 𝜆𝑛.𝜆𝑓 .𝜆𝑧.𝑛𝑓 (𝑓 (𝑓 𝑧)) : N[] ⊸ N[]
double B 𝜆𝑛.𝑛 (plustwo) 0 : N[N[]] ⊸ N[]

exp B 𝜆𝑛.𝑛 (double) 1 : N[N[]] ⊸ N[]

It is easy to check that, for any 𝑛 ∈ N:
plustwo 𝑛 →∗

𝛽
𝑛 + 2 double 𝑛 →∗

𝛽
2𝑛 exp 𝑛 →∗

𝛽
2
𝑛

E RELATIONAL SEMANTICS FOR
NON-WELLFOUNDED PROOFS

Here we define a denotational model for oPLL∞
2
based on the re-

lational semantics, which interprets an open coderivation as the

union of the interpretations of its finite approximations, as in [25].
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t

hyp
Γ

|

𝑛

= ∅

t

ax
𝐴,𝐴⊥

|

𝑛

=
{

(𝑥, 𝑥) 𝑥 ∈ J𝐴K
} u

w
v

D′

Γ, 𝐴

D′′

Δ, 𝐴⊥
cut

Γ,Δ

}

�
~

𝑛

=

 ( ®𝑥, ®𝑦) ∃𝑧 ∈ J𝐴K s.t.

( ®𝑥, 𝑧) ∈ JD′K𝑛−1
and

(𝑧, ®𝑦) ∈ JD′′K𝑛−1


u

w
v

D′

Γ, 𝐴

D′′

Δ, 𝐵
⊗

Γ,Δ, 𝐴 ⊗ 𝐵

}

�
~

𝑛

=

 ( ®𝑥, ®𝑦, (𝑥,𝑦))
( ®𝑥, 𝑥) ∈ JD′K𝑛−1

and

( ®𝑦,𝑦) ∈ JD′′K𝑛−1


u

w
v

D′

Γ, 𝐴, 𝐵`
Γ, 𝐴` 𝐵

}

�
~

𝑛

=
{

( ®𝑥, (𝑦, 𝑧)) ( ®𝑥,𝑦, 𝑧) ∈ JD′K𝑛−1
}

t

1
1

|

𝑛

= {∗}

u

w
v

D′

Γ
⊥
Γ,⊥

}

�
~

𝑛

=
{

( ®𝑥, ∗) ®𝑥 ∈ JD′K𝑛−1
} u

w
v

D′

Γ, 𝐴
∀
Γ,∀𝑋 .𝐴

}

�
~

𝑛

=

u

w
v

D′

Γ, 𝐴[𝐵/𝑋 ]
∃

Γ, ∃𝑋 .𝐴

}

�
~

𝑛

= JD′K𝑛−1

u

w
v

D′

Γ
?w

Γ, ?𝐴

}

�
~

𝑛

=
{

( ®𝑥, [ ]) ®𝑥 ∈ JD′K𝑛−1
} u

w
v

D′

Γ, 𝐴, ?𝐴
?b

Γ, ?𝐴

}

�
~

𝑛

=
{

( ®𝑥, [𝑦] + 𝜇) ( ®𝑥,𝑦, 𝜇) ∈ JD′K𝑛−1
}

u

w
v

D′

Γ, 𝐴

D′′

?Γ, !𝐴
c!p

?Γ, !𝐴

}

�
~

𝑛

=

{
( ®[ ], [ ])

}
∪

 ( [𝑥1] + 𝜇1, . . . , [𝑥𝑘 ] + 𝜇𝑘 , [𝑥] + 𝜇)
(𝑥1, . . . , 𝑥𝑘 , 𝑥) ∈ JD′K𝑛−1

and

(𝜇1, . . . , 𝜇𝑘 , 𝜇) ∈ JD′′K𝑛−1


Figure 18: Inductive definition of the set JDK𝑛 , for 𝑛 > 0.

The relational semantics interprets the exponentials by finite

multisets, denoted by brackets, e.g., [𝑥1, . . . , 𝑥𝑛]; + denotes the

multiset union,M𝑓 (𝑋 ) denotes the set of finite multisets over a set

𝑋 . To correctly define the semantics of a coderivation, we need to

see sequents as finite sequence of formulas (taking their order into

account), which means that we have to add an exchange rule to
oPLL∞

2
to swap the order of two consecutive formulas in a sequent.

Definition 93 (Reflexive object). We define 𝐷 :=
⋃

𝑛∈N 𝐷𝑛 , where

𝐷𝑛 is defined by induction as follows:

𝐷0 := {∗}
𝐷𝑛+1 := 𝐷0 ∪ (𝐷𝑛 × 𝐷𝑛) ∪M𝑓 (𝐷𝑛)

Definition 94. We associate with each formula𝐴 a set J𝐴K defined
as follows:

J𝑋 K B 𝐷 J𝐴 ⊗ 𝐵K B J𝐴K × J𝐵K

J1K B {∗} J!𝐴K B M𝑓 (J𝐴K)

J𝐴⊥K B J𝐴K J∀𝑋 .𝐴K B J𝐴K

where 𝐷 is as in Definition 93. For a sequent Γ = 𝐴1, . . . , 𝐴𝑛 , we set

JΓK B J𝐴1 ` · · ·`𝐴𝑛K.
Given oPLL∞

2
with conclusion Γ, we set JDK B

⋃
𝑛≥0 JDK𝑛 ⊆

JΓK, where JDK
0
= ∅ and, for all 𝑖 ∈ N \ {0}, JDK𝑖 is defined

inductively according to Figure 18.

Example 95. For the coderivationsD⊥ andD? in Figure 3, we have

JD⊥K = JD?K = ∅. For the derivations 0 and 1 in Figure 3, J0K =

{((𝑥,𝑦), (𝑥,𝑦)) | 𝑥 ∈ 𝐷} and J1K = {((𝑥,𝑦), (𝑦, 𝑥)) | 𝑥,𝑦 ∈ 𝐷}. For
the coderivation c!p(𝑖0,...,𝑖𝑛,...) in Example 14 (with 𝑖 𝑗 ∈ {0, 1} for

all 𝑗 ∈ N), the relation
r
c!p(𝑖0,...,𝑖𝑛,...)

z
is defined as the set of all

multisets of the form [((𝑥1, 𝑦1), (𝑧1,𝑤1)), . . . , ((𝑥𝑛, 𝑦𝑛), (𝑧𝑛,𝑤𝑛))]
with 𝑛 ∈ N and 𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ,𝑤 𝑗 ∈ 𝐷 such that 𝑥 𝑗 = 𝑤 𝑗 and 𝑦 𝑗 = 𝑧 𝑗
whenever 𝑖 𝑗 = 1, and such that 𝑥 𝑗 = 𝑧 𝑗 and 𝑦 𝑗 = 𝑤 𝑗 whenever

𝑖 𝑗 = 0.

By straightforward inspection of the cut-elimination steps for

oPLL∞
2
we have:

Theorem 96 (Soundness). LetD ∈ oPLL∞
2
. IfD →cut D′, then

JDK = JD′K.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009


	Abstract
	1 Introduction
	2 Preliminary notions
	2.1 Derivations and coderivations
	2.2 Non-uniform complexity classes

	3 2nd Order Parsimonious Linear Logic
	4 Non-wellfounded Second Order Parsimonious Linear Logic 
	4.1 From infinite branching to non-wellfounded
	4.2 Totality via a progressing criterion
	4.3 Recovering (weak forms of) regularity
	4.4 Simulation results
	4.5 Approximating coderivations

	5 Soundness
	5.1 Nesting, depth, cosize and truncation
	5.2 Exponential flows
	5.3 Shallow cut-elimination strategy
	5.4 Polynomial modulus of continuity

	6 Completeness
	6.1 The type systems PTA2 and nuPTA2
	6.2 The completeness theorem

	7 Conclusion and future work
	Acknowledgments
	References
	A Proofs of Section 2
	B Proofs of Section 4
	B.1 Some properties of wrPLL2 and rPLL2
	B.2 Proofs of Subsection 4.4
	B.3 Proofs of Subsection 4.5

	C Proof of Section 5
	C.1 Proofs of Subsection 5.2
	C.2 Proofs of Subsection 5.3
	C.3 Proofs of Subsection 5.4

	D Proof of Section 6
	D.1 Proof of prop:subject-reduction
	D.2 Definability and data types in PTA2 and nuPTA2
	D.3 Encoding polytime Turing machines with polynomial advice in nuPTA2
	D.4 Proof of thm:embedding
	D.5 Some remarks on the type system

	E Relational semantics for non-wellfounded proofs

