
On Propositional Dynamic Logic and Concurrency

MATTEO ACCLAVIO
∗
, University of Sussex, United Kingdom

FABRIZIO MONTESI, University of Southern Denmark, Denmark

MARCO PERESSOTTI, University of Southern Denmark, Denmark

Dynamic logic is a powerful approach to reasoning about programs and their executions, obtained by extending classical logic with

modalities that can express program executions as formulas. However, the use of dynamic logic in the setting of concurrency has

proved problematic because of the challenge of capturing interleaving. This challenge stems from the fact that, traditionally, programs

are represented by their sets of traces. These sets are then expressed as elements of a Kleene algebra, for which it is not possible to

decide equality in the presence of the commutations required to model interleaving.

In this work, we generalise propositional dynamic logic (PDL) to a logic framework we call operational propositional dynamic logic

(OPDL), which departs from tradition by distinguishing programs from their traces. Traces are generated by an arbitrary operational

semantics that we take as a parameter, making our approach applicable to different program syntaxes and semantics. To develop our

framework, we provide the first proof of cut-elimination for a finitely-branching non-wellfounded sequent calculus for PDL. Thanks

to this result we can effortlessly prove adequacy for PDL, and extend these results to OPDL. We conclude by discussing OPDL for

two representative cases of concurrency: the Calculus of Communicating Systems (CCS), where interleaving is obtained by parallel

composition, and Choreographic Programming, where interleaving is obtained by out-of-order execution.

CCS Concepts: • Do Not Use This Code → Generate the Correct Terms for Your Paper; Generate the Correct Terms for Your

Paper ; Generate the Correct Terms for Your Paper; Generate the Correct Terms for Your Paper.

Additional Key Words and Phrases: Propositional Dynamic Logic, Concurrency, Cut-elimination, Process Calculi, Choreographies

ACM Reference Format:
Matteo Acclavio, Fabrizio Montesi, andMarco Peressotti. 2024. On Propositional Dynamic Logic and Concurrency. 1, 1 (November 2024),

26 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Logic, and in particular proof theory, offers several approaches to reason about different computational properties

of programs. In the Curry-Howard correspondence, programs are represented by proofs, thus providing a strong

foundation for the development of type systems [12, 27, 75]. In logic programming, a program is an inference system,

which allows for using proof search as the means of execution [50, 55]. In dynamic logic (DL), programs are part of the

language of formulas itself, which enables the direct use of the logic to reason about the semantics of programs [29].

Under the latter view, the purpose of programs is to change the truth value of a formula. At the syntactic level, each

program 𝛼 defines the modalities [𝛼] and ⟨𝛼⟩ and a formula [𝛼] 𝜙 is interpreted as ‘every state reached after executing

∗
Supported by Villum Fonden, grant no. 50079

Authors’ addresses: Matteo Acclavio, University of Sussex, Brighton, United Kingdom; Fabrizio Montesi, University of Southern Denmark, Odense,

Denmark; Marco Peressotti, University of Southern Denmark, Odense, Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Acclavio et al.

𝛼 satisfies the formula 𝜙 ’ while a formula ⟨𝛼⟩ 𝜙 is interpreted as ‘there is a state reached after executing 𝛼 satisfying

the formula 𝐹 ’. This idea has been of profound inspiration in the field of formal verification [13, 70]. In this work, we

are interested in the propositional fragment of dynamic logic (Propositional Dynamic Logic, or PDL) [45].

PDL and the concurrency problem. While PDL has been successfully applied to the study of sequential programs,

extending this approach to concurrent programs remains challenging. In standard PDL, a program is represented by

a regular expression that describes its set of possible traces. In other words, programs are elements of a free Kleene

algebra. This works well for sequential programs, because one obtains that the theory of equational reasoning for

Kleene algebras is a complete system for reasoning about trace equivalence [38, 41, 44, 68]. Trace equivalence is therefore

captured by logical equivalence in PDL:

𝛼 and 𝛽 have the same traces iff ⊢PDL [𝛼] 𝜙 ⇔ [𝛽] 𝜙 for all 𝜙 . (1)

However, the case of concurrent programs with an interleaving semantics is more problematic. In the presence of

interleaving, one expects traces differing by interleaving to be equivalent modulo equations of the form 𝛼 ; 𝛽 = 𝛽 ;𝛼 (called

commutations). Unfortunately, the word problem in a Kleene algebra enriched with an equational theory containing

such commutations is known to be undecidable
1
, which makes undecidable checking whether two modalities in PDL

are the same. For the same reason, a general treatment of concurrency is still elusive also for simpler approaches than

PDL, like equational reasoning on programs represented as terms in Kleene algebras [10, 36, 37, 42].
2

As a consequence of this problem, applications of PDL to concurrency fall short of the expected level of expressivity

from established theories, like CCS [56] and the 𝜋-calculus [57]. For example, previous works lack nested parallel

composition, synchronisation, or recursion [8, 9, 51, 63–65]. In general, adding any new concurrency feature (e.g., a

construct in the language of programs or a law defining its semantics) requires great care and effort in establishing the

meta-theoretical properties of the logic. The result: a literature of various propositional dynamic logics, all independently

useful, but with different limitations and dedicated technical developments.

Main contributions and structure of the paper. In this work, we significantly advance the line of work on PDL by

developing operational propositional dynamic logic (OPDL). The key innovation of OPDL is to distinguish and separate

reasoning on programs from reasoning on their traces. Thanks to this distinction, we circumvent previous limitations

and finally obtain a PDL that can be applied to established concurrency models, such as CCS [56] and choreographic

programming [58]. Crucially, OPDL is a general framework: it is parameterised on the operational semantics used to

generate traces from programs, yielding a simple yet reusable approach to characterise trace reasoning.

We proceed as described next.

After recalling the axiomatization and semantics of PDL in Section 2, in Section 3 we provide a proof of its soundness

and completeness with respect to the sequent calculus introduced [19]. For this purpose, we provide the first cut-

elimination result for this non-wellfounded calculus, by adapting the technique developed in [2].
3
This allows us to

prove our results by reasoning on the axiomatisation and the sequent system, without directly relying on semantic

arguments.

1
This is proven in [43] by reducing the Post correspondence problem to the word problem by combining sequential composition, iteration, and

commutations.

2
While the pure algebraic setting based on Kleene algebras is strictly less expressive than PDL, the missing expressivity (propositional reasoning on

states reached after performing actions in a given trace) can be recovered by considering the (much) more complex structure of Kleene modules [22].

3
A cut-elimination result for another sequent calculus for PDL is provided in [34], but that calculus is fundamentally different: it employs nested sequents

and contains rules with an infinite number of premises.

Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 3

𝜙,𝜓 := ⊤ true

| ⊥ false

| 𝑝 ∈ A (with 𝑝 ∈ A) atom (literal)

| 𝑝 (with 𝑝 ∈ A) negated atom (literal)

| 𝜙 ∨𝜓 disjunction

| 𝜙 ∧𝜓 conjunction

| [𝛼] 𝜙 box

| ⟨𝛼⟩ 𝜙 diamond

𝛼, 𝛽 := 𝜖 terminated program

| ∅ stacked program

| 𝑎 ∈ I instruction

| 𝑡 ∈ T test

| 𝛼 ; 𝛽 sequential composition

| 𝛼∗ iteration

| 𝛼 ⊕ 𝛽 (non-deterministic) choice

Fig. 1. Grammar generating formulas

Then, in Section 4, we extend PDL with an additional axiom allowing us to encapsulate an operational semantics for

a set of programs into the trace reasoning. We call the resulting logic operational propositional dynamic logic (or OPDL),

providing a general framework encompassing various previous works [9, 31, 51].

We show that the expressive power of our framework goes beyond the state of the art in Section 5, by instantiating it for

two use cases of archetypes of concurrent programming languages: the Calculus of Communicating Systems (CCS) [56],

representative of the process algebra approach, and the textbook presentation of choreographic programming [59],

representative of languages inspired by the Alice-and-Bob notation that originates from security protocols. These two

cases are interesting because they model concurrency in completely different ways: in CCS, concurrency is obtained

through an explicit parallel operator equipped with an interleaving semantics, while in choreographic programming

concurrency is obtained implicitly by executing instructions out of order whenever they involve different processes.

Thus, OPDL advances the study of PDL with leaps in both expressivity and versatility.

We conclude and discuss future work in Section 6.

Related work is discussed, where relevant, as part of our development (in addition to the works mentioned in this

introduction).

2 PRELIMINARY NOTIONS ON PROPOSITIONAL DYNAMIC LOGIC

In this section we recall standard definitions and results for PDL as presented in [29].

We consider the set FPDL of formulas generated from a countable set A of propositional atoms, a set of atomic
programs I and a set of tests T = {𝜙? | 𝜙 ∈ FPDL} by the grammars in Figure 1. The (logical) implication
𝐴 ⇒ 𝐵 := (𝐴) ∨ 𝐵 is defined by extending the negation from atoms to formulas via the De Morgan laws:

⊤ = ⊥ (𝜙) = 𝜙 𝜙 ∧𝜓 = (𝜙) ∨ (𝜓) [𝛼] 𝜙 = ⟨𝛼⟩ 𝜙 . (2)

We write ⊢PDL 𝜙 if the formula 𝜙 is derivable from the axioms in Figure 2 using the rules modus ponens (mp),
necessitation (nec), loop invariance (li), from the same figure. The propositional dynamic logic (or PDL) is

defined as the logic of formulas satisfying ⊢PDL 𝜙 .

Remark 1. The axiomatization of PDL is often presented by replacing the loop invariance rule with an additional

axiom (scheme) AInd : (𝜙 ∧ [𝛼∗] (𝜙 ⇒ [𝛼] 𝜙)) ⇒ [𝛼∗] 𝜙 reminding the induction axiom (scheme) in Peano arithmetic.

Prove that the two formulations are equivalent is an exercise which can be found in [29].

Semantically speaking, while a model of propositional classical logic is simply an evaluation function assigning a

truth value to each formula, models for PDL are given by Kripke frames. A Kripke frame for classical modal logic is

Manuscript submitted to ACM

4 Acclavio et al.

PL : Axiomatization of propositional classical logic

Neg : [𝛼] 𝜙 ⇔
(
⟨𝛼⟩ 𝜙

)
K : ([𝛼] (𝜙 ⇒ 𝜓)) ⇒ ([𝛼] 𝜙 ⇒ [𝛼]𝜓)
A∅ : [∅] 𝜙
A𝜖 : [𝜖] 𝜙 ⇔ 𝜙

A? : [𝜓?] 𝜙 ⇔ (𝜓 ∨ 𝜙)
A⊕ : [𝛼 ⊕ 𝛽] 𝜙 ⇔ ([𝛼] 𝜙 ∧ [𝛽] 𝜙)
A; : [𝛼 ; 𝛽] 𝜙 ⇔ [𝛼] [𝛽] 𝜙
A∗ : [𝛼∗] 𝜙 ⇔ (𝜙 ∧ [𝛼] [𝛼∗]𝜙)

⊢ 𝜙 ⊢ 𝜙 ⇒ 𝜓
mp

⊢ 𝜓

⊢ 𝜙
nec

⊢ [𝛼] 𝜙

⊢ 𝜙 ⇒ [𝛼] 𝜙
li

⊢ 𝜙 ⇒ [𝛼∗] 𝜙

Fig. 2. Axioms and rules for Propositional Dynamic Logic.

𝔪 (⊤) =𝑊 𝔪 (𝜖) = {(𝑣, 𝑣) | 𝑣 ∈𝑊 }
𝔪 (⊥) = ∅ 𝔪 (∅) = ∅
𝔪

(
𝜙

)
=𝑊 \𝔪 (𝜙) 𝔪 (𝜙?) = {(𝑣, 𝑣) | 𝑣 ∈ 𝔪 (𝜙)}

𝔪 (𝜙 ∨𝜓) = 𝔪 (𝜙) ∪𝔪 (𝜓) 𝔪 (𝛼 ; 𝛽) = {(𝑢,𝑤) | exists 𝑣 s.t. (𝑢, 𝑣) ∈𝔪 (𝛼) and (𝑣,𝑤) ∈𝔪 (𝛽)}
𝔪 (𝜙 ∧𝜓) = 𝔪 (𝜙) ∩𝔪 (𝜓) 𝔪 (𝛼 ⊕ 𝛽) = 𝔪 (𝛼) ∪𝔪 (𝛽)
𝔪 ([𝛼] 𝜙) = {𝑣 | 𝑤 ∈ 𝔪 (𝜙) for all𝑤 s.t. (𝑣,𝑤) ∈ 𝔪 (𝛼)} 𝔪 (𝛼∗) =

⋃
𝑛≥0𝔪 (𝛼𝑛) (where 𝛼0 = 𝜖)

𝔪 (⟨𝛼⟩ 𝜙) = {𝑣 | 𝑤 ∈ 𝔪 (𝜙) for a𝑤 s.t. (𝑣,𝑤) ∈ 𝔪 (𝛼)}

Fig. 3. Inductive definition of the meaning of compound formulas and programs in the Kripke frames.

given by a set of worlds, an accessibility relation between worlds, and an evaluation function assigning to each formula

the set of worlds in which it is true. Intuitively, a classical model can be seen as a single-world Kripke frame in which

the evaluation function assigns to each formula a set containing the unique world of the frame only if it the formula is

evaluated as true. We recall here the formal definition of model for PDL.

Definition 2. A Kripke frame (or model) 𝔐 = ⟨𝑊,𝔪⟩ is given by a set of worlds𝑊 , a meaning function
associating to each atom 𝑝 ∈ A a set of worlds 𝔪 (𝑝) ⊆ 𝑊 (in which 𝑝 holds), and to each instruction 𝑎 ∈ I an

accessibility relation𝔪 (𝑎) ⊆𝑊 ×𝑊 . The meaning of compound formulas and programs is defined as shown in the left

of Figure 3. We write𝔐,𝑤 ⊨ 𝜙 if𝑤 ∈ 𝔪 (𝜙) (or simply𝑤 ⊨ 𝜙 if𝔐 is clear from the context), and𝔐 ⊨ 𝜙 if𝔐,𝑤 ⊨ 𝜙

holds for any world𝑤 of𝔐. Finally we write ⊨ 𝜙 if 𝔐 ⊨ 𝜙 holds for any possible model𝔐.

The proof of soundness and completeness result of the axioms of PDL with respect to the semantics can be found in

[29]. In particular, completeness is shown by constructing a model 𝔐𝜙 for each consistent formula 𝜙 such that the

formula 𝜙 holds in at least a world (i.e. 𝔪 (𝜙) ≠ ∅ in𝔐𝜙).

Theorem 3. Let 𝜙 be a PDL-formula. Then ⊢PDL 𝜙 iff ⊨PDL 𝜙 .

We conclude by showing the following result, which allows us to interpreted the modality [𝛼∗] as a fixpoint for the
modality [𝛼].

Lemma 4. If ̸⊢PDL 𝜙 ⇒ [𝛼∗]𝜓 , then there is 𝑛 ∈ N such that ̸⊢PDL 𝜙 ⇒ [𝛼𝑛]𝜓 .

Proof. By Theorem 3, if ̸⊢PDL 𝜙 ⇒ [𝛼∗]𝜓 , then ⊭ 𝜙 ⇒ [𝛼∗]𝜓 . By definition, this means that there is a model

𝔐 = ⟨𝑊,𝔪⟩ such that 𝔪 (𝜙 ⇒ [𝛼∗]𝜓) ≠𝑊 . Now assume that ⊢PDL 𝜙 ⇒
[
𝛼𝑘

]
𝜓 for any 𝑘 ∈ N. By Theorem 3 this

implies ⊨ 𝜙 ⇒
[
𝛼𝑘

]
𝜓 for any 𝑘 ∈ N; therefore that in any model𝔐 = ⟨𝑊,𝔪⟩ we have𝑊 = 𝔪

(
𝜙 ⇒

[
𝛼𝑘

]
𝜓

)
for all

Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 5

⊤
⊢ ⊤

ax

⊢ 𝜙, 𝜙
⊢ Γ

w

⊢ Γ, 𝜙

⊢ Γ, 𝜙,𝜓
∨
⊢ Γ, 𝜙 ∨𝜓

⊢ Γ, 𝜙 ⊢ Γ,𝜓
∧

⊢ Γ, 𝜙 ∧𝜓

⊢ Γ, 𝜙
k𝛼 𝛼 ∉ {𝜖,∅}

⊢ ⟨𝛼⟩ Γ, [𝛼] 𝜙
⊢ Γ, 𝜙 ⊢ Γ, 𝜙

cut

⊢ Γ

⊢ Γ, 𝜙
[𝜖]

⊢ Γ, [𝜖] 𝜙
[∅]

⊢ [∅] 𝜙
⊢ Γ, 𝜙 ∨𝜓

[?]
⊢ Γ, [𝜙?]𝜓

⊢ Γ, [𝛼] 𝜙 ⊢ Γ, [𝛽] 𝜙
[⊕]

⊢ Γ, [𝛼 ⊕ 𝛽] 𝜙
⊢ Γ, [𝛼] [𝛽] 𝜙

[;]
⊢ Γ, [𝛼 ; 𝛽] 𝜙

⊢ Γ, 𝜙 ⊢ Γ, [𝛼 ;𝛼∗] 𝜙
[∗]

⊢ Γ, [𝛼∗] 𝜙

⊢ Γ, 𝜙
⟨𝜖 ⟩

⊢ Γ, ⟨𝜖⟩ 𝜙
⊢ Γ,𝜓

⟨∅⟩
⊢ Γ,𝜓, ⟨∅⟩ 𝜙

⊢ Γ, 𝜙 ∧𝜓
⟨?⟩

⊢ Γ, ⟨𝜙?⟩𝜓

⊢ Γ, ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙
⟨⊕⟩

⊢ Γ, ⟨𝛼 ⊕ 𝛽⟩ 𝜙
⊢ Γ, ⟨𝛼⟩ ⟨𝛽⟩ 𝜙

⟨;⟩
⊢ Γ, ⟨𝛼 ; 𝛽⟩ 𝜙

⊢ Γ, 𝜙, ⟨𝛼 ;𝛼∗⟩ 𝜙
⟨∗⟩

⊢ Γ, ⟨𝛼∗⟩ 𝜙

Fig. 4. Sequent calculus rules of the sequent system LPD
cut = LPD ∪ {cut}.

𝑘 ∈ N. This would be absurd since

𝑊 =
⋂
𝑘≥0

𝑊 =
⋂
𝑘≥0

(
𝔪

(
𝜙 ⇒

[
𝛼𝑘

]
𝜓

))
=

⋂
𝑘≥0

(
𝔪

(
𝜙

)
∪𝔪

([
𝛼𝑘

]
𝜓

))
=

= 𝔪

(
𝜙

)
∪

(⋂
𝑘≥0

𝔪

([
𝛼𝑘

]
𝜓

))
= 𝔪

(
𝜙

)
∪𝔪

([
𝛼∗

]
𝜓
)
= 𝔪

(
𝜙 ⇒

[
𝛼∗

]
𝜓
)
≠𝑊 □

3 SEQUENT CALCULUS FOR PDL

In this section we recall the definition for (possibly infinite) derivations in a sequent system. We then consider the

sequent system LPD given by the rules in Figure 4 introduced in [18–20] (for the fragment of PDL without the programs

𝜖 and ∅), as an adaptation of the sequent calculus for the modal 𝜇-calculus given in [71].

To prove soundness and completeness of the sequent system LPD with respect to the axiomatization of PDL, we rely

on the subformula property following from the admissibility of the cut rule. To prove admissibility of cut, we provide

the first cut-elimination result for LPD by adapting the technique developed in [2].
4
More precisely, these adequacy

results are proven by translating the winning conditions of the provability games for PDL and for modal 𝜇-calculus

(respectively defined in [48] and [60]) into correctness criteria for non-wellfounded derivations
5
.

3.1 Definitions and Notations for Derivations

We assume the reader to be familiar with the terminology of sequent calculus (see, e.g., [72]) and non-wellfounded

sequent calculi (see, e.g., [2, 7]). We recall here the formalism we adopt in this paper.

4
Note that the system LPD from [19] (as well as the system studied in [71], and the labeled cyclic proof system from [21]) does not contain the rule cut,

and its soundness and completeness is not proven with respect to axiomatization but with respect to the semantics.

5
More precisely, as explicitly shown in [1] in the case of intuitionistic logic, translations of winning games correspond to derivations in focused sequent

systems, that is, a systems in which the order of rules in proof search is subject to specific restriction.

Manuscript submitted to ACM

6 Acclavio et al.

A sequent is a set of formulas. A sequent system is given by a set of rules of the form r

⊢ Γ
or

⊢ Γ1
r

⊢ Γ
or

⊢ Γ1 ⊢ Γ2
r

⊢ Γ
,

where the sequents Γ1 and Γ2 are called premises and the sequent Γ is called conclusion of the rule r. A formula is

active (resp. principal) for a rule if it occurs in a premise but not in the conclusion (resp. it occurs in the conclusion

but in none of its premises). A rule r is admissible in S if its conclusion is derivable in S whenever its premises are.

Definition 5. A tree T is a prefix-closed set of words over the alphabet {1, . . . , 𝑛} such that if 𝑣𝑘 ∈ T , then 𝑣𝑚 ∈ T
for all𝑚 < 𝑘 . The elements of T are called nodes, the empty word 𝜖 ∈ T is called root. A node 𝑣 ∈ T is below𝑤 ∈ T
if𝑤 = 𝑣𝑣 ′ with 𝑣 ′ ≠ 𝜖 . The height of a node is the number of nodes below it. A child of 𝑣 ∈ T is a node of the form

𝑣𝑘 ∈ T with 𝑘 ∈ {1, . . . , 𝑛}. A branch is a prefix-closed totally ordered (w.r.t to the prefix order) set of nodes.

A derivation (resp. open derivation) is a labeling D of a tree TD with nodes labeled by sequents in such a way for

each node 𝑣 (resp. for each non-leaf node 𝑣) the sequent D(𝑣) with is the conclusion sequent of a rule with premises

the sequents D(𝑣1), . . . ,D(𝑣𝑛) where 𝑣1, . . . , 𝑣𝑛 are the children of 𝑣 . The sequent D(𝜖) is called the conclusion of D
and a leaf 𝑣 such that D(𝑣) is not the conclusion of a rule is called an open premise. We identify (an occurence of) a

rule r in D with the nodes corresponding to its conclusion and premises. A node is below a rule if it is its conclusion

or any node below, and we may refer to a node of D as a node in the underlying tree TD .

A sub-derivation of D is a derivation D′
such that D′ (𝑤) = D(𝑣𝑤) for a 𝑣 ∈ TD . A derivation is regular if it

has finitely many distinct sub-derivations. An open derivation D′
is an approximation6 of D (denoted D′ ⪯ D) if

TD′ ⊆ TD and D′ (𝑣) = D(𝑣) for any 𝑣 ∈ TD′ .

If X is a set of derivations, then we say that Γ is provable in X (denoted ⊢X Γ) if there is a derivation of Γ in X. For

this purpose, we may identify a sequent system S with the set of derivations over S.

Notation 6. We may denote a derivation with conclusion Γ (resp. an open derivation with open premise Δ and

conclusion Γ) by
D
⊢ Γ

©­­«resp.
⊢ Δ

D
⊢ Γ

ª®®¬ .
A regular derivation can be represented as a finite (directed) graph of sequents, by identifying nodes of its tree which

are conclusions of two identical sub-derivations. In this case we label the bottom-most rules of identical derivations by

the same symbol (see the derivation on the left of Equation (3) for an example).

3.2 A Sequent System for PDL

The sequent systems LPD
cut

is defined by the set of rules in Figure 4, while LPD is the sub-system without the rule cut.

As standard as soon as we allow us to consider infinite derivations, we could be able to construct unsound derivations

in a sequent system. By means of example, consider the following derivations allowing us to derive in LK any formula

𝜙 using ax and cut, or the (admissible) contraction rule c

ax

⊢ 𝜙, 𝜙
cut ★

⊢ 𝜙
cut ★

⊢ 𝜙

.

.

.
c

⊢ 𝜙, 𝜙
c

⊢ 𝜙

(3)

In order to recover correctness, we introduce the following progressiveness criterion.

6
The name is meant to suggest that infinite derivations can be seen as the limit of their approximations. See Definition 12.

Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 7

Definition 7. Let 𝜙 be a formula occurring in a sequent of a D ∈ LPD conclusion of a rule r. We say that a formula𝜓

occurring in a premise of r is an immediate ancestor of 𝜙 whenever one of the following holds:

• 𝜓 is an active formula of r ≠ k𝛼 with principal formula 𝜙 ;

• 𝜓 is an active formula of k𝛼 -rule and 𝜙 ∈ {[𝛼]𝜓, ⟨𝛼⟩𝜓 };
• 𝜓 is the unique occurrence of 𝜙 in the sequent.

A thread in a derivation D is a maximal sequence of formulas occurring in sequents of D totally ordered with respect

to the immediate ancestor relation. Its first element is called starting point. A thread is progressing if its starting

point is a formula 𝜙 = [𝛼∗]𝜓 (also called the principal formula of the thread) which occurs as active formula of

k𝛼 -rules
7
infinitely often. A derivation is progressing if each infinite branch contains a progressing thread. We denote

by pLPD the set of progressing derivations.

Lemma 8. Each D ∈ pLPD is of the following shape

D1

⊢ Γ1,
[
𝛼∗
1

]
𝜙1 · · ·

D𝑛

⊢ Γ𝑛,
[
𝛼∗𝑛

]
𝜙𝑛

D0

⊢ Γ

where D0 is a finite open derivation with 𝑛 open premises of the form Γ𝑖 ,
[
𝛼∗
𝑖

]
𝜙𝑖 and such that

[
𝛼∗
𝑖

]
𝜙𝑖 is the starting point

of a progressing thread in D for all 𝑖 ∈ {1, . . . , 𝑛}.

Proof. By definition, each infinite branch of D contains a progressing thread, which must have a starting point. We

conclude by letting D0 be the approximation of D with open premises all such nodes. □

We can easily prove that if a formula is valid in PDL, then it is derivable in pLPD
cut

.

Lemma 9. The set of derivations pLPD ∪ cut is complete for PDL.

Proof. Each axiom in Figure 2 is derivable in pLPD, that is, there is a derivation with conclusion the axiom formula

defined as follows (see also Figure 5):

• PL: the sub-system {⊤, ax,w,∧,∨} is a well-known sound and complete sequent system for classical logic (see

[72], where the system is called the system G3𝑝);

• Neg is immediate by definition of the negation;

• A∅ is proven using a single instance of [∅];
• A𝜖 , A; and K are straightforward using rule ax, ∧, ∨ and k𝛼 ;

• A? is also straightforward using rule ax, ∧, ∨ and [?] and ⟨?⟩;
• A⊕ (resp. A★) require the use of rules rule ax, ∧, ∨, and both [⊕] and ⟨⊕⟩ (resp. [∗] and ⟨∗⟩) plus the rule w.

Moreover, each rule in Figure 2 is derivable in pLPD, that is, there is an open derivation in pLPD with the same

conclusion of the rule and with a single open premise which is the same of the premise of the rule. Rules mp and nec

are derivable as shown in Equation (4) below, while the loop-invariance rule (li) can be simulated by the progressive

infinite derivation shown in Figure 6. Note that right premise of the cut-rule at the bottom of the derivation in Figure 6

is the axiom AInd mentioned in Remark 1.

7
It is easy to show that the principal formula of a progressing thread which is active for k𝛼 -rules infinitely often, is also principal for [∗]-rules infinitely
often. More precisely, occurrence of these rules are interleaved and we can easily show that our progress condition is equivalent to the one in [19]

formulated by means of [∗]-rules.
Manuscript submitted to ACM

8 Acclavio et al.

K :

ax

⊢ 𝜙, 𝜙
ax

⊢ 𝜓,𝜓
∧

⊢ 𝜙 ∧𝜓, 𝜙,𝜓
k𝛼

⊢ ⟨𝛼⟩ (𝜙 ∧𝜓), ⟨𝛼⟩ 𝜙, [𝛼]𝜓
2×∨

⊢ ⟨𝛼⟩ (𝜙 ∧𝜓) ∨
(
⟨𝛼⟩ 𝜙 ∨ [𝛼]𝜓

)
A𝜖 :

ax

⊢ 𝜙, 𝜙
⟨𝜖 ⟩

⊢ ⟨𝜖⟩ 𝜙, 𝜙
∨
⊢ ⟨𝜖⟩ 𝜙 ∨ 𝜙

ax

⊢ 𝜙, 𝜙
[𝜖]

⊢ [𝜖] 𝜙, 𝜙
∨
⊢ [𝜖] 𝜙 ∨ 𝜙

∧
⊢ (⟨𝜖⟩ 𝜙 ∨ 𝜙) ∧ ([𝜖] 𝜙 ∨ 𝜙)

A? :

ax

⊢ 𝜓 ∧ 𝜙,𝜓 ∨ 𝜙
⟨?⟩

⊢ ⟨𝜓?⟩ 𝜙, (𝜓 ∨ 𝜙)
∨
⊢ ⟨𝜓?⟩ 𝜙 ∨ (𝜓 ∨ 𝜙)

ax

⊢ 𝜓 ∨ 𝜙, (𝜓 ∧ 𝜙)
[?]

⊢ [𝜓?] 𝜙, (𝜓 ∧ 𝜙)
∨
⊢ [𝜓?] 𝜙 ∨ (𝜓 ∧ 𝜙)

∧
⊢ (⟨𝜓?⟩ 𝜙 ∨ (𝜓 ∨ 𝜙)) ∧ ([𝜓?] 𝜙 ∨ (𝜓 ∧ 𝜙))

A; :

ax

⊢ ⟨𝛼⟩ ⟨𝛽⟩ 𝜙, [𝛼] [𝛽] 𝜙
⟨?⟩

⊢ ⟨𝛼 ; 𝛽⟩ 𝜙, [𝛼] [𝛽] 𝜙
∨
⊢ ⟨𝛼 ; 𝛽⟩ 𝜙 ∨ [𝛼] [𝛽] 𝜙

ax

⊢ [𝛼] [𝛽] 𝜙, ⟨𝛼⟩ ⟨𝛽⟩ 𝜙
[?]

⊢ [𝛼 ; 𝛽] 𝜙, ⟨𝛼⟩ ⟨𝛽⟩ 𝜙
∨
⊢ [𝛼 ; 𝛽] 𝜙 ∨ ⟨𝛼⟩ ⟨𝛽⟩ 𝜙

∧
⊢ (⟨𝛼 ; 𝛽⟩ 𝜙 ∨ [𝛼] [𝛽] 𝜙) ∧ ([𝛼 ; 𝛽] 𝜙 ∨ ⟨𝛼⟩ ⟨𝛽⟩ 𝜙)

A⊕ :

ax

⊢ ⟨𝛼⟩ 𝜙 [𝛼] 𝜙
w

⊢ ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙, [𝛼] 𝜙

ax

⊢ ⟨𝛽⟩ 𝜙, [𝛼] 𝜙
w

⊢ ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙, [𝛼] 𝜙
∧

⊢ ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙, [𝛼] 𝜙 ∧ [𝛽] 𝜙
⟨⊕⟩

⊢ ⟨𝛼 ⊕ 𝛽⟩ 𝜙, [𝛼] 𝜙 ∧ [𝛽] 𝜙
∨
⊢ ⟨𝛼 ⊕ 𝛽⟩ 𝜙 ∨ ([𝛼] 𝜙 ∧ [𝛽] 𝜙)

ax

⊢ [𝛼] 𝜙, ⟨𝛼⟩ 𝜙
w

⊢ [𝛼] 𝜙, ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙

ax

⊢ [𝛽] 𝜙, ⟨𝛽⟩ 𝜙
w

⊢ [𝛽] 𝜙, ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙
[⊕]

⊢ [𝛼 ⊕ 𝛽] 𝜙, ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙
2×∨

⊢ [𝛼 ⊕ 𝛽] 𝜙 ∨ (⟨𝛼⟩ 𝜙 ∨ ⟨𝛽⟩ 𝜙)
∧ (

⟨𝛼 ⊕ 𝛽⟩ 𝜙 ∨ ([𝛼] 𝜙 ∧ [𝛽] 𝜙)
)
∧

(
[𝛼 ⊕ 𝛽] 𝜙 ∨ (⟨𝛼⟩ 𝜙 ∨ ⟨𝛽⟩ 𝜙)

)

A∗ :

ax

⊢ 𝜙, 𝜙
w

⊢ 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙, 𝜙

ax

⊢ ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙, [𝛼] [𝛼∗]𝜙
w

⊢ 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙, [𝛼] [𝛼∗]𝜙
⊢ 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙, (𝜙 ∧ [𝛼] [𝛼∗]𝜙)

⟨∗⟩
⊢ ⟨𝛼∗⟩ 𝜙, (𝜙 ∧ [𝛼] [𝛼∗]𝜙)

∨
⊢ ⟨𝛼∗⟩ 𝜙 ∨ (𝜙 ∧ [𝛼] [𝛼∗]𝜙)

ax

⊢ 𝜙, 𝜙
w

⊢ 𝜙, 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙

ax

⊢ [𝛼] [𝛼∗] 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙
w

⊢ [𝛼] [𝛼∗] 𝜙, 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙
[∗]

⊢ [𝛼∗] 𝜙, 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙
2×∨

⊢ [𝛼∗] 𝜙 ∨ (𝜙 ∨ ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙)
∧ (

⟨𝛼∗⟩ 𝜙 ∨ (𝜙 ∧ [𝛼] [𝛼∗]𝜙)
)
∧

(
[𝛼∗] 𝜙 ∨ (𝜙 ∨ ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙)

)
Fig. 5. Non-trivial derivations of the axioms of PDL in LPD.

mp nec

⊢ 𝜙

⊢ 𝜙 ∨𝜓

ax

⊢ 𝜙, 𝜙
ax

⊢ 𝜓,𝜓
∧

⊢ 𝜙 ∧𝜓, 𝜙,𝜓
cut

⊢ 𝜙,𝜓
cut

⊢ 𝜓

⊢ 𝜙
k𝛼

⊢ [𝛼] 𝜙

(4)

This allows us to conclude because ⊢PDL 𝜙 iff there is a derivation in the Hilbert system made of the axioms and

rules in Figure 2, and each of such a derivation can be translated into a derivation in pLPD
cut

by replacing each axiom

and rule with the ones provided. □

Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 9

⊢ 𝜙, [𝛼] 𝜙
∨
⊢ 𝜙 ∨ [𝛼] 𝜙

k𝛼

⊢ [𝛼∗] (𝜙 ∨ [𝛼] 𝜙)

ax

⊢ 𝜙, 𝜙
w

⊢ 𝜙, ⟨𝛼∗⟩ (𝜙 ∧ ⟨𝛼⟩ 𝜙), 𝜙

ax

⊢ 𝜙, 𝜙
2×w

⊢ 𝜙, 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ (𝜙 ∧ ⟨𝛼⟩ 𝜙), [𝛼] [𝛼∗] 𝜙

[∗] ★
⊢ 𝜙, ⟨𝛼∗⟩ (𝜙 ∧ ⟨𝛼⟩ 𝜙), 𝜙, [𝛼∗] 𝜙

k𝛼

⊢ ⟨𝛼⟩ 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ (𝜙 ∧ ⟨𝛼⟩ 𝜙), [𝛼] [𝛼∗] 𝜙
w

⊢ 𝜙, ⟨𝛼⟩ 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ (𝜙 ∧ ⟨𝛼⟩ 𝜙), [𝛼] [𝛼∗] 𝜙
∧

⊢ 𝜙, 𝜙 ∧ ⟨𝛼⟩ 𝜙, ⟨𝛼⟩ ⟨𝛼∗⟩ (𝜙 ∧ ⟨𝛼⟩ 𝜙), [𝛼] [𝛼∗] 𝜙
⟨∗⟩

⊢ 𝜙, ⟨𝛼∗⟩ (𝜙 ∧ ⟨𝛼⟩ 𝜙), [𝛼] [𝛼∗] 𝜙
[;] ★

⊢ 𝜙, ⟨𝛼∗⟩ (𝜙 ∧ ⟨𝛼⟩ 𝜙), [𝛼∗] 𝜙
cut

⊢ 𝜙, [𝛼∗] 𝜙

Fig. 6. Derivability of the loop invariance rule in LPD
cut

.

3.3 Cut-Elimination in LPD
cut

In order to prove cut-elimination in LPD, we adapt the proof in [2, 3] to define an infinitary rewriting defined from the

cut-elimination steps in Figure 7 able to remove all cut-rules from progressing derivations in LPD
cut

.

Remark 10. To reduce the cases taken into account in Figure 7, we restrain the rule k𝛼 to atomic programs 𝛼 ∈ I. The

general instance of this rule is derivable reasoning by induction on the structure of 𝛼 ∈ P using this atomic version of

the rule k𝛼 and rules [⊕] , ⟨⊕⟩ , [;] , ⟨; ⟩ , [∗] , ⟨∗⟩.

The proof of cut-elimination can be summarized as follows:

• we prove that the set of approximations of derivations of a same sequent Γ is a Scott domain;

• we then define maximal (non-deterministic) cut-elimination strategies as specific sets of views, that is, maximal

sequences of open derivations, obtained by applying cut-elimination steps to open derivations over LPD
cut

. In

these strategies we require a coherence condition ensuring that each view in the strategy starting from an open

derivation D can be ‘projected’ (resp. ‘lifted’) to a view in the strategy over an open derivation D′
such that D

is an approximation of D′
(resp. D′

is an approximation of D).

• we prove that each view 𝜎 in a cut-elimination strategy 𝔥, where cut-elimination steps are applied bottom-up,

defines a Scott-continuous function 𝑓𝜎 , which associates to each derivation D the derivation which is the limit

of succession of the greatest cut-free approximations the derivations in view 𝜎 ;

• we conclude by showing that each 𝑓𝜎 (D) is a well-defined and progressing derivations.

Remark 11. Note that in [2] the authors rely on the confluence of cut-elimination over finite approximations. This

property is due to the fact that the system is inspired by the parsimonious linear logic [53, 54], a variant of linear logic

[25] following the tradition of light and soft linear logic [26, 47, 52].

However, such a desirable feature is not possible in LPD since this system is an extension of a sequent calculus for

classical logic (see Remark 16). There we have to define non-deterministic cut-elimination strategies. Note that the lack

of confluence does not jeopardize our results because we are interested in proving cut-elimination, not in studying a

Curry-Howard correspondence for PDL – which would require a different approach because the denotational semantics

of LPD should extend the one of LK (see, e.g., [62]).

We first recall standard definitions on Scott domains and Scott-continuous functions.

Definition 12. Let 𝑆 be a set, 𝑆 ′ be a subset of 𝑆 , and let < be a partial order over 𝑆 . We say that 𝑆 is a direct set if for
all 𝑥,𝑦 ∈ 𝑆 there is 𝑧 ∈ 𝑆 such that 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑥 . An upper bound of 𝑆 ′ is an element 𝑥 ∈ 𝑆 such that 𝑦 ≤ 𝑥 for all

Manuscript submitted to ACM

10 Acclavio et al.

⊢ Γ, 𝜙

⊢ Γ
w

⊢ Γ, 𝜙
cut

⊢ Γ

⇝ ⊢ Γ ⊢ Γ, 𝜙
ax

⊢ 𝜙, 𝜙
cut

⊢ Γ, 𝜙

⇝ ⊢ Γ, 𝜙

⊢ Γ, 𝜙 ⊢ Γ,𝜓
∧

⊢ Γ, 𝜙 ∧𝜓

⊢ Γ, 𝜙,𝜓
∨
⊢ Γ, 𝜙 ∨𝜓

cut

⊢ Γ

⇝ ⊢ Γ, 𝜙

⊢ Γ,𝜓 ⊢ Γ, 𝜙,𝜓
cut

⊢ Γ, 𝜙
cut

⊢ Γ

⊢ Γ, [∅] 𝜙
⊢ Γ

[∅]
⊢ Γ, ⟨∅⟩ 𝜙

cut

⊢ Γ

⇝ ⊢ Γ

⊢ Γ, 𝜙
[𝜖]

⊢ Γ, [𝜖] 𝜙
⊢ Γ, 𝜙

⟨𝜖 ⟩
⊢ Γ, ⟨𝜖⟩ 𝜙

cut

⊢ Γ

⇝
⊢ Γ, 𝜙 ⊢ Γ, 𝜙

cut

⊢ Γ

⊢ Γ, 𝜙
k𝛼 ⊢ ⟨𝛼⟩ Γ, [𝛼] 𝜙

⊢ 𝜙, Γ,𝜓
k𝛼

⊢ ⟨𝛼⟩ 𝜙, ⟨𝛼⟩ Γ, [𝛼]𝜓
cut

⊢ ⟨𝛼⟩ Γ, [𝛼]𝜓
⇝

⊢ Γ, 𝜙 ⊢ 𝜙, Γ,𝜓
cut

⊢ Γ,𝜓
k𝛼 ⊢ ⟨𝛼⟩ Γ, [𝛼]𝜓

⊢ Γ, 𝜙 ∨𝜓
[?]

⊢ Γ, [𝜓?] 𝜙
⊢ Γ, 𝜙 ∧𝜓

⟨?⟩
⊢ Γ, ⟨𝜓?⟩ 𝜙

cut

⊢ Γ

⇝
⊢ Γ, 𝜙 ∨𝜓 ⊢ Γ, 𝜙 ∧𝜓

cut

⊢ Γ

⊢ Γ, [𝛼] 𝜙 ⊢ Γ, [𝛽] 𝜙
[⊕]

⊢ Γ, [𝛼 ⊕ 𝛽] 𝜙
⊢ Γ, ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙

⟨⊕⟩
⊢ Γ, ⟨𝛼 ⊕ 𝛽⟩ 𝜙

cut

⊢ Γ

⇝ ⊢ Γ, [𝛼] 𝜙
⊢ Γ, [𝛽] 𝜙 ⊢ Γ, ⟨𝛼⟩ 𝜙, ⟨𝛽⟩ 𝜙

cut

⊢ Γ, ⟨𝛼⟩ 𝜙
cut

⊢ Γ

⊢ Γ, [𝛼] [𝛽] 𝜙
[;]

⊢ Γ, [𝛼 ; 𝛽] 𝜙
⊢ Γ, ⟨𝛼⟩ ⟨𝛽⟩ 𝜙

⟨;⟩
⊢ Γ, ⟨𝛼 ; 𝛽⟩ 𝜙

cut

⊢ Γ

⇝
⊢ Γ, [𝛼] [𝛽] 𝜙 ⊢ Γ, ⟨𝛼⟩ ⟨𝛽⟩ 𝜙

cut

⊢ Γ

⊢ Γ, 𝜙 ⊢ Γ, [𝛼 ;𝛼∗] 𝜙
[∗]

⊢ Γ, [𝛼∗] 𝜙
⊢ Γ, 𝜙, ⟨𝛼 ;𝛼∗⟩ 𝜙

⟨∗⟩
⊢ Γ, ⟨𝛼∗⟩ 𝜙

cut

⊢ Γ

⇝ ⊢ Γ, 𝜙

⊢ Γ, [𝛼 ;𝛼∗] 𝜙 ⊢ Γ, 𝜙, ⟨𝛼 ;𝛼∗⟩ 𝜙
cut

⊢ Γ, 𝜙
cut

⊢ Γ

⊢ Γ1, 𝜙
r1 ⊢ Γ, 𝜙 ⊢ 𝜙,Δ
cut

⊢ Γ,Δ

⇝

⊢ Γ1, 𝜙 ⊢ 𝜙,Δ
cut

⊢ Γ1,Δ
r1 ⊢ Γ,Δ

⊢ Γ1, 𝜙 ⊢ Γ2
r2 ⊢ Γ, 𝜙 ⊢ Δ, 𝜙

cut

⊢ Γ,Δ

⇝

⊢ Γ1, 𝜙 ⊢ 𝜙,Δ
cut

⊢ Γ1,Δ ⊢ Γ2
r2 ⊢ Γ,Δ

with r1 unary rule with r2 ∈ {∧, [⊕] , [∗]}

Fig. 7. Cut-elimination steps in LPD (with k𝛼 restricted on 𝛼 ∈ I). The steps in the bottom-most row are called commutative.

𝑦 ∈ 𝑆 ; a supremum of 𝑆 ′ (also denoted
⊔

𝑆 ′) is an upper bound 𝑥 such that 𝑥 ≤ 𝑦 for any 𝑦 upper bound of 𝑆 ′. A 𝑐 ∈ 𝑆

is compact if for all direct subset 𝑆 ′ ⊆ 𝑆 such that if

⊔
𝑆 ′ is defined and 𝑐 ≤ ⊔

𝑆 ′, then 𝑐 ≤ 𝑥 for a 𝑥 ∈ 𝑆 .

A Scott domain is a pair𝔇 = ⟨𝑆, <⟩ such that:

• 𝔇 is directed complete: every directed subset of 𝑆 has a supremum;

• 𝔇 is bounded complete: every subset which has an upper bound has a supremum;

• 𝔇 is algebraic: every element in𝔇 can be seen as the supremum of a direct set of compact elements of D.

Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 11

A function 𝑓 over a Scott domain𝔇 is Scott-continuous if it preserves suprema, that is, if 𝑓 (⊔ 𝑆 ′) = ⊔(𝑓 (𝑆 ′)).

Notation 13. We denote by oLPD the set of open derivations over LPD
cut

and by KD the set of approximations of a

D ∈ oLPD. If D ∈ oLPD, we denote by cf (D) the greatest (w.r.t. ⪯) cut-free approximation of D.

Proposition 14. The set of open derivations in oLPD with conclusion Γ is a Scott domain (w.r.t. ≺) with compact elements

the open derivations with conclusion Γ.

Proof. Directed and bounded completeness follows by definition of ⪯. Algebricity follows by the remark that each

open derivation D can be seen as the supremum of the set KD . □

We now can define maximal cut-elimination strategies as sequences of open derivations obtained by applying the

cut-elimination steps to open derivations.

Definition 15. A cut-elimination view for D ∈ oLPD is a countable sequence 𝜎 = 𝜎0 · 𝜎1 · · ·𝜎𝑛 · · · (with length

ℓ (𝜎) ∈ N∪ {∞}) of open derivations in oLPD with 𝜎0 = D and such that 𝜎𝑖+1 is obtained by applying a cut-elimination

step to 𝜎𝑖 .

Let 𝔰 be a family of views. We denote by 𝔰D the set of views starting with D, that is, 𝔰D := {𝜎 ∈ 𝔰 | 𝜎0 = D}. We

say that 𝔰 is a maximal cut-elimination strategy (or mces) if:

• 𝔰 is total: 𝔰D ≠ ∅ for each D ∈ oLPD;

• 𝔰 containsmaximal views only: no cut-elimination step can be applied to 𝜎ℓ (𝜎) for any 𝜎 ∈ 𝔰;

• 𝔰 ismemory-less: if 𝜎 ∈ 𝔰 and 𝜎𝑖+1 = D, then 𝜎0 · · ·𝜎𝑖 · 𝜎′ ∈ 𝔰 for each 𝜎′ ∈ 𝔰D .

• 𝔰 is coherent over approximations: if D′ ≺ D and r is a cut-rule occurring in both D and D′
, then there is a

𝜎 ∈ 𝔰D such that 𝜎1 is obtained by applying a cut-elimination step to r iff there is a 𝜎′ ∈ 𝔰D′ such that 𝜎′
1
is

obtained by applying the same cut-elimination step to r.

Amces 𝔰 is bottom-up if in each 𝜎 ∈ 𝔰, each derivation 𝜎𝑖+1 is obtained applying a cut-elimination step to a bottom-most

reducible cut-rule in 𝜎𝑖 .

The non-deterministic function over open derivations 𝑓𝔰 (with 𝔰 a bottom-up mces) is defined by letting

𝑓𝜎 (D) =
ℓ (𝜎)⊔
𝑖=0

cf (𝜎𝑖) and 𝑓𝔰 (D) =
⋃
𝜎∈𝔰D

𝑓𝜎 (D) .

Remark 16. The requirement for strategies of being memory-less (together with maximal and total) ensures that the

suffix of any cut-elimination view in 𝔰 is also a cut-elimination view in 𝔰, that is, for all 𝜎 ∈ 𝔰 and 𝑖 ∈ N there is a view

𝜎𝑖+ ∈ 𝔰 such that 𝜎𝑖+𝑘 = 𝜎𝑖+
𝑘

for all 𝑘 ∈ N.

The coherence condition over approximations guarantees that from every view in a strategy starting from D we can

extract views starting from any approximation of D, and conversely that each view starting from D can be seen as an

upper bound of all views starting from a proper approximation of D. This condition is not present in [2], where the

cut-elimination is confluent, but it is required here to guarantee that limits can be defined. In fact, none of the other

conditions on strategies ensures any sort of completeness – intended as the property that a strategy takes into account

all sequences of derivation obtained by applying all possible cut-elimination steps – nor a weaker of this property

demanding that if D reduces to D′
and D′

via two cut-elimination steps applied to a same cut-rule of D, then we

must have (at least) a 𝜎′ and a 𝜎′ in 𝔰D such that 𝜎′
1
= D′

and 𝜎′
1
= D′

. For example, we could have a derivation D as

Manuscript submitted to ACM

12 Acclavio et al.

shown below where D could, a priori, reduce either to D′
or to D′

by applying a same cut-elimination step to the

same cut-rule (i.e., D′
and D′

are a Lafont pair [27]), and a strategy 𝔰 containing D · D′
but not D · D′

.

D′

⊢ Γ
w

⊢ Γ, 𝜙

D′

⊢ Γ
w

⊢ Γ, 𝜙
cut

⊢ Γ

with D′
and D′

cut-free

Proposition 17. If 𝔥 is a bottom-up mces, then 𝑓𝔥 is Scott-continuous.

Proof. For each 𝑖 ∈ N and 𝜎D ∈ 𝔥 with D ∈ oLPD, the derivation 𝜎𝑖 is obtained by applying a finite number of

cut-elimination steps to the bottom-most cut-rules in 𝜎0 = D. We let k𝑖 (D) be defined as the greatest approximation

of D containing all nodes of D which are not above cut-rules (of D) which involved in a cut-elimination step applied

to reach 𝜎𝑖 . Then we have cf (𝜎𝑖) = cf (𝜎k𝑖 (D)
𝑖

) ⪯ 𝑓𝜎k𝑖 (D) (k𝑖 (D)) for a suitable 𝜎k𝑖 (D) ∈ 𝔥 which exists because of the

coherence of 𝔥. Thus 𝑓𝜎 (D) ⪯ ⊔
𝑖≥0 𝑓𝜎𝑖 (k𝑖 (D)), henceforth 𝑓𝜎 (D) = ⊔

𝑖≥0 𝑓𝜎k𝑖 (D) (k𝑖 (D)). Thanks to the coherence

condition, this allows us to conclude because 𝑓𝜎 (D) ⪰ ⊔
D′∈KD 𝑓𝜎 ′ (D′), by definition (assuming 𝜎′ ∈ 𝔥D′), and

𝑓𝔥 (D) = ⊔
D′∈KD 𝑓 (D′). □

Theorem 18. The rule cut is admissible in pLPD.

Proof. Since we can always define a bottom-up mces, to conclude it suffices to prove that if D ∈ pLPD, then 𝑓𝜎 (D)
is a well-defined progressing derivation for any 𝜎 ∈ 𝔥D . For this purpose, we prove that each branch B in 𝑓𝜎 (D) does
not end with an open premise and, if infinite, it contains a progressing thread.

If there is a 𝑘 ∈ N such that B occurs in 𝜎𝑘 (therefore in all 𝜎𝑖 with 𝑖 ≥ 𝑘), then, either B is finite, ending with

a ax-rule (since D has no open branches), or infinite. Moreover, B contains a progressing thread since progressing

threads are preserved by (finitely many) cut-elimination steps.

Otherwise, we define the open branch B𝑖 as the set of nodes in 𝜎𝑖 containing the nodes in B (seen as set of nodes)

strictly below any cut-rule in 𝜎𝑖 . Note that each B𝑖 can be seen as a finite subset of nodes in B, and that the sequence

(B𝑖)𝑖≥0 is well-ordered with supremum B by definition. The existence of a progressing thread 𝜌 in the infinite (therefore

not ending with an open premise) branch B is proven by remarking that each cut-elimination steps either do not

interact with k𝛼 -rules, or it is a cut-elimination step of the form k𝛼 -vs-k𝛼 . In the latter case, the sequence of nodes

in B𝑖+1 strictly longer than B𝑖 and it contains an additional ‘progressing point’ of the progressive thread of B with

respect to B𝑖 , that is, the number of k𝛼 -rules in B𝑖+1 with principal formula the one of the progressive thread of B is

one more than the one in B𝑖 . This ensures progressiveness of B, which is the supremum of (B𝑖)𝑖≥0.
Details can easily obtained by adapting the technique developed in [3], where the modality ! (resp. ?) can be

considered as a box (resp. a diamond), and the rule c!p can plays the same role of k𝛼 (and [∗]) to define the progressing

condition. □

3.4 Soundness and Completeness of pLPD

We conclude by proving soundness and completeness of pLPD with respect to PDL relying on the cut-elimination result.

The omitted details of the proofs provided in ??.

Lemma 19. If ⊢pLPD Γ, [𝛼∗] 𝜙 , then ⊢pLPD Γ, [𝛼𝑛] 𝜙 for any 𝑛 ∈ N.
Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 13

IH
⊢ Γ, [𝛼∗] 𝜙

∨
⊢ (∨ Γ) ∨ [𝛼∗] 𝜙

ax

⊢ Γ1, Γ1 · · ·
ax

⊢ Γ |Γ | , Γ |Γ |∧
⊢ ∧

Γ, Γ
w

⊢ ∧
Γ, Γ, [𝛼𝑛] 𝜙

D′
𝑛

⊢ ⟨𝛼∗⟩ 𝜙, [𝛼𝑛] 𝜙
w

⊢ ⟨𝛼∗⟩ 𝜙, Γ, [𝛼𝑛] 𝜙
∧

⊢ (∨ Γ) ∧ ⟨𝛼∗⟩ 𝜙, Γ, [𝛼𝑛] 𝜙
cut

⊢ Γ, [𝛼𝑛] 𝜙

where

D′
0

D′
1

D′
𝑛+1

ax

⊢ 𝜙, 𝜙
[𝜖]

⊢ 𝜙, [𝜖] 𝜙
w

⊢ 𝜙, ⟨𝛼 ;𝛼∗⟩ 𝜙, [𝜖] 𝜙
⟨∗⟩

⊢ ⟨𝛼∗⟩ 𝜙, [𝜖] 𝜙

ax

⊢ ⟨𝛼⟩ 𝜙, [𝛼] 𝜙
w

⊢ ⟨𝛼⟩ 𝜙, ⟨𝛼 ;𝛼∗⟩ 𝜙, [𝛼] 𝜙
⟨∗⟩

⊢ ⟨𝛼∗⟩ 𝜙, [𝛼] 𝜙

D′
𝑛−1

⊢ ⟨𝛼∗⟩ 𝜙,
[
𝛼𝑛−1

]
𝜙

k𝛼

⊢ ⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙, [𝛼]
[
𝛼𝑛−1

]
𝜙

⟨;⟩+[;]
⊢ ⟨𝛼 ;𝛼∗⟩ 𝜙, [𝛼𝑛] 𝜙

w+⟨∗⟩
⊢ ⟨𝛼∗⟩ 𝜙, [𝛼𝑛] 𝜙

Fig. 8. Derivations proving that if ⊢pLPD Γ, [𝛼∗] 𝜙 , then ⊢pLPD Γ, [𝛼𝑛] 𝜙 for any 𝑛 ∈ N.

Proof. It follows from Theorem 18 since we have a derivation D𝑛 defined as in Figure 8. □

To prove soundness and completeness of pLPD with respect to pLPD, we use the notion of Fischer-Ladner closure
of a formula 𝜙 . This is defined as the smallest set of formulas FL(𝜙) containing 𝜙 and such that the conditions in

Equation (5) hold.

FL(𝑝) = 𝑝 FL(𝑝) = 𝑝

FL(𝜙 ∧𝜓) ⊃ (FL(𝜙) ∪ FL(𝜓)) FL(𝜙 ∨𝜓) ⊃ (FL(𝜙) ∪ FL(𝜓))
FL([𝛼] 𝜙) ⊃ FL(𝜙) FL(⟨𝛼⟩ 𝜙) ⊃ FL(𝜙)
FL([𝜙?]𝜓) ⊃ (FL(𝜙) ∪ FL(𝜓)) FL(⟨𝜙?⟩𝜓) ⊃ (FL(𝜙) ∪ FL(𝜓))
FL([𝛼 ⊕ 𝛽] 𝜙) ⊃ (FL([𝛼] 𝜙) ∪ FL([𝛽] 𝜙)) FL(⟨𝛼 ⊕ 𝛽⟩ 𝜙) ⊃ (FL(⟨𝛼⟩ 𝜙) ∪ FL(⟨𝛽⟩ 𝜙))
FL([𝛼 ; 𝛽] 𝜙) ⊃ (FL([𝛼] [𝛽] 𝜙)) FL(⟨𝛼 ; 𝛽⟩ 𝜙) ⊃ (FL(⟨𝛼⟩ ⟨𝛽⟩ 𝜙))
FL([𝛼∗] 𝜙) ⊃ (FL([𝛼] [𝛼∗] 𝜙)) FL(⟨𝛼∗⟩ 𝜙) ⊃ (FL(⟨𝛼⟩ ⟨𝛼∗⟩ 𝜙))

(5)

If Γ is a sequent, then FL(Γ) := ⋃
𝜙∈Γ FL(𝜙).

Remark 20 (Fisher-Ladner Analyticity). By rules inspection, each sequent occurring in a derivation D ∈ LPD with

conclusion Γ is a subset of FL(Γ) = ⋃
𝜙∈Γ FL(𝜙). More precisely, if Δ is a premise of a rule with conclusion Γ, then

FL(Δ) ⊆ FL(Γ).

Theorem 21. Let Γ be a sequent. Then ⊢pLPD Γ iff ⊢PDL Γ.

Proof. Completeness of pLPD with respect to PDL is a consequence of Lemma 9 and cut-admissibility (Theorem 18).

To prove that pLPD is sound for PDL, we first observe that each rule in pLPD is locally sound, that is, if each premise

of a rule is valid in PDL, then its conclusion is. As a consequence, if a sequent Γ is a conclusion of a derivation D in

pLPD is not valid in PDL, we deduce that D must be infinite. Then, by Lemma 8, D can be written as a finite open

derivation with open premises of the form Γ, [𝛼∗] 𝜙 which are derivable in pLPD. We deduce that if the conclusion of

D is not valid in PDL, then there must exist a sequent of the form Γ, [𝛼∗] 𝜙 which is derivable in pLPD (via an infinite

Manuscript submitted to ACM

14 Acclavio et al.

derivation) but whose conclusion is not valid in PDL. Therefore to prove soundness it suffices to prove the the statement

for infinite derivations in pLPD with conclusion a sequent of the form Γ, [𝛼∗] 𝜙 .
Let Γ, [𝛼∗] 𝜙 and such that ⊢pLPD Γ, [𝛼∗] 𝜙 but ̸⊢PDL Γ, [𝛼∗] 𝜙 . We can assume Γ, [𝛼∗] 𝜙 to be minimal with respect

to the well-founded partial order over sequents defined by the inclusion of the Fisher-Lander closures of the sequents

(see Remark 20). By Lemma 4 there is a 𝑛 ∈ N minimal such that ̸⊢PDL Γ, [𝛼𝑛] 𝜙 , while by Lemma 19 we have that if

⊢pLPD Γ, [𝛼∗] 𝜙 ; then we must have that ⊢pLPD Γ, [𝛼∗] 𝜙 but ̸⊢PDL Γ, [𝛼∗] 𝜙 . This would only be possible if Γ, [𝛼∗] 𝜙 is

not minimal since all rules in pLPD are analytic as intended in Remark 20. Absurd. □

4 EMBEDDING OPERATIONAL SEMANTICS IN PROPOSITIONAL DYNAMIC LOGIC

We consider a new set of formulas defined as PDL-formulas where the programs in P are provided with an operational

semantics.

Definition 22. Let P be a set of programs possibly containing a set of tests T. An operational semantics for a set of
programs P with labels in L8 is a labeled binary relation between programs O ⊂ P × L × P whose elements are called

(labeled) transitions and may be written as 𝛼 𝛽 𝛾 instead of (𝛼, 𝛽,𝛾). We assume P contains a distinguished program

𝜖 (called terminated program) such that (𝜖, 𝛽,𝛾) ∉ O for any 𝛽 ∈ L and 𝛾 ∈ P. An operational semantics is finitely
branching if the set of {(𝛽,𝛾) | 𝛼 𝛽 𝛾} is finite for all 𝛼 ∈ P [4, Def. 2.2].

A trace is a sequential composition of labels
9
. A trace 𝛼 is valid for a program 𝛽 if there is a trace 𝛼 ′ such that

𝛼 = 𝑎;𝛼 ′ which is valid for a 𝛽′ such that 𝛽 𝑎 𝛽′. We denote by Tr(𝛼) the set of traces valid for 𝛼 . Two programs are

trace equivalent (denoted 𝛼 ∼Tr 𝛽) if Tr(𝛼) = Tr(𝛽).

Definition 23. The (operational) Fisher-Ladner closure of a formula 𝜙 is defined as the smallest set of formulas

closed with respect to conditions given for the Fisher-Ladner closure in Equation (5) plus the following:

FL([𝛼] 𝜙) ⊇ (FL([𝛽] [𝛾] 𝜙)) for all 𝛽 such that 𝛼 𝛽 𝛾

FL(⟨𝛼⟩ 𝜙) ⊇ (FL(⟨𝛽⟩ ⟨𝛾⟩ 𝜙)) for all 𝛽 such that 𝛼 𝛽 𝛾

Definition 24 (Dynamic Operational Logic). Let O be an finitely branching operational semantics for a set of programs

P. The set FP of P-formulas (or simply formulas when clear) is defined by the same grammar in Figure 1 by letting

I = L ∪ (P \ T) and by assuming that the set of propositional atoms A is such that T ⊆ {𝜙? | 𝜙 ∈ FP}.10

We write ⊢OPDL 𝜙 if 𝜙 is derivable using rules and axioms of PDL (Figure 2) plus the following axiom

AO : [𝛼] 𝜙 ⇔
©­­­«

∧
𝛼 𝛽 𝛾

[𝛽] [𝛾] 𝜙
ª®®®¬ (6)

The operational propositional dynamic logic of O (denoted OPDL, or simply OPDL if O is clear) is the set of

formulas such that ⊢OPDL 𝜙 .

Remark 25. In this paper we consider finitely branching operational semantics only. At the syntactical level, this

guarantees that the axiom AO is a finite formula, at the semantical level, that the set of reachable states from a state is

8
Unless specified otherwise, we can assume L ⊆ P.

9
We may use the color green for traces whenever we want to distinguish them from general programs (in red).

10
The condition on the set of propositional atoms ensures us that any evaluation of a conditional or a guard required in the operational semantics can be

evaluated in the logic itself without the need of an external language. See Section 5.2.

Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 15

finite. Note that this condition does not guarantee the so-called small world property for models of OPDL, nor that the

Fisher-Ladner closure of a sequent is finite.

Example 26. The standard PDL can be recovered as the OPDL where the set of programs P is the set of regular

programs generated from a set on instructions I and a set of tests T (i.e. a Kleene algebra with tests) provided with the

following operational semantics K :

𝑎; 𝛽 𝑎 𝛽 𝛼 ⊕ 𝛽 𝜖 𝛼 𝛼 ⊕ 𝛽 𝜖 𝛽

𝜙?; 𝛽 𝜙? 𝛽 𝛼∗ 𝜖 𝜖 𝛼∗ 𝜖 𝛼 ;𝛼∗
(7)

Note that if we identify the sequential composition, choice and iteration in P with the analogous operations we use to

generate regular languages, then each instance of the axiom AO in KPDL is derivable using the axioms A;, A∗ and A⊕ .

Example 27. In [8, 51] the authors study different versions of PDL for fragments of CCS
∗
[11], the restriction of

Milner’s CCS [56] that replaces recursion with iteration à la Kleene star. These versions can be recovered in OPDL by

instantiating it with the operational semantics considered in those papers. In particular, in [51] the parallel constructor

(see Figure 12) is restricted to be at the root of the syntactic tree of the terms representing processes, while in [8] the

parallel is entirely removed.

Example 28. The logic 𝜋DL in [9] is the OPDL of the unconventional version of the 𝜋-calculus where the replication

constructor (usually denoted by !) is replaced by the iteration (denoted by ∗). That is, the version of the 𝜋-calculus they

consider stays at the standard 𝜋-calculus as CCS∗ stays at the standard CCS.

Example 29. The logic APDL in [31] (based on an idea proposed in [66]) reminds a test-free fragment of the OPDL

where a program 𝛼𝑖
𝑗
is a path over a finite state automaton from a state 𝑖 to a state 𝑗 . However, the induction axiom in

APDL, which can be reformulated in the following way

A5 :
©­­­«
𝛼𝑘
𝑙
transition∧

𝛼𝑖
𝑗

𝛼𝑖
𝑘 𝛼𝑘

𝑙

[
𝛼𝑖
𝑘

] (
𝜙𝑘 ⇒

[
𝛼𝑘
𝑙

]
𝜙𝑙

)ª®®®¬ ⇒
(
𝜙𝑖 ⇒

[
𝛼𝑖𝑗

]
𝜙 𝑗

)
would be derivable in a OPDL with programs defined as paths over a finite state automaton only if 𝜙𝑖 = 𝜙 𝑗 = 𝜙𝑘 = 𝜙𝑙 .

Note that A5 require that 𝛼
𝑘
𝑙
is a transition in the automaton but there is no such condition on 𝛼𝑖

𝑘
(nor that 𝛼𝑖

𝑘
is an

elementary path). This may be problematic in an automaton containing loops.

4.1 Soundness and Completeness of OPDL

We conclude this section by proving soundness and completeness of the axiomaxization of OPDL with respect to its

semantics. We then consider define a sequent system extending LPD and we prove its soundness and completeness

with respect to OPDL by lifting the method used in the previous section.

Definition 30. A model (for OPDL) is a Kripke frame defined similarly to Definition 2 with the following differences:

• the meaning of each label L is defined by an accessibility relation 𝔪 (𝑎) ⊆𝑊 ×𝑊 ;

• the meaning of a (non-atomic) program 𝛼 ∈ P is defined as

𝔪 (𝛼) =
⋃

𝛼 𝛽 𝛾

𝔪 (𝛽 ;𝛾) . (8)

Manuscript submitted to ACM

16 Acclavio et al.

The satisfability relation ⊨ is defined analogously to Definition 2 by considering OPDL models.

In order to prove soundness and completeness, we recall that a formula 𝜙 is said refutable if ⊢ 𝜙 , and consistent if
not refutable, that is, ⊬ 𝜙 . Similarly, a (possibly infinite) set of formulas 𝐴 is consistent if there is no refutable finite

subset {𝜙1, . . . , 𝜙𝑛} of 𝐴, that is, if ⊬ 𝜙1 ∧ · · · ∧ 𝜙𝑛 .

Theorem 31. Let 𝜙 be a formula. Then ⊢OPDL 𝜙 iff ⊨OPDL 𝜙 .

Proof. Soundness of ⊢OPDL with respect to ⊨OPDL follows by definition of models. To prove the completeness, we

adapt the proof of completeness for PDL in [45]. In particular, proving completeness is equivalent to prove that if 𝜙 is

consistent, then ⊭ 𝜙 . By definition ⊭ 𝜙 holds iff there is a model𝔐 and a world𝑤 of 𝔐 such that𝔐,𝑤 ⊭ 𝜙 , therefore

𝔐,𝑤 ⊨ 𝜙 . For each formula 𝜙 construct such a model𝔐𝜙 as follows:

• the model 𝔐𝜙 has a world 𝑤𝐴 for each maximal consistent sets of formulas 𝐴 such that, for each 𝜓 ∈ FL(𝜙),
either𝜓 ∈ 𝐴 or𝜓 ∈ 𝐴;

• for each 𝑎 ∈ L we have (𝑤𝐴,𝑤𝐵) ∈ 𝔪 (𝑎) iff 𝐴 ∪ ⟨𝑎⟩ 𝐵 is a consistent set of formulas.

In𝔐𝜙 , the following properties hold:

• if 𝐴 ∪ ⟨𝛼⟩ 𝐵 is consistent, then (𝑤𝐴,𝑤𝐵) ∈ 𝔪 (𝛼);
• if ⟨𝛼⟩𝜓 ∈ FL(𝜙) and𝑤𝐴 ∈ 𝔪 (⟨𝛼⟩𝜓), then there is a𝑤𝐵 such that (𝑤𝐴,𝑤𝐵) ∈ 𝔪 (𝛼);
• for any𝜓 ∈ FL(𝜙), we have that𝑤𝐴 ∈ 𝔪 (𝜓) iff𝜓 ∈ 𝐴;

We conclude that if 𝜙 is consistent, then 𝔪 (𝜙) ≠ ∅; therefore there is𝑤𝐴 such that𝔐𝜙 ,𝑤𝐴 ⊨ 𝜙 . □

Definition 32. We define the sequent system LOPD = LPD ∪ {[O] , ⟨O⟩} defined by the rules in Figure 4 plus the two

following rules capturing the axiom AO ,

⊢ Γ, [𝛽1] [𝛾1] 𝜙 · · · ⊢ Γ, [𝛽𝑛] [𝛾𝑛] 𝜙
[O] †

⊢ Γ, [𝛼] 𝜙

⊢ Γ, ⟨𝛽1⟩ ⟨𝛾1⟩ 𝜙, . . . , ⟨𝛽𝑛⟩ ⟨𝛾𝑛⟩ 𝜙
⟨O⟩ †

⊢ Γ, ⟨𝛼⟩ 𝜙
(9)

where the side condition † requires that the set {(𝛽𝑖 , 𝛾𝑖) | 𝑖 ∈ {1, . . . , 𝑛}} = {(𝛽,𝛾) | 𝛼 𝛽 𝛾} is finite.
The definition of progressive derivation in LOPD is obtained by replacing any occurrence of LPD in Definition 7

with LOPD. We denote by pLOPD the set of progressing derivations in LOPD.

Remark 33. The restriction on the operational semantics discussed in Remark 25 also guarantees that the sequent rules

in Equation (9) capturing the axiom AO have a finite number of premises (in the case of the rule [O]) and finite-sequent
premise (in the case of the rule ⟨O⟩).

Theorem 34. The rule cut is admissible in LOPD.

Proof. The proof of cut-elimination for progressing derivations in LOPD ∪ {cut} is similar to the one provided

Section 3.3 and it only requires to consider the additional cut-elimination step in Figure 11, which do not affect any of

the reasoning on threads which are crucial to guaranteeing the preservation of progressing condition in Section 3.3. □

Theorem 35. Let Γ be a sequent. Then ⊢pLOPD Γ iff ⊢OPDL Γ.

Proof. We conclude by Theorem 34 since the axiom OAtom is derivable in LOPD (see Figure 9). Note that contrary

to what happens in PDL, the Fisher-Ladner closure of a formula in OPDL may be infinite. However, the partial order

over sequents in Remark 20 used in the proof of Theorem 21 is still well-founded. □
Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 17


ax

⊢ ⟨𝛽𝑖 ⟩ ⟨𝛾⟩ 𝜙, [𝛽𝑖] [𝛾] 𝜙
(𝑛−1)×w

⊢ ⟨𝛽1⟩ [𝛾]𝜙, . . . , ⟨𝛽𝑛⟩ [𝛾]𝜙, [𝛽𝑖] [𝛾] 𝜙
⟨O⟩

⊢ ⟨𝛼⟩ 𝜙, [𝛽𝑖] [𝛾] 𝜙

𝛽∈𝑋
∧

⊢ ⟨𝛼⟩ 𝜙,
(∧𝑛

𝑖=1 [𝛽𝑖] [𝛾] 𝜙
)

∨
⊢ ⟨𝛼⟩ 𝜙 ∨

(∧𝑛
𝑖=1 [𝛽𝑖] [𝛾] 𝜙

)


ax

⊢ [𝛽𝑖] [𝛾] 𝜙, ⟨𝛽𝑖 ⟩ ⟨𝛾⟩ 𝜙
(𝑛−1)×w

⊢ [𝛽𝑖] [𝛾] 𝜙, ⟨𝛽1⟩ ⟨𝛾⟩ 𝜙, . . . , ⟨𝛽𝑛⟩ ⟨𝛾⟩ 𝜙
(𝑛−1)×∨

⊢ [𝛽𝑖] [𝛾] 𝜙,
(∨𝑛

𝑖=1 ⟨𝛽𝑖 ⟩ ⟨𝛾⟩ 𝜙
)

𝛽∈𝑋
[O]

⊢ [𝛼] 𝜙,
(∨𝑛

𝑖=1 ⟨𝛽𝑖 ⟩ ⟨𝛾⟩ 𝜙
)

∨
⊢ [𝛼] 𝜙 ∨

(∨𝑛
𝑖=1 ⟨𝛽𝑖 ⟩ ⟨𝛾⟩ 𝜙

)
∧

⊢ [𝛼] 𝜙 ⇔
(∧𝑛

𝑖=1 [𝛽𝑖] [𝛾] 𝜙
)

Fig. 9. Derivation in pLOPD of the axiom OAtom, where we are assuming {𝛽1, . . . , 𝛽𝑛 } = {𝛽 ∈ L | 𝛼 𝛽 𝛾 }.

Theorem 36. Let 𝛼, 𝛽 ∈ P. Then ⊢OPDL [𝛼] 𝜙⇔[𝛽] 𝜙 iff 𝛼 ∼Tr 𝛽 .

Proof. By definition of ∼Tr we have that 𝛼 𝛼1 𝛼 ′ iff 𝛽 𝛼1 𝛽′. We conclude by induction on size length of the

(finite) prefixes of traces in Tr(𝛼) = Tr(𝛽). □

Remark 37. As written, the rule [O] introduces (bottom-up) a branching during proof search which corresponds to

the branching in the label transition system of the program execution. However, it would be desirable to refine such a

rule in order to distinguish the branching due to interleaving concurrency from the branching due to internal choices

of the system. More precisely, using the terminology from [6, 33, 49], interleaving concurrency is a form of ‘don’t care’

non-determinism, depending on inessential choices introduced by the syntax because of its limitations in handling

concurrency, while internal choices cause a ‘don’t know’ non-determinism, requiring us to take into account all possible

evolution of the system in order to overcome this lack of knowledge about the next state of a computation. In proof

theory, the ‘don’t care’ non-determinism is considered inessential in defining a notion of equivalence for proofs, and it

is usually captured by simple independent rule permutations (see Figure 10) while the ‘don’t know’ non-determinism is

the responsible of having different proofs.

For this purpose, it would suffice to define a notion of concurrency between two elements (𝛼, 𝛽1, 𝛾1) and (𝛼, 𝛽2, 𝛾2)
in O by requiring the existence of a program 𝛾 ′ such that

𝛾1

𝛼 𝛾 ′

𝛾2

𝛽1

𝛽2

𝛽2

𝛽1

with (𝛾1, 𝛽2, 𝛾 ′), (𝛾2, 𝛽1, 𝛾 ′) ∈ O

and restrict the side condition † of the rules [O] and ⟨O⟩ to sets of pairs such that (𝛼, 𝛽1, 𝛾1) and (𝛼, 𝛽2, 𝛾2) are
concurrent for each for each (𝛽1, 𝛾1) and (𝛽2, 𝛾2) in †. The adequacy result for the calculus with such a restricted rule

is proven by showing, modulo rule permutations, that the general and restricted version of the rules are inter-definable.

5 CONCURRENCY THEORY MEETS PDL

In this section we provide two case studies of languages for concurrent systems: Milner’s Calculus of Communicating

Systems (CCS) [56], and a theory ofChoreographic Programming [59]. The first provides an archetypal case of concurrency
Manuscript submitted to ACM

18 Acclavio et al.

⊢ Γ,Δ′, Σ′
r2 ⊢ Γ,Δ′, Σ
r1 ⊢ Γ,Δ, Σ

≡
⊢ Γ,Δ′, Σ′

r1 ⊢ Γ,Δ, Σ′
r2 ⊢ Γ,Δ, Σ

Γ′, 𝜙
r2

Γ, 𝜙 Δ,𝜓
r1

Γ,Δ, Σ

≡
Γ′, 𝜙 Δ,𝜓

r1

Γ′,Δ, Σ
r2

Γ,Δ, Σ

Γ1, 𝜙 Γ2,𝜓
r2

Γ1, Γ2,Δ Γ3, 𝜒
r1

Γ1, Γ2, Γ3,Δ, Σ

≡ Γ1, 𝜙

Γ2,𝜓 Γ3, 𝜒
r1

Γ2, Γ3, Σ
r2

Γ1, Γ2, Γ3,Δ, Σ

Fig. 10. Independent rule permutations.

⊢ Γ, [𝛽1] [𝛾1] 𝜙 · · · ⊢ Γ, [𝛽𝑛] [𝛾𝑛] 𝜙
[O]

⊢ Γ, [𝛼] 𝜙
⊢ Γ, ⟨𝛽1⟩ ⟨𝛾1⟩ 𝜙, . . . , ⟨𝛽𝑛⟩ ⟨𝛾𝑛⟩ 𝜙

⟨O⟩
⊢ Γ, ⟨𝛼⟩ 𝜙

cut

⊢ Γ

⇝
⊢ Γ, [𝛽1] [𝛾1] 𝜙

⊢ Γ, ⟨𝛽2⟩ ⟨𝛾2⟩ 𝜙

⊢ Γ, [𝛽𝑛] [𝛾𝑛] 𝜙 ⊢ Γ, ⟨𝛽1⟩ ⟨𝛾1⟩ 𝜙, . . . , ⟨𝛽𝑛⟩ ⟨𝛾𝑛⟩ 𝜙
cut

.

.

.
cut

⊢ Γ, ⟨𝛽1⟩ ⟨𝛾1⟩ 𝜙
cut

⊢ Γ

Fig. 11. Additional cut-elimination step in LOPD.

Processes Labels Reduction rules

𝑃,𝑄 := 0 terminated process

| 𝜆.𝑃 action prefix

| 𝑃 |𝑄 parallel composition

| 𝑃 +𝑄 choice

| 𝑃\𝑎 action restriction

| 𝑋 process name

𝜆 := 𝑎 actions (𝑎 ∈ Act)
| 𝑎 co-actions (𝑎 ∈ Act)
| 𝜏 silent

pre 𝜆.𝑃 𝜆 𝑃

par1 𝑃 |𝑄 𝜆 𝑃 ′ |𝑄 if 𝑃 𝜆 𝑃 ′

par2 𝑃 |𝑄 𝜆 𝑃 |𝑄 ′
if 𝑄 𝜆 𝑄 ′

com 𝑃 |𝑄 𝜏 𝑃 ′ |𝑄 ′
if 𝑃 𝑎 𝑃 ′ and 𝑄 𝑎 𝑄 ′

sum1 𝑃 +𝑄 𝜆 𝑃 ′ if 𝑃 𝜆 𝑃 ′

sum2 𝑃 +𝑄 𝜆 𝑄 ′
if 𝑄 𝜆 𝑄 ′

res 𝑃\𝑎 𝜆 𝑃 ′\𝑎 if 𝑃 𝜆 𝑃 ′ and 𝜆 ∉ {𝑎, 𝑎}
rec 𝑋 𝜆 𝑃 ′ if 𝑋

def

= 𝑃 and 𝑃 𝜆 𝑃 ′

Fig. 12. Syntax and operational semantics of CCS.

via parallel composition of processes and the second an illustrative example of concurrency via out-of-order execution

of non-interfering actions.

5.1 Concurrency via parallel composition

CCS is a process calculus where processes interact via synchronisations where two parties perform complementary

actions (often thought of as sending and receiving). Concurrency is achieved via explicit parallel composition of

processes equipped with interleaving semantics.

Processes in CCS (with recursion) are described by the terms generated by the grammar in Figure 12. The definition

is parametrised in a countable set Act of symbols denoting the synchronisation actions that processes can perform.

The set is equipped with an involution (·) mapping each action its complementary action, or co-action for short. The

definition is also parametrised in a set of process definitions (objects of the form 𝑋
def

= 𝑃) which are used to express

infinite behaviours via recursion. The semantics of processes is given as the labelled transition system (or LTS) with

processes as states and as transition relation the smallest relation closed under the derivation rules reported in Figure 12.

Both syntax and semantics are standard and we briefly discuss them below.

Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 19

𝜋1 = (𝛼 ; 𝛽) + (𝛼 ;𝛾)
•

• •

• •

𝛼

𝛽

𝛼

𝛾

𝜋2 = 𝛼 ; (𝛽 + 𝛾)
•

•

• •

𝛼

𝛽 𝛾

ax

⊢ ⟨𝛽⟩ 𝜙, [𝛽] 𝜙
w

⊢ ⟨𝛽⟩ 𝜙, ⟨𝛾⟩ 𝜙, [𝛽] 𝜙

ax

⊢ ⟨𝛾⟩ 𝜙, [𝛾] 𝜙
w

⊢ ⟨𝛽⟩ 𝜙, ⟨𝛾⟩ 𝜙, [𝛾] 𝜙
[O]

⊢ ⟨𝛽⟩ 𝜙, ⟨𝛾⟩ 𝜙, [𝛽 ⊕ 𝛾] 𝜙
k𝛼

⊢ ⟨𝛼⟩ ⟨𝛽⟩ 𝜙, ⟨𝛼⟩ ⟨𝛾⟩ 𝜙, [𝛼] [𝛽 ⊕ 𝛾] 𝜙
⟨O⟩

⊢ ⟨𝜋1⟩ 𝜙, [𝛼] [𝛽 ⊕ 𝛾] 𝜙
[O]

⊢ ⟨𝜋2⟩ 𝜙, [𝜋1] 𝜙
∨
⊢ ⟨𝜋2⟩ 𝜙 ∨ [𝜋1] 𝜙

ax

⊢ ⟨𝛼⟩ ⟨𝛽⟩ 𝜙, [𝛼] [𝛽] 𝜙
w

⊢ ⟨𝛼⟩ ⟨𝛽⟩ 𝜙, ⟨𝛼⟩ ⟨𝛾⟩ 𝜙, [𝛼] [𝛽] 𝜙
⟨O⟩

⊢ ⟨𝜋2⟩ 𝜙, [𝛼] [𝛽] 𝜙

ax

⊢ ⟨𝛼⟩ ⟨𝛾⟩ 𝜙, [𝛼] [𝛾] 𝜙
w

⊢ ⟨𝛼⟩ ⟨𝛽⟩ 𝜙, ⟨𝛼⟩ ⟨𝛾⟩ 𝜙, [𝛼] [𝛾] 𝜙
⟨O⟩

⊢ ⟨𝜋2⟩ 𝜙, [𝛼] [𝛾] 𝜙
[O]

⊢ ⟨𝜋2⟩ 𝜙, [𝜋1] 𝜙
∨
⊢ ⟨𝜋2⟩ 𝜙 ∨ [𝜋1] 𝜙

∧
⊢ ⟨𝜋2⟩ 𝜙 ⇔ [𝜋1] 𝜙

Fig. 13. The derivation proving 𝜋1 ∼Tr 𝜋2.

The term 0 denotes the terminated process and has no transitions. A term 𝜆.𝑃 denotes a process ready to perform

the action 𝜆 before continuing as 𝑃 as specified by rule pre. A term 𝑃 |𝑄 denotes the parallel composition of processes

𝑃 and 𝑄 which are executed by interleaving (rules par1 and par2) or synchronising their actions (rule com). Rule

par1 allows 𝑃 |𝑄 to perform a transition where 𝑃 performs an action (evolving into 𝑃 ′) independently from 𝑄 and

symmetrically for rule par2. Rule com describes transitions where 𝑃 and𝑄 synchronise by performing matching actions.

To model that synchronisations are binary, transitions derived with this rule are given the label 𝜏 which is separate from

Act and is traditionally used in process algebras to denote steps that do not interact with the context of a process (hence

named silent or internal). A term 𝑃 +𝑄 denotes a choice between actions performed by 𝑃 and 𝑄 where performing

an action from one process disregards the other as specified by rules sum1 and sum2. A term 𝑃\𝑎 denotes a process

where synchronisations using the action 𝑎 are restricted to its subterm 𝑃 as prescribed by rule res which requires

𝜆 to be neither 𝑎 nor 𝑎. A term 𝑋 denotes the process 𝑃 associated to the process name 𝑋 by the process definition

𝑋
def

= 𝑃 and has the same semantics as 𝑃 (rule rec). To ensure that the resulting LTS is finitely branching, we assume,

as common practice (see, e.g., [4, 28]), that process definitions are guarded meaning that every process name occurring

in the body of a process definition occurs under an action prefix.

We denote by OCCS the operational semantics over the set of CCS processes (the set of tests is empty) with labels

defined as in Figure 12 (by letting 𝜏 = 𝜖) defined as in Figure 12. Then, we obtain as an instance of Theorem 36, that

logical equivalence in OCCSPDL captures trace equivalence in CCS.

Corollary 38. Let 𝑃 and 𝑄 be process. Then,

𝑃 ∼Tr 𝑄 iff ⊢OCCSPDL
[𝑃] 𝜙 ⇔ [𝑄] 𝜙 for any formula 𝜙 .

Example 39. The two processes shown on the left of Figure 13 are a textbook example of the different discriminating

power of bisimilarity and trace equivalence: only the first can separate them. The derivation on the right of the figure

proves, by Corollary 38, that 𝜋1 and 𝜋2 are indeed trace equivalent.

Although we considered a version of CCS where infinite behaviours are achieved via recursion, instantiating our

results to replication (CCS
!
) and iteration (CCS

∗
) is straightforward. In particular, the latter corresponds to the settings

considered in [8, 51], as discussed in Example 27, which sits at the bottom of the expressiveness hierarchy formed by

these three approaches [11]. Corollary 38 subsumes results from [8, 51] stating that structural congruence (≡) and strong
bisimilarity (∼) are sound w.r.t. logical equivalence. Moreover, our treatment of CCS is standard: parallel composition is

Manuscript submitted to ACM

20 Acclavio et al.

choreographies instructions

𝐶 := 0 inactive process pn(𝐶) = ∅
| 𝐼 ;𝐶 sequential composition pn(𝐶) = pn(𝐼) ∪ pn(𝐶)
| if p.𝑏 then𝐶1 else𝐶2 conditional pn(𝐶) = {p} ∪ pn(𝐶1) ∪ pn(𝐶2)
| 𝑋 call pn(𝐶) where 𝑋 def

= 𝐶

𝐼 := p.𝑥 := 𝑒 local assignment pn(𝐼) = {p}
| p.𝑒 → q.𝑥 communication pn(𝐼) = {p, q}
| p→ q[l] selection pn(𝐼) = {p, q}
| p : 𝑋 (call continuation, runtime) pn(𝐼) = {p}
| p.𝑏? test (T) pn(𝐼) = {p}
| p.𝑏? (negative) test pn(𝐼) = {p}

Fig. 14. Syntax of choreographies.

O[𝐶]

atomic 𝐼 𝐼 𝜖

cond-then if p.𝑏 then𝐶1 else𝐶2
p.𝑏? 𝐶1

cond-else if p.𝑏 then𝐶1 else𝐶2 p.𝑏? 𝐶2

call 𝑋 q : 𝑋 p1 : 𝑋 ; . . . ; p𝑛 : 𝑋 ;𝐶 if 𝑋
def

= 𝐶 and pn(𝑋) = {q, p1, . . . , p𝑛}
i 𝐼 ;𝐶 𝜇 𝐶 if 𝐼 𝜇 𝜖

delay-i 𝐼 ;𝐶 𝜇 𝐼 ;𝐶′
if 𝐶 𝜇 𝐶′

and pn(𝐼) ∩ pn(𝜇) = ∅
delay-cond if p.𝑏 then𝐶1 else𝐶2;𝐶 𝜇 if p.𝑏 then𝐶′

1
else𝐶′

2
;𝐶 if 𝐶𝑖 𝜇 𝐶′

𝑖
and p ∉ pn(𝜇)

O[Σ]
Σ-asg Σ 𝜇 Σ[p.𝑥 ↦→ 𝑣] if Σ(p) ⊢ 𝑒 ↓ 𝑣 and 𝜇 = p.𝑥 := 𝑒

Σ-com Σ 𝜇 Σ[q.𝑥 ↦→ 𝑣] if Σ(p) ⊢ 𝑒 ↓ 𝑣 and 𝜇 = p.𝑒 → q.𝑥

Σ-postest Σ p.𝑏? Σ if Σ(p) ⊢ 𝑒 ↓ 𝑣 and 𝑣 = true

Σ-negtest Σ p.𝑏? Σ if Σ(p) ⊢ 𝑒 ↓ 𝑣 and 𝑣 ≠ true

Σ-selcall Σ 𝜇 Σ if 𝜇 = p→ q[l] or 𝜇 = q : 𝑋

O[⟨𝐶, Σ⟩] sc ⟨𝐶, Σ⟩ 𝜇 ⟨𝐶′, Σ′⟩ if 𝐶 𝜇 𝐶′
and Σ 𝜇 Σ′

Fig. 15. Operational semantics of choreographies O[𝐶], for memory storage O[Σ], and for stateful choreographies O[⟨𝐶, Σ⟩].

a primitive of the calculus whereas in [8] it is encoded using choices between sequential programs, an approach that is

limited to CCS
∗
and results in exponentially larger formulas.

5.2 Concurrency via out-of-order execution

Choreographies, in general, are coordination plans that define the expected collective behaviour of concurrent and

distributed systems [59, 61, 74]. In the programming paradigm of Choreographic Programming, choreographies are

programs that describe the interaction and local computation of processes participating in the system and that can

be compiled to executable implementations for each participant (a procedure called endpoint projection) [59]. The

standard way of supporting concurrency in choreographic programming is to execute independent instructions out of

order w.r.t. their syntactic position in the program. This is an example of a technique found in many programming

languages, compilers, and CPUs, to parallelise the execution of code written as sequential.

We consider a powerful theory of choreographic programming from [59] that includes out-of-order execution,

recursion, and stateful local computations. We adopt a presentation of the semantics of choreographic programs that

defines separately the dynamics of programs and of memory storage, as done for example in [23]; this separation allows

for simpler rules, and for uniform reasoning on both models that abstract over memory or that track precisely its

evolution. Except for this presentational difference, our definitions are essentially as for the tail-recursive language

given in [59].

Choreographic programs (or just choreographies for short) are described by the terms in Figure 14. Their semantics

is given as the LTS induced by the derivation rules in Figure 15. Both definitions are parametrised in a shared language

for expressions that are evaluated by processes locally (i.e., without accessing the state of other processes) and which

are used to model local computation. We write Σ(p) ⊢ 𝑒 ↓ 𝑣 to denote that the expression 𝑒 evaluates to the value 𝑣

Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 21

given the assignment Σ(p) for the variables local to process p. Both definitions are also parametrised in a shared set of

choreography definitions (objects of the form 𝑋
def

= 𝐶 where pn(𝐶) is not empty) which are used to express infinite

behaviours via recursion.

Instructions are performed atomically and describe interactions among processes and, when included in the model,

with the memory Σ (via rule sc that interfaces choreographies and memory). An instruction p→ q[l] describes the
communication of a constant value l used to communicate a local selection from process p to process q (without

requiring any interaction with the memory, cf. rule Σ-selcall). An instruction p.𝑒 → q.𝑥 describes the communication
of a value computed by p evaluating the expression 𝑒 to q which stores it into its local variable 𝑥 (cf., rule Σ-com). An

instruction p.𝑥 := 𝑒 represents the local assignment at p (cf., rule Σ-asg). An instruction p.𝑏? denotes a test where p
evaluates the condition 𝑏 proceeding only if successful. Likewise, p.𝑏? represents a negative test. Test instructions are

not part of the language [59]; we decided to include them to illustrate the use of tests in OPDL.

The term 0 denotes the terminated choreography and has no transitions. A term 𝐼 ;𝐶 denotes the sequential
composition of the instruction 𝐼 (discussed below) and choreography 𝐶 . The resulting choreography can execute 𝐼

before continuing as𝐶 via rule atomic (similarly action prefixes and rule pre inCCS) or delay 𝐼 by executing a transition

of 𝐶 that does not involve any of the processes occurring in 𝐼 via rule delay-i. (Labels are instructions and thus carry

all the information required to determine, using the function pn, which processes are involved in a transition.) This

relaxed semantics for sequential composition is an instance of the out-of-order execution of instructions and introduces

concurrency in the model by allowing the programs to interleave the execution of instructions at distinct processes

(while instructions within the same process remain sequential). A term if p.𝑏 then𝐶1 else𝐶2 denotes a conditional
where either𝐶1 or𝐶2 is chosen depending on whether the test 𝑏 performed by process p is successful (rule cond-then)

or not (rule cond-else). A term𝑋 denotes a recursive call to the choreography definition𝑋 def

= 𝐶 . Its semantics is rather

more involved than recursive process calls in CCS because recursive choreography calls involve multiple processes

that can join the call concurrently without coordination (this is to capture the decentralised nature of the underlying

process model). The standard device used to achieve this behaviour is the (runtime) instruction p : 𝑋 , a syntactic

gadget introduced by the first unfolding of a call and used to track processes have yet to join (and prevent erroneous

applications of delay-i). The resulting semantics is finitely branching, we assume each choreography definition involves

finitely many processes (i.e., pn(𝑋) is finite for any 𝑋 def

= 𝐶).

The operational semantics O[𝐶] for this theory of choreographic programming (abstracting from memory configu-

rations
11
) has choreographies as programs, the instructions of the form p.𝑏? or p.𝑏? as tests, and the set of instructions.

By Theorem 36, logical equivalence in O[C]PDL captures trace equivalence for choreographies.

Corollary 40. ⊢O[C]PDL [𝐶1] 𝜙 ⇔ [𝐶2] 𝜙 iff 𝐶1 ∼Tr 𝐶2 .

Likewise, we instantiate OPDL to the theory of choreographic programming with memory updates simply following

the steps above while pairing choreographies and memory configurations.

Example 41. Consider the choreographies (p.𝑒 → q.𝑥 ; r.𝑒′ → s.𝑦) and (r.𝑒′ → s.𝑦; p.𝑒 → q.𝑥). The communications

are the same save for their syntactic position and, since they involve distinct processes, out-of-order execution (rule

delay-i) ensures that these can fire concurrently. Indeed, these two choreographies are trace equivalent as shown,

11
Works on choreographic programming with memory updates usually consider the semantics of choreographies equipped with memory configurations

(as in O[⟨𝐶, Σ⟩] Figure 15). However, the separation adopted in this presentation does not limit the precision of results expected from a theory of

choreographies e.g., the correctness of EndPoint Projection: one only needs to ensure that labels used to interface programs and memory are used

coherently by the target language. In other words, a presentation like ours treats memory configuration as part of the context of the computation whether

programs are expressed as choreographies or their projection.

Manuscript submitted to ACM

22 Acclavio et al.

ax

⟨p.𝑒 → q.𝑥⟩ ⟨r.𝑒′ → s.𝑦⟩ 𝜙, [p.𝑒 → q.𝑥] [r.𝑒′ → s.𝑦] 𝜙
⟨O⟩

⊢ ⟨p.𝑒 → q.𝑥 ; r.𝑒′ → s.𝑦⟩ 𝜙, [p.𝑒 → q.𝑥] [r.𝑒′ → s.𝑦] 𝜙
[O]

⊢ ⟨p.𝑒 → q.𝑥 ; r.𝑒′ → s.𝑦⟩ 𝜙, [r.𝑒′ → s.𝑦; p.𝑒 → q.𝑥] 𝜙
∨
⊢ ⟨p.𝑒 → q.𝑥 ; r.𝑒′ → s.𝑦⟩ 𝜙 ∨ [r.𝑒′ → s.𝑦; p.𝑒 → q.𝑥] 𝜙

ax

[p.𝑒 → q.𝑥] [r.𝑒′ → s.𝑦] 𝜙, ⟨p.𝑒 → q.𝑥⟩ ⟨r.𝑒′ → s.𝑦⟩ 𝜙
⟨O⟩

⊢ [p.𝑒 → q.𝑥] [r.𝑒′ → s.𝑦]𝜙 ⟨r.𝑒′ → s.𝑦; p.𝑒 → q.𝑥⟩ 𝜙
[O]

⊢ [p.𝑒 → q.𝑥 ; r.𝑒′ → s.𝑦] 𝜙 ⟨r.𝑒′ → s.𝑦; p.𝑒 → q.𝑥⟩ 𝜙
∨
⊢ [p.𝑒 → q.𝑥 ; r.𝑒′ → s.𝑦] 𝜙 ∨ ⟨r.𝑒′ → s.𝑦; p.𝑒 → q.𝑥⟩ 𝜙

∧
⊢ [p.𝑒 → q.𝑥 ; r.𝑒′ → s.𝑦] 𝜙 ⇔ [r.𝑒′ → s.𝑦; p.𝑒 → q.𝑥] 𝜙

Fig. 16. The derivation proving (p.𝑒 → q.𝑥 ; r.𝑒′ → s.𝑦) ∼Tr (r.𝑒′ → s.𝑦; p.𝑒 → q.𝑥) (because of the out-of-order execution).

ax

⟨𝐼2⟩ ⟨if p.𝑏 then 𝐼1 else 0⟩ 𝜙, [𝐼2] [if p.𝑏 then 𝐼1 else 0] 𝜙
⟨O⟩

⊢ ⟨if p.𝑏 then 𝐼1; 𝐼2 else 𝐼2⟩ 𝜙, [𝐼2] [if p.𝑏 then 𝐼1 else 0] 𝜙
[O]

⊢ ⟨if p.𝑏 then 𝐼1; 𝐼2 else 𝐼2⟩ 𝜙, [𝐼2; if p.𝑏 then 𝐼1 else 0] 𝜙
∨
⊢ ⟨if p.𝑏 then 𝐼1; 𝐼2 else 𝐼2⟩ 𝜙 ∨ [𝐼2; if p.𝑏 then 𝐼1 else 0] 𝜙

ax

[𝐼2] [if p.𝑏 then 𝐼1 else 0] 𝜙, ⟨𝐼2⟩ ⟨if p.𝑏 then 𝐼1 else 0⟩ 𝜙
⟨O⟩

⊢ [𝐼2] [if p.𝑏 then 𝐼1 else 0] 𝜙, ⟨𝐼2; if p.𝑏 then 𝐼1 else 0⟩ 𝜙
[O]

⊢ [if p.𝑏 then 𝐼1; 𝐼2 else 𝐼2] 𝜙, ⟨𝐼2; if p.𝑏 then 𝐼1 else 0⟩ 𝜙
∨
⊢ [if p.𝑏 then 𝐼1; 𝐼2 else 𝐼2] 𝜙 ∨ ⟨𝐼2; if p.𝑏 then 𝐼1 else 0⟩ 𝜙

∧+∨
⊢ [if p.𝑏 then 𝐼1; 𝐼2 else 𝐼2] 𝜙 ⇔ [𝐼2; if p.𝑏 then 𝐼1 else 0] 𝜙

Fig. 17. The derivation proving (if p.𝑏 then(𝐼 1; 𝐼 2) else 𝐼 2) ∼Tr (𝐼 2; if p.𝑏 then 𝐼 1 else 0) whenever pn(𝐼 2) ∩ ({p} ∪ pn(𝐼 2)) = ∅.

invoking Corollary 40, by the derivation reported in Figure 16. A similar case that illustrates concurrent conditionals

and instructions is shown in Figure 17.

6 CONCLUSION

We have extended PDL by decoupling reasoning on programs from reasoning on traces, bridged by a new axiom that

integrates the two aspects. This decoupling allowed us to create an axiom scheme parameterised on the operational

semantics of the programs under consideration. The result, OPDL, subsumes a number of previous extensions of PDL

by seeing them as particular instantiations of this schema. Furthermore, OPDL can be instantiated for programming

languages out of reach of previous approaches, because of problematic standard features such as recursion, interleaving,

or out-of-order execution. Thus, we are hopeful that OPDL can be a useful tool for the future study of dynamic logic

and formal methods. We mention next a few interesting perspectives.

OPDL, like standard PDL, captures trace equivalence. Trace equivalence can be used to capture finer equivalences

by decorating traces with information about choices [40, 73], which for example was used in the context of PDL and a

simpler iterative process calculus (CCS
∗
) in [8]. We plan to investigate this in the more general setting of OPDL.

Having captured CCS, a natural next step would be investigating how to capture even richer process calculi. The

prime example would be the 𝜋-calculus [67], which allows for dynamically creating and transmitting actions. Work on

PDL for the 𝜋-calculus covers iteration [9], but neither of the standard constructs for infinite behaviours, i.e., recursion

and replication. While OPDL can be directly instantiated with the standard 𝜋-calculus (retracing the steps for CCS),

the resulting notion of equivalence merits attention: the 𝜋-calculus has a richer behavioural theory than CCS, which

for example introduces the problem of equating traces up to action equivalence.

Likewise, there are numerous choreographic programming languages that would be interesting to study in OPDL,

because they pose additional challenges on top of out-of-order execution. Examples include dynamic process spawn-

ing [16], parametric recursive procedures [16, 59], and higher-order composition [14, 24, 35, 69]. As we mentioned,

a key aspect of choreographic programming is endpoint projection: a mechanical mapping of choreographies into

distributed implementations, usually given in terms of a process calculus. Proving that endpoint projection is correct

(an operational correspondence result) requires tedious work [17]: OPDL could provide a unifying framework for these

Manuscript submitted to ACM

On Propositional Dynamic Logic and Concurrency 23

proofs, obtained by instantiating it with the union of the choreographic and target process languages. Adopting this

approach might make proofs more robust and reusable.

OPDL inherits the feature from PDL that Hoare clauses {𝜙}𝛼{𝜓 } can be encoded as 𝜙 ⇒ [𝛼]𝜓 . All rules in Hoare

logic are then derivable. Thus, for example, our instantiation of OPDL with choreographic programming yields a direct

generalisation of the previous development of a Hoare logic for choreographies [15], providing a basis for its extension

to more sophisticated languages.

Another line of future work is the study of the decision problem in (instantiations of) OPDL. In PDL the so-called

small world model is constructed using (the finiteness of) the Fisher-Ladner closure of a formula and provides a naive

deterministic decidability procedure for the satisfability problem. In OPDL the Fisher-Ladner closure is not guaranteed

to be finite, an aspect that depends on the operational semantics under consideration. In general, as shown in [32], any

non-regular program add expressiveness power to PDL, and the decision problem for a PDL in which programs may

have non-regular set of traces is known to be already Π1

1
-complete [30]. The validity problem for context-free PDL is

undecidable because so is the equivalence problem for general context-free languages [39, 46]. This is not surprising,

since logical equivalence in PDL captures trace equivalence. In concurrency theory, there is an extensive literature on

the relation between the design of concurrent languages and decidability of different program equivalences [5, 11].

The methods studied therein might be useful for exploring decision problems in OPDL, for example by establishing

properties on specific operational semantics and how they are defined (rule formats, etc.).

Finally, it would be interesting to model a similar separation between trace reasoning and the operational semantics

of programs in algebraic approaches for proving program equivalence. For this we foresee the possibility of defining

structures in which an operational semantics is ‘nested’ inside a Kleene algebra. Intuitively, such structures should be

defined as Kleene algebras freely generated by a set of programs P and a set of atomic actions I provided with a relation

O ⊆ P × I × P (in general, a coalgebra O ⊆ P → B(I × P) representing the operational semantics of the set of programs.

REFERENCES
[1] Matteo Acclavio and Davide Catta. 2023. Lorenzen-Style Strategies as Proof-Search Strategies. In Multi-Agent Systems, Vadim Malvone and Aniello

Murano (Eds.). Springer Nature Switzerland, Cham, 150–166.

[2] Matteo Acclavio, Gianluca Curzi, and Giulio Guerrieri. 2023. Infinitary cut-elimination via finite approximations. CoRR abs/2308.07789 (2023).

https://doi.org/10.48550/ARXIV.2308.07789 arXiv:2308.07789

[3] Matteo Acclavio, Gianluca Curzi, and Giulio Guerrieri. 2024. Infinitary cut-elimination via finite approximations (extended version).

arXiv:2308.07789 [cs.LO] https://arxiv.org/abs/2308.07789

[4] Luca Aceto, Wan J. Fokkink, and Chris Verhoef. 2001. Structural Operational Semantics. In Handbook of Process Algebra, Jan A. Bergstra, Alban

Ponse, and Scott A. Smolka (Eds.). North-Holland / Elsevier, 197–292. https://doi.org/10.1016/B978-044482830-9/50021-7

[5] Luca Aceto, Anna Ingolfsdottir, and Jirí Srba. 2011. The algorithmics of bisimilarity. Cambridge University Press, 100–172.

[6] Jean-Marc Andreoli. 1992. Logic programming with focusing proofs in linear logic. Journal of logic and computation 2, 3 (1992), 297–347.

[7] David Baelde, Amina Doumane, and Alexis Saurin. 2016. Infinitary Proof Theory: the Multiplicative Additive Case. In 25th EACSL Annual Conference
on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France (LIPIcs, Vol. 62), Jean-Marc Talbot and Laurent Regnier (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 42:1–42:17. https://doi.org/10.4230/LIPIcs.CSL.2016.42

[8] Mario Benevides. 2017. Bisimilar and logically equivalent programs in PDL with parallel operator. Theoretical Computer Science 685 (2017), 23–45.
https://doi.org/10.1016/j.tcs.2017.02.037 Logical and Semantic Frameworks with Applications.

[9] Mario R.F. Benevides and L. Menasché Schechter. 2010. A Propositional Dynamic Logic for Concurrent Programs Based on the 𝜋 -Calculus. Electronic
Notes in Theoretical Computer Science 262 (2010), 49–64. https://doi.org/10.1016/j.entcs.2010.04.005 Proceedings of the 6th Workshop on Methods

for Modalities (M4M-6 2009).

[10] Paul Brunet, Damien Pous, and Georg Struth. 2017. On Decidability of Concurrent Kleene Algebra. In 28th International Conference on Concurrency
Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany (LIPIcs, Vol. 85), Roland Meyer and Uwe Nestmann (Eds.). Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 28:1–28:15. https://doi.org/10.4230/LIPICS.CONCUR.2017.28

[11] Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. 2004. Comparing Recursion, Replication, and Iteration in Process Calculi. In Automata,
Languages and Programming, Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

Manuscript submitted to ACM

https://doi.org/10.48550/ARXIV.2308.07789
https://arxiv.org/abs/2308.07789
https://arxiv.org/abs/2308.07789
https://arxiv.org/abs/2308.07789
https://doi.org/10.1016/B978-044482830-9/50021-7
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1016/j.tcs.2017.02.037
https://doi.org/10.1016/j.entcs.2010.04.005
https://doi.org/10.4230/LIPICS.CONCUR.2017.28

24 Acclavio et al.

307–319.

[12] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR 2010 - Concurrency Theory, 21th International
Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6269), Paul Gastin and

François Laroussinie (Eds.). Springer, 222–236. https://doi.org/10.1007/978-3-642-15375-4_16

[13] Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers, Erik P. de Vink, Wieger Wesselink, and Tim A. C. Willemse. 2013. An

Overview of the mCRL2 Toolset and Its Recent Advances. In Tools and Algorithms for the Construction and Analysis of Systems - 19th International
Conference, TACAS 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013.
Proceedings (Lecture Notes in Computer Science, Vol. 7795), Nir Piterman and Scott A. Smolka (Eds.). Springer, 199–213. https://doi.org/10.1007/978-3-

642-36742-7_15

[14] Luís Cruz-Filipe, Eva Graversen, Lovro Lugovic, Fabrizio Montesi, and Marco Peressotti. 2023. Modular Compilation for Higher-Order Functional

Choreographies. In 37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023, Seattle, Washington, United States
(LIPIcs, Vol. 263), Karim Ali and Guido Salvaneschi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:37. https://doi.org/10.4230/

LIPICS.ECOOP.2023.7

[15] Luís Cruz-Filipe, Eva Graversen, Fabrizio Montesi, and Marco Peressotti. 2023. Reasoning About Choreographic Programs. In Coordination
Models and Languages (Lecture Notes in Computer Science, Vol. 13908), Sung-Shik Jongmans and Antónia Lopes (Eds.). Springer, 144–162. https:

//doi.org/10.1007/978-3-031-35361-1_8

[16] Luís Cruz-Filipe and Fabrizio Montesi. 2017. Procedural Choreographic Programming. In Formal Techniques for Distributed Objects, Components, and
Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of the 12th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2017, Neuchâtel, Switzerland, June 19-22, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10321), Ahmed Bouajjani and

Alexandra Silva (Eds.). Springer, 92–107. https://doi.org/10.1007/978-3-319-60225-7_7

[17] Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2023. A Formal Theory of Choreographic Programming. Journal of Automated Reasoning
67, 21 (2023), 1–34. https://doi.org/10.1007/s10817-023-09665-3

[18] Anupam Das and Marianna Girlando. 2022. Cyclic Proofs, Hypersequents, and Transitive Closure Logic. arXiv:2205.08616 [cs.LO]

[19] Anupam Das and Marianna Girlando. 2022. Cyclic Proofs, Hypersequents, and Transitive Closure Logic. In Automated Reasoning, Jasmin Blanchette,

Laura Kovács, and Dirk Pattinson (Eds.). Springer International Publishing, Cham, 509–528.

[20] Anupam Das and Marianna Girlando. 2023. Cyclic Hypersequent System for Transitive Closure Logic. Journal of Automated Reasoning 67, 3 (2023),

27. https://doi.org/10.1007/s10817-023-09675-1

[21] Simon Docherty and Reuben N. S. Rowe. 2019. A Non-wellfounded, Labelled Proof System for Propositional Dynamic Logic. In Automated Reasoning
with Analytic Tableaux and Related Methods, Serenella Cerrito and Andrei Popescu (Eds.). Springer International Publishing, Cham, 335–352.

[22] Thorsten Ehm, Bernhard Möller, and Georg Struth. 2004. Kleene Modules. In Relational and Kleene-Algebraic Methods in Computer Science, Rudolf
Berghammer, Bernhard Möller, and Georg Struth (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 112–123.

[23] Saverio Giallorenzo, Fabrizio Montesi, and Maurizio Gabbrielli. 2018. Applied Choreographies. In Formal Techniques for Distributed Objects,
Components, and Systems - 38th IFIP WG 6.1 International Conference, FORTE 2018, Held as Part of the 13th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain, June 18-21, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10854), Christel
Baier and Luís Caires (Eds.). Springer, 21–40. https://doi.org/10.1007/978-3-319-92612-4_2

[24] Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. 2024. Choral: Object-oriented Choreographic Programming. ACM Trans. Program.
Lang. Syst. 46, 1, Article 1 (Jan. 2024), 59 pages. https://doi.org/10.1145/3632398

[25] Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987), 1–101. https://doi.org/10.1016/0304-3975(87)90045-4

[26] Jean-Yves Girard. 1998. Light Linear Logic. Information and Computation 143, 2 (1998), 175–204. https://doi.org/10.1006/inco.1998.2700

[27] Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and types. Vol. 7. Cambridge university press Cambridge.

[28] Jan Friso Groote and Frits W. Vaandrager. 1992. Structured Operational Semantics and Bisimulation as a Congruence. Inf. Comput. 100, 2 (1992),
202–260. https://doi.org/10.1016/0890-5401(92)90013-6

[29] David Harel, Dexter Kozen, and Jerzy Tiuryn. 2002. Dynamic Logic. Springer Netherlands, Dordrecht, 99–217. https://doi.org/10.1007/978-94-017-

0456-4_2

[30] David Harel, Amir Pnueli, and Jonathan Stavi. 1983. Propositional dynamic logic of nonregular programs. J. Comput. System Sci. 26, 2 (1983),
222–243.

[31] D. Harel and R. Sherman. 1985. Propositional dynamic logic of flowcharts. Information and Control 64, 1 (1985), 119–135. https://doi.org/10.1016/S0019-

9958(85)80047-4 International Conference on Foundations of Computation Theory.

[32] David Harel and Eli Singerman. 1996. More on nonregular PDL: Finite models and Fibonacci-like programs. information and computation 128, 2

(1996), 109–118.

[33] David Hemer, Robert Colvin, Ian Hayes, and Paul Strooper. 2002. Don’t care non-determinism in logic program refinement. Electronic Notes in
Theoretical Computer Science 61 (2002), 101–121.

[34] Brian Hill and Francesca Poggiolesi. 2010. A Contraction-free and Cut-free Sequent Calculus for Propositional Dynamic Logic. Studia Logica 94, 1
(2010), 47–72. https://doi.org/10.1007/s11225-010-9224-z

[35] Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: higher-order typed functional choreographies. Proc. ACM Program. Lang. 6, POPL (2022), 1–27.

https://doi.org/10.1145/3498684

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.4230/LIPICS.ECOOP.2023.7
https://doi.org/10.4230/LIPICS.ECOOP.2023.7
https://doi.org/10.1007/978-3-031-35361-1_8
https://doi.org/10.1007/978-3-031-35361-1_8
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1007/s10817-023-09665-3
https://arxiv.org/abs/2205.08616
https://doi.org/10.1007/s10817-023-09675-1
https://doi.org/10.1007/978-3-319-92612-4_2
https://doi.org/10.1145/3632398
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1007/978-94-017-0456-4_2
https://doi.org/10.1007/978-94-017-0456-4_2
https://doi.org/10.1016/S0019-9958(85)80047-4
https://doi.org/10.1016/S0019-9958(85)80047-4
https://doi.org/10.1007/s11225-010-9224-z
https://doi.org/10.1145/3498684

On Propositional Dynamic Logic and Concurrency 25

[36] Tony Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. 2011. Concurrent Kleene Algebra and its Foundations. J. Log. Algebraic Methods
Program. 80, 6 (2011), 266–296. https://doi.org/10.1016/J.JLAP.2011.04.005

[37] Tony Hoare, Stephan van Staden, Bernhard Möller, Georg Struth, and Huibiao Zhu. 2016. Developments in concurrent Kleene algebra. J. Log.
Algebraic Methods Program. 85, 4 (2016), 617–636. https://doi.org/10.1016/J.JLAMP.2015.09.012

[38] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2001. Introduction to automata theory, languages, and computation. Acm Sigact News 32, 1
(2001), 60–65.

[39] John E Hoperoft and Jeffrey D Ullman. 1979. Introduction to automata theory, languages, and computation. Addison-Welsey, NY (1979).

[40] Xiao Jun Chen and Rocco De Nicola. 2001. Algebraic characterizations of trace and decorated trace equivalences over tree-like structures. Theoretical
Computer Science 254, 1 (2001), 337–361. https://doi.org/10.1016/S0304-3975(99)00300-X

[41] Tobias Kappé, Paul Brunet, Jurriaan Rot, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi. 2019. Kleene Algebra with Observations. In 30th
International Conference on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands (LIPIcs, Vol. 140), Wan J. Fokkink and

Rob van Glabbeek (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 41:1–41:16. https://doi.org/10.4230/LIPICS.CONCUR.2019.41

[42] Tobias Kappé, Paul Brunet, Alexandra Silva, Jana Wagemaker, and Fabio Zanasi. 2020. Concurrent Kleene Algebra with Observations: From

Hypotheses to Completeness. In Foundations of Software Science and Computation Structures - 23rd International Conference, FOSSACS 2020, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in
Computer Science, Vol. 12077), Jean Goubault-Larrecq and Barbara König (Eds.). Springer, 381–400. https://doi.org/10.1007/978-3-030-45231-5_20

[43] Dexter Kozen. 1996. Kleene algebra with tests and commutativity conditions. In Tools and Algorithms for the Construction and Analysis of Systems,
Tiziana Margaria and Bernhard Steffen (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 14–33.

[44] Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (1997), 427–443. https://doi.org/10.1145/256167.256195

[45] Dexter Kozen and Rohit Parikh. 1981. An elementary proof of the completeness of PDL. Theoretical Computer Science 14, 1 (1981), 113–118.

https://doi.org/10.1016/0304-3975(81)90019-0

[46] Dexter C Kozen. 2007. Automata and computability. Springer Science & Business Media.

[47] Yves Lafont. 2004. Soft linear logic and polynomial time. Theoretical computer science 318, 1-2 (2004), 163–180.
[48] Martin Lange. 2003. Games for modal and temporal logics. (2003).

[49] Chuck Liang and Dale Miller. 2021. Focusing Gentzen’s LK proof system. (Nov. 2021). https://hal.science/hal-03457379 working paper or preprint.

[50] John W Lloyd. 2012. Foundations of logic programming. Springer Science & Business Media.

[51] Alain J. Mayer and Larry J. Stockmeyer. 1996. The complexity of PDL with interleaving. Theoretical Computer Science 161, 1 (1996), 109–122.

https://doi.org/10.1016/0304-3975(95)00095-X

[52] Damiano Mazza. 2006. Linear logic and polynomial time. Mathematical Structures in Computer Science 16, 6 (2006), 947–988. https://doi.org/10.1017/

S0960129506005688

[53] Damiano Mazza. 2015. Simple Parsimonious Types and Logarithmic Space. In 24th EACSL Annual Conference on Computer Science Logic, CSL 2015
(LIPIcs, Vol. 41). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 24–40. https://doi.org/10.4230/LIPIcs.CSL.2015.24

[54] Damiano Mazza and Kazushige Terui. 2015. Parsimonious Types and Non-uniform Computation. In Automata, Languages, and Programming - 42nd
International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 9135), Magnús M.

Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann (Eds.). Springer, 350–361. https://doi.org/10.1007/978-3-662-47666-6_28

[55] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. 1991. Uniform proofs as a foundation for logic programming. Annals of Pure
and Applied Logic 51, 1 (1991), 125–157. https://doi.org/10.1016/0168-0072(91)90068-W

[56] Robin Milner. 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science, Vol. 92. Springer. https://doi.org/10.1007/3-540-

10235-3

[57] Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of mobile processes, I. Information and Computation 100, 1 (1992), 1–40.

https://doi.org/10.1016/0890-5401(92)90008-4

[58] Fabrizio Montesi. 2013. Choreographic Programming. Ph.D. Thesis. IT University of Copenhagen. https://www.fabriziomontesi.com/files/

choreographic-programming.pdf.

[59] Fabrizio Montesi. 2023. Introduction to Choreographies. Cambridge University Press. https://doi.org/10.1017/9781108981491

[60] Damian Niwiński and Igor Walukiewicz. 1996. Games for the 𝜇-calculus. Theoretical Computer Science 163, 1 (1996), 99–116. https://doi.org/10.

1016/0304-3975(95)00136-0

[61] Object Management Group. 2011. Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/.

[62] Michel Parigot. 1992. 𝜆𝜇-Calculus: An algorithmic interpretation of classical natural deduction. In Logic Programming and Automated Reasoning,
Andrei Voronkov (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 190–201.

[63] David Peleg. 1987. Communication in concurrent dynamic logic. J. Comput. System Sci. 35, 1 (1987), 23–58. https://doi.org/10.1016/0022-

0000(87)90035-3

[64] David Peleg. 1987. Concurrent dynamic logic. J. ACM 34, 2 (apr 1987), 450–479. https://doi.org/10.1145/23005.23008

[65] David Peleg. 1987. Concurrent program schemes and their logics. Theoretical Computer Science 55, 1 (1987), 1–45. https://doi.org/10.1016/0304-

3975(87)90088-0

[66] V. R. Pratt. 1982. Using graphs to understand PDL. In Logics of Programs, Dexter Kozen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 387–396.

[67] Davide Sangiorgi and David Walker. 2001. The Pi-Calculus - a theory of mobile processes. Cambridge University Press.

Manuscript submitted to ACM

https://doi.org/10.1016/J.JLAP.2011.04.005
https://doi.org/10.1016/J.JLAMP.2015.09.012
https://doi.org/10.1016/S0304-3975(99)00300-X
https://doi.org/10.4230/LIPICS.CONCUR.2019.41
https://doi.org/10.1007/978-3-030-45231-5_20
https://doi.org/10.1145/256167.256195
https://doi.org/10.1016/0304-3975(81)90019-0
https://hal.science/hal-03457379
https://doi.org/10.1016/0304-3975(95)00095-X
https://doi.org/10.1017/S0960129506005688
https://doi.org/10.1017/S0960129506005688
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://doi.org/10.1007/978-3-662-47666-6_28
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0890-5401(92)90008-4
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.1017/9781108981491
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1016/0304-3975(95)00136-0
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1016/0022-0000(87)90035-3
https://doi.org/10.1016/0022-0000(87)90035-3
https://doi.org/10.1145/23005.23008
https://doi.org/10.1016/0304-3975(87)90088-0
https://doi.org/10.1016/0304-3975(87)90088-0

26 Acclavio et al.

[68] Todd Schmid, Tobias Kappé, and Alexandra Silva. 2023. A Complete Inference System for Skip-free Guarded Kleene Algebra with Tests. In

Programming Languages and Systems - 32nd European Symposium on Programming, ESOP 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings (Lecture Notes in Computer Science, Vol. 13990), Thomas Wies

(Ed.). Springer, 309–336. https://doi.org/10.1007/978-3-031-30044-8_12

[69] Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor: Functional Choreographic Programming for All (Functional Pearl). Proc. ACM
Program. Lang. 7, ICFP (2023), 541–565. https://doi.org/10.1145/3607849

[70] Colin Stirling and David Walker. 1991. Local model checking in the modal mu-calculus. Theoretical Computer Science 89, 1 (1991), 161–177.
[71] Thomas Studer. 2008. On the Proof Theory of the Modal mu-Calculus. Studia Logica: An International Journal for Symbolic Logic 89, 3 (2008), 343–363.

http://www.jstor.org/stable/40268983

[72] A. S. Troelstra and H. Schwichtenberg. 2000. Basic Proof Theory (2 ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139168717

[73] R. J. van Glabbeek. 1990. The linear time - branching time spectrum. In CONCUR ’90 Theories of Concurrency: Unification and Extension, J. C. M.

Baeten and J. W. Klop (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278–297.

[74] W3C. 2004. WS Choreography Description Language. http://www.w3.org/TR/ws-cdl-10/.

[75] Philip Wadler. 2015. Propositions as types. Commun. ACM 58, 12 (2015), 75–84. https://doi.org/10.1145/2699407

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-031-30044-8_12
https://doi.org/10.1145/3607849
http://www.jstor.org/stable/40268983
https://doi.org/10.1017/CBO9781139168717
http://www.w3.org/TR/ws-cdl-10/
https://doi.org/10.1145/2699407

	Abstract
	1 Introduction
	2 Preliminary notions on propositional dynamic logic
	3 Sequent calculus for PDL
	3.1 Definitions and Notations for Derivations
	3.2 A Sequent System for PDL
	3.3 Cut-Elimination in LPDcut
	3.4 Soundness and Completeness of pLPD

	4 Embedding Operational Semantics in Propositional Dynamic Logic
	4.1 Soundness and Completeness of

	5 Concurrency Theory meets PDL
	5.1 Concurrency via parallel composition
	5.2 Concurrency via out-of-order execution

	6 Conclusion
	References

