
Canonicity of Proofs in Constructive Modal Logic ⋆

Matteo Acclavio1, Davide Catta2, and Federico Olimpieri3

1 University of Southern Denmark, Odense, Denmark
2 Università degli studi di Napoli, Federico II, Naples, Italy

3 University of Leeds, Leeds, UK

Abstract. In this paper we investigate the Curry-Howard correspondence for
constructive modal logic in light of the gap between the proof equivalences en-
forced by the lambda calculi from the literature and by the recently defined win-
ning strategies for this logic.
We define a new lambda-calculus for a minimal constructive modal logic by en-
riching the calculus from the literature with additional reduction rules and we
prove normalization and confluence for our calculus. We then provide a typing
system in the style of focused proof systems allowing us to provide a unique
proof for each term in normal form, and we use this result to show a one-to-one
correspondence between terms in normal form and winning innocent strategies.

Keywords: Constructive Modal Logic, Lambda Calculus, Game Semantics

1 Introduction

Proof theory is the branch of mathematical logic whose aim is studying the properties
of logical arguments (i.e., proofs) as well as the structure of proofs and their invari-
ants. For this purpose, the most used representations of proofs are based on tree-like
data structures inductively defined using inference rules of a proof system.4 Natural
deduction and sequent calculus are among the most used proof systems due to their
intuitive representation. Both these proof systems were originally devised by Gentzen
in order to prove the consistency of first-order arithmetic. Their versatility resulted in
their employment for a wide variety of logics.

However, having formalisms able to represent proofs is not enough to define “what
is a proof” since different derivations, or derivations in different proof systems, could
represent the same abstract object. A notion of proof identity is therefore required to
define a proof as a proper mathematical entity [18]. Such a notion of identity is provided
by delineating the conditions under which two distinct formal representations of a proof
represent the same logical argument. The definition of these conditions are often driven

⋆ The first author is supported by Villum Fonden, grant no. 50079. The second author is sup-
ported by the PRIN project RIPER (No. 20203FFYLK) The third author is supported by the
US Air Force Office for Scientific Research under award number FA9550-21-1-0007.

4 It is worth noting that some proof systems (in the sense of [12]) allows to represent proofs
using structures such as infinite trees (for non-well-founded proof systems, see, e.g., [15]),
graphs (see proof nets [22,23], combinatorial proofs [27,27] or proof diagrams [3]) or struc-
tures defined in a compositional way (see open deduction [24] and deep inference [50])

2 M. Acclavio et al.

by semantic considerations (by performing specific transformations on two derivations,
they can be transformed to the same object) or intuitive ones (two derivations only differ
for the order in which the same rules are applied to the same formulas).

Natural deduction is often considered a satisfactory formalism since it allows to de-
fine a more canonical representation of proofs with respect to sequent calculus: sequent
calculus derivations differing because of some rules permutations are represented (via
a standard translation) by the same natural deduction derivation. Moreover, natural de-
duction provides a one-to-one correspondence between derivations and lambda-terms,
called the Curry-Howard correspondence [48].
Constructive Modal Logic. Classical modal logics are obtained by extending classical
logic with unary operators, called modalities, that qualify the truth of a judgment. The
most used modalities are the □ (called box) and its dual operator ^ (called diamond)
which are usually interpreted as necessity and possibility. According to the interpre-
tation of such modalities, modal logics find applications, for example, in knowledge
representation [51], artificial intelligence [40] and the formal verification of computer
programs [45,19,36]. The work of Fitch [21] initiated the investigation of the proof the-
ory of modal logics extending intuitionistic logic, leading to numerous results on the
topic [46,26,39,20,35].

In particular, the Curry-Howard correspondence has been extended to various con-
structive modal logics [6,9,31,32,44,16]. Intuitionistic logic can be extended with modal-
ities in different ways (for an overview see [47]): while in classical logic axioms involv-
ing only □ provide also description of the behavior of^, for intuitionistic logic this is no
more the case since the duality of the two modalities does not hold anymore. This leads
to different approaches. Constructive modal logics consider minimal sets of axioms to
guarantee the definition of the behaviors of the □ and ^modalities. A second approach,
referred to as intuitionistic modal logic, considers additional axioms in order to validate
the Gödel-Gentzen translation [14]. In this work we consider a minimal fragment of
the constructive modal logic CK only containing the implication→ and the modality □.
This fragment is enough to define types for a λ-calculus with a Let constructor [6] which
can be interpreted as an explicit substitution and, for this reason, we more concisely de-
note by N [M1, . . .Mn/x1, . . . , xn]■ instead of Let M1, . . .Mn be x1, . . . , xn in N.

Recent works on the the proof equivalence of constructive modal logics [5] expose a
complexity gap between the proof equivalences induced by the natural deduction ([9])
and winning innocent strategies ([4]) for this logic. This discrepancy cannot be ob-
served in intuitionistic propositional logic where there are one-to-one correspondences
between natural deduction derivations, lambda terms and innocent winning strategies.
In particular, in the logic CK we observe sequent calculus proofs which correspond to
the same winning strategy but which cannot be represented by the same natural de-
duction derivation in the systems provided in [9,31] (or equivalently corresponding
to different modal λ-terms). By means of example, consider the terms x [z/x]■ and
x
[
z,w/x, y

]
■ and their (unique) typing derivations shown in Figure 1 (see Figure 3 for

the typing system). Intuitively, the two terms x [z/x]■ and x
[
z,w/x, y

]
■ should be se-

mantically equivalent since the explicit substitution of the variable y in the term x is
vacuous. Said differently, if we explicit the substitution encoded by the constructor Let,
both terms x [z/x]■ and x

[
z,w/x, y

]
■ should reduce to the term z.

Canonicity of Proofs in Constructive Modal Logic 3

Id
z : □a,w : □b ⊢ z : □a

Id
x : a, y : b ⊢ x : a

□-subst
z : □a,w : □b ⊢ x [z/x]■ : □a

Id
z : □a,w : □b ⊢ z : □a

Id
z : □a,w : □b ⊢ w : □b

Id
x : a, y : b ⊢ x : a

□-subst
z : □a,w : □b ⊢ x

[
z,w/x, y

]
■ : □a

Fig. 1. The typing derivations of the modal λ-terms x [z/x]■ and x
[
z,w/x, y

]
■.

In fact, this undesirable behavior disappear when considering the Winning Inno-
cent Strategies for CK defined in [4]. In this syntax, both the above natural deduction
derivations correspond to the same strategy below.

S = {ϵ, a◦, a◦a•} over the arena [[□a,□b ⊢ □a]] =

□ □ □

b a• a◦
(1)

Contribution. In this paper we define a new modal λ-calculus for CK by considering
additional rewriting rules that allow us to retrieve a one-to-one correspondence between
terms in normal form and winning innocent strategies, that is, providing more canonical
representatives for proofs with respect to natural deduction and modal λ-terms defined
in the literature. From the technical point-of-view, we obtain this result by extending the
operational semantics of the modal λ-calculus with the appropriate new reduction rules
for the explicit substitution encoded by the Let, dealing with contraction and weakening
operating on the variables bound by the Let. We call this set of rules the κ-reduction,
which we show to be strongly normalizing using elementary combinatorial methods.
In order to deal with the interaction of the η-reduction with β-reduction, we define a
restricted η-reduction following an approach similar to the one used in [42,17,30]. We
prove strong normalization and confluence for our new operational semantics.

After proving confluence and strong normalization for our modal λ-calculus, we
provide a canonical typing system inspired by focused sequent calculi (see, e.g., [7])
providing a unique typing derivation for each term in normal form. We conclude by
establishing a one-to-one correspondence between the winning strategies defined in [4]
and proofs of this calculi, therefore with terms in normal form.
Related Work. To the best of our knowledge, the first paper proposing a Curry-Howard
correspondence for the logic CK is [9]. In this work, the authors provide a natural deduc-
tion system for the logic CK by enriching the standard system for intuitionistic propo-
sitional logic with a generalized elimination rule capable of taking into account the
behavior of the □-modality. At the level of lambda calculus, they enrich the syntax of
terms by adding a new constructor Let defined as follows:

Let x1, . . . xn be N1, . . . ,Nn in M (which we denote M [N1, . . . ,Nn/x1, . . . , xn]■) (2)

providing a notation which can be interpreted as an explicit substitution of the variable
xi with the term Ni for all occurrences of x1 . . . , xn inside a term M. For this calculus,

4 M. Acclavio et al.

the authors only consider the usual η and β reductions plus the following reduction:

Let y be P in (Let x be N in M) ⇝ Let x be (Let y be P in N) in (Let x be x in M)(
in our syntax this reduction is written as M [N/x]■

[
P/y

]
■ ⇝ M [x/x]■

[
N

[
P/y

]
■ /x

]
■

)
In [31] the author considers the usual η and β reduction with an the following addi-

tional β-reduction rule specifically designed to handle the explicit substitution construct.

M
[

#»
P ,R

[
#»
N/ #»z

]
■
,

#»
Q/ #»x , y, #»w

]
■
⇝β2 M {R/y}

[
#»
P ,

#»
N ,

#»
Q/ #»x , #»z , #»w

]
■

(3)

In the same paper, the author provides a detailed proof of strong normalization and
confluence for modal lambda terms with respect to the standard η and β reduction,
plus this new β2 reduction. However, also this calculus does not manage to fix the
aforementioned problem with canonicity.

An alternative natural deduction system (and λ-calculus) is proposed in [32], where
the symmetry between elimination and introduction rules typical of natural deduction is
restored. However, this result requires to define a sequent calculus where sequents have
a more complex structure (dual-contexts), and lacks an in-depth study of the operational
semantics because the η-expansion is not considered in the calculus.

Outline of the paper. In Section 2 we recall the definition of the fragment of the
logic CK we consider in this paper, as well as the main results on the proof theory for
this logic, its natural deduction and lambda calculus. In Section 3 we define the modal
λ-calculus we consider in this paper, proving its strong normalization and confluence
properties. In Section 4 we provide a typing system in the style of focused sequent cal-
culi, where we are able to narrow the proof search of the type assignment of our normal
terms to a single derivation. In Section 5 we recall the definition of the game semantics
for the logic we consider and we prove the one-to-one correspondence between terms
in normal form and winning strategies.

2 Preliminaries

In this section we recall the definition of the (fragment of the) constructive modal logic
CK we consider in this paper, and we recall the definition and some terminology for
modal λ-terms. We are interested in a minimal constructive modal logic whose formulas
are defined from a countable set of propositional variables A = {a, b, c, . . .} using the
following grammar:

A B a | (A→ A) | □A (4)

We say that a formula is modality-free if it contains no occurrences of the modality
□. A formula is a →-formula if it is of the form A → B. In the following we use
Krivine’s convention [37] and write (A1, . . . , An) → C as a shortcut for (A1 → (· · · →
(An → C) · · ·)) A sequent is an expression Γ ⊢ C where Γ is a finite (possibly empty) list
of formulas and C is a formula. If Γ = A1, . . . , An and σ a permutation over {1, . . . , n},
then we may write σ(Γ) to denote Aσ(1), . . . , Aσ(n).

In this paper we consider the logic CK defined by extending the conjunction-free
and disjunction-free fragment of intuitionistic propositional logic with the modality □

Canonicity of Proofs in Constructive Modal Logic 5

ax
a ⊢ a

Γ ⊢ C
ex
σ(Γ) ⊢ C

Γ, A ⊢ C
→R

Γ ⊢ A→ C

Γ ⊢ A B, ∆ ⊢ C
→L

Γ, ∆, A→ B ⊢ C

Γ ⊢ A
K□

□Γ ⊢ □A

Γ ⊢ C
W
Γ, A ⊢ C

Γ, A, A ⊢ C
C
Γ, A ⊢ C

Γ ⊢ A ∆, A ⊢ C
cut

Γ, ∆ ⊢ C

Fig. 2. Sequent calculus rules of the sequent system SCK, whereσ is a permutation over {1, . . . , n}

Id i∈{1,...,n}
x1 : A1, . . . , xn : An ⊢ xi : Ai

Γ, x : A ⊢ M : C
Abs
Γ ⊢ λx.M : A→ C

Γ ⊢ N : A Γ ⊢ M : A→ C
App

Γ ⊢ MN : C

Γ ⊢ N1 : □A1 · · · Γ ⊢ Nn : □An x1 : A1, . . . , xn : An ⊢ M : C
□-subst x1 ,...,xn do not occur in Γ

Γ ⊢ M [N1, . . . ,Nn/x1, . . . , xn]■ : □C

Fig. 3. Typing rules in the natural deduction system NDCK for modal λ-terms.

whose behavior is defined by the necessitation rule and the axiom K1 below.

Nec B if A is provable, then also □A is K1 B □(A→ B)→ (□A→ □B)

The sequent calculus SCK, whose rules are provided in Figure 2, is a sound and com-
plete proof system for the logic CK. This system have been extracted from the one
presented in [38] and satisfies cut-elimination.

2.1 A Lambda Calculus for CK

The set of (untyped) modal λ-terms is defined inductively from a countable set of vari-
ablesV = {x, y, . . .} using the following grammar:

M,N B x | λx.M | (MN) | M
[

#»
N/ #»x

]
■

where


#»
N = N1, . . . ,Nn is a list of terms and
#»x = x1, . . . xn is a list of distinct variables.

modulo the standard α-equivalence (denoted =α, see [8]) and modulo the equivalence
generated by the following permutations (for any σ permutation over the set {1, . . . , n})
over the order of substitutions in the [·/·]■ constructor:[

#»
N/ #»x

]
■
B [N1, . . . ,Nn/x1, · · · , xn]■ =

[
Nσ(1), . . . ,Nσ(n)/xσ(1), . . . , xσ(n)

]
■ =:

[
σ(

#»
N)/σ(#»x)

]
■

for any σ permutation over {1, . . . , n}.

As usual, application associates to the left, and has higher precedence than abstraction.
For example, λxyz.xyz := λx.(λy.(λz.((xy)z))). A modal λ-term is a (explicit) substitu-
tion if it is of the form M

[
#»
N/ #»x

]
■
, an application if of the form MN, and a λ-abstraction

if of the form λx.M.
The set of subterms of a term M (denoted SUB(M)) is defined as follows:

Sub(x) = {x} , Sub(λx.M) = Sub(M) ∪ {λx.M} , Sub(MN) = Sub(M) ∪ Sub(N) ∪ {MN} ,
Sub(M [N1, . . . ,Nn/x1, . . . , xn]■) = Sub(M) ∪

(⋃
i∈{1,...,n} Sub(Ni)

)
∪ {M [N1, . . . ,Nn/x1, . . . , xn]■} .

6 M. Acclavio et al.

Its length |M| and its set of free variables FV(M) are defined as:

|M| =


0 if M = x
|N | + 1 if M = λx.N
max{|N |, |P|} + 1 if M = NP
max{|N |, |P1|, . . . , |Pn|} + 1 if M = N

[
#»
P/ #»x

]
■

FV(M) =


{x} if M = x
FV(N) \ {x} if M = λx.N
FV(N) ∪ FV(P) if M = NP⋃

i FV(Pi) if M = N
[

#»
P/ #»x

]
■

We denote |M|x the number of the occurrences of the free variable x in a term M and
we may write |M|x = 0 if x < FV(M) and we say that a term M is linear in the variables
x1, . . . , xn if |M|xi = 1 for all i ∈ {1, . . . , n}. We denote by M {N1, . . . ,Nn/x1, . . . , xn} the
result of the standard capture avoiding substitution of the occurrences of the variable
x1, . . . , xn in M with the term N1, . . . ,Nn respectively (see, e.g., [49]).

A variable declaration is an expression x : A where x is a variable and A is a
type, that is, a formula as defined in Equation (4). A (typing) context is a finite list
Γ B x1 : A1, . . . , xn : An of distinct variable declarations. Given a context Γ = x1 :
A1, . . . , xn : An, we say that a variable x appears in Γ if x = xi for a i ∈ {1, . . . , n} and
we denote by Γ, y : B the context x1 : A1, . . . , xn : An, y : B implicitly assuming that y
does not appear in Γ. A type assignment is an expression of the form Γ ⊢ M : A where
Γ is a context, M a modal λ-term and A a type.

Definition 1. Let Γ ⊢ M : A be an type assignment. A typing derivation (or derivation
for short) of Γ ⊢ M : A in NDCK is a finite tree of type assignment constructed using the
rules in Figure 3 in such a way it has root Γ ⊢ M : A and each leaf is the conclusion of a
Id-rule. A type assignment is derivable (in NDCK) if there is a derivation with conclusion
the given type assignment.

We denote by Λ (resp. by Λ■ and Λλ) the set of modal λ-terms (resp. the set of
substitutions and λ-abstractions in Λ) admitting a derivable type assignment in NDCK.

3 A New Modal Lambda Calculus

In this section we define a new modal lambda calculus by enriching the operational
semantics of the previous calculi with additional reduction rules aiming at recovering
canonicity, proving confluence and strong normalization properties.

To define our term rewriting rules, we require special care when they are applied
in a proper sub-term. This is due to the fact that the explicit substitution encoded by
[·/·]■ could capture free variables. For this reason, we introduce the notion of term with
a hole as a term of the form C [◦] containing a single occurrence of a special variable
◦. More precisely, the set CwH of terms with a hole and the two sets CwHη1 and CwHη2

of specific terms with a hole are defined by the following grammars:

CwH : C [◦] B ◦ | λx.C [◦] | MC [◦] | C [◦] M | C [◦] [
#»
M/ #»x] | M

[
#»
N1,C [◦] ,

#»
N2/

#»x 1, x, #»x 2

]
■

CwHη1 : E [◦] B ◦ | λx.E [◦] | ME [◦] | E′ [◦]M | E [◦]
[

#»
M/ #»x

]
■
| M

[
#»
N1,E,

#»
N2/

#»x 1, x, #»x 2

]
■

CwHη2 : D [◦] B ◦ | λx.D [◦] | MD [◦] | D [◦] M | D [◦]
[

#»
M/ #»x

]
■
| M

[
#»
N1,D′ [◦],

#»
N2/

#»x 1, x, #»x 2

]
■

with E′ [◦] , [◦] , D′ [◦]

We denote by C [M] the term obtained by replacing the hole ◦ in C [◦] with the term
M. By means of example, if C [◦] = ◦ then C [M] = M and if E [◦] = (λx.xN) [◦/x]■

Canonicity of Proofs in Constructive Modal Logic 7

Ground Steps:
(λx.M)N ⇝β1 M {N/x}

M
[

#»
P ,R

[
#»
N/ #»z

]
■
,

#»
Q/ #»x , y, #»w

]
■
⇝β2 M {R/y}

[
#»
P ,

#»
N ,

#»
Q/ #»x , #»z , #»w

]
■

M⇝η1 λx.Mx if Γ ⊢ M : A→ B, x < FV(M) and M < Λλ

M⇝η2 x [M/x]■ if Γ ⊢ M : □A, x < FV(M) and M < Λ■

M
[

#»
P ,N,

#»
Q/ #»x , y, #»z

]
■
⇝κ1 M

[
#»
P ,

#»
Q/ #»x , #»z

]
■

if |M|y = 0
M

[
#»
P ,N,N,

#»
Q/ #»x , y1, y2,

#»z
]
■
⇝κ2 M {v, v/y1, y2}

[
#»
P ,N,

#»
Q/ #»x , v, #»z

]
■

with v fresh

Reduction Steps in Contexts:
M⇝βi N

i∈{1,2}
C [M]⇝β C [N]

M⇝κi N
i∈{1,2}

C [M]⇝κ C [N]

M⇝η1 N

E [M]⇝η E [N]

M⇝η2 N

D [M]⇝η D [N]
with C [◦] ∈ CwH and E [◦] ∈ CwHη1 and D [◦] ∈ CwHη2

Fig. 4. Definition of the ground steps of the reduction relations, and the rules for their extension
to terms with holes.

then E [M] = (λx.xN) [M/x]■. The reduction relations of our calculus are provided in
Figure 4, where the ground steps and the rules for extending them to specific contexts
are provided.

Remark 1. The term constructor Let (i.e., [·/·]■ from Equation (2)) plays no role in
the standard η and β reduction rules from the literature, where it behaves as a black-
box during reduction. The inertness of this constructor with respect to normalization
is indeed what makes the lambda calculus in [9,31] unable to identify terms whose
expected behavior is the same as, for example, the following pairs of terms:

x [v/x]■ and x
[
v,w/x, y

]
■ xyz

[
v, v/y, z

]
■ and xyy

[
v/y

]
■ (5)

Our operational semantics extends the one provided in [31]. The novelty of our ap-
proach is the definition of the κ-reduction and the restriction of the η-reduction. The
former is needed to being able to identify modal λ-terms with the same expected com-
putational meaning, as the ones in Equation (5). The latter is carefully defined to avoid
η-redexes that would make the reduction non-terminating, using a well-known tech-
nique in term rewriting theory (see, e.g., [42,30]).

The need of these restrictions can be observed in the two following (unrestricted)
η-reduction chains, which are both forbidden by our restricted rule from Figure 4.

M⇝η λx.Mx⇝η λx.(λy.My)x⇝η . . .
whenever Γ ⊢ M : A→ B and

M⇝η x [M/x]■ ⇝η x
[
y
[
M/y

]
■ /x

]
■ ⇝η . . .

whenever Γ ⊢ M : □A

Moreover, our definition rules out interactions between the η and β reductions which
could lead to infinite chains, as the ones shown below.

λx.M ⇝η λy.(λx.M)y ⇝β λy.(M {x/y})=α λx.M or
x [M/x]■ ⇝η x

[
y
[
M/y

]
■ /x

]
■ ⇝β y

[
M/y

]
■ =αx [M/x]■ .

Definition 2. We define the following reduction relations:

⇝βη=⇝β ∪⇝η ⇝βκ=⇝η ∪⇝κ ⇝βηκ=⇝β ∪⇝η ∪⇝κ (6)

8 M. Acclavio et al.

For any ξ ∈ {β, η, κ, βη, βκ, βηκ}, we denote by ⇝+ξ its transitive closure, by ⇝=ξ its
reflexive closure, by⇝∗ξ its reflexive and transitive closure, and by ≡ξ the equivalence
relation it enforces over terms, that is, its reflexive, symmetric and transitive closure.
Given a term M, we denote by nfξ(M) the set of its ⇝ξ-normal form. A term M is
strongly normalizable for ⇝ξ if it admits no infinite ⇝ξ-chains A reduction ⇝ξ is
strongly normalizing if every term M is strongly normalizable for it. A reduction⇝ξ is
confluent if given M ⇝∗ξ N1 and M ⇝∗ξ N2 there exists a term N such that N1 ⇝

∗
ξ N

and N2 ⇝
∗
ξ N.

The substitution lemma and subject reduction theorem holds for the reduction⇝βηκ.

Lemma 1. [Substitution Lemma] Let Γ, x : B ⊢ M : C and Γ ⊢ N : B be derivable type
assignments. Then Γ, x : B ⊢ M {N/x} : C is a derivable type assignment.

Proof. The proof is by induction on |M|.

– If |M| = 1 is a variable z we either have that M = x or M = y for some y , x that
appears in Γ. Then either M {N/x} = N and C = B, or M {N/x} = M. In both cases
Γ ⊢ M {N/x} : C is derivable by hypothesis.

– If |M| ≥ 1 and M is an abstraction or an application, then the proof is the same
as in standard λ-calculus [49]. If M = P [T1, . . . ,Tn/x1, . . . xn]■ then C = □C′ and
M {N/x} = P [T1 {N/x} , . . .Tn {N/x} /x1, . . . xn]■. Then, by definition of derivabil-
ity, we have x < {x1, . . . , xn} and the type assignments x1 : A1, . . . , xn : An ⊢ M : C
and Γ, x : B ⊢ Ni : □Ai are derivable for all i ∈ {1, . . . , n} and for some A1, . . . , An.
We can apply inductive hypothesis on Γ, x : B ⊢ Ni : □Ai to deduce that the type
assignment Γ ⊢ Ti {N/x} : □Ai is derivable for all i ∈ {1, . . . , n}. We conclude the ex-
istence the desired type assignment with bottom-mots rule a □-subst with premises
x1 : A1, . . . , xn : An ⊢ {M/x} : C and Γ ⊢ Ti {N/x} : □Ai for all i ∈ {1, . . . , n}.

Theorem 1. Let Γ ⊢ M : C be derivable. If M⇝βηκ N, then Γ ⊢ N : C.

Proof. Because of Lemma 1, it suffices to check the cases when M reduces to N in one
ground step of⇝βηκ:

– if M ⇝β1 N, then M = (λx.P)Q and N = P {Q/x}. The case where M ⇝β2 N
uses a similar argument. The result follows the fact that if Γ, x : B ⊢ M : C and
Γ ⊢ N : B are derivable type assignment, then Γ, x : B ⊢ M {N/x} : C by Lemma 1.

– if M ⇝η1 N, then C = A → B and N = λx.Mx. The result follows by applying the
rule Abs. The case where M⇝η2 N uses a similar argument;

– if M⇝κ1 N1, then M = M′ [P1, . . . , Pk,N, Pk+1, . . . , Pn/x1, . . . , xk, x, xk+1, . . . , xn]■
such that x is not free in M, C = □B, and N1 = M′

[
#»
P ,

#»
Q/ #»x , #»y

]
■
. Then there are

derivations for Γ ⊢ Pi : Ai for all i ∈ {1, . . . , n} (for some Ai) and a derivation for
x1 : A1, . . . , xk : Ak, x : A, xk+1 : Ak+1 . . . , xn : An ⊢ M′ : B. Therefore we have
a derivation for x1 : A1, . . . , xn : An ⊢ M′ : B since weakening is admissible (that
is, whenever Γ, x : A ⊢ M : C is derivable and x does not occur free in M, then

Canonicity of Proofs in Constructive Modal Logic 9

Γ ⊢ M : C is also derivable5. Then we have a derivation of Γ ⊢ N : C with bottom-
most rule a □-subst with right-most premise x1 : A1, . . . , xn : An ⊢ M′ : B. and a
premise Γ ⊢ Pi : Ai for each i ∈ {1, . . . , n};

– if M⇝κ2 N1, then we conclude similarly to the previous point since we have

M = M′
[

#»
P ,N,N,

#»
Q/ #»x , y1, y2,

#»z
]
■

and N1 = M {y, y/y1, y2}
[

#»
P ,N,

#»
Q/ #»x , y, #»z

]
■
.

We can prove local confluence of⇝βηκ by case analysis of the critical pairs using
the following lemma.

Lemma 2. Let P, P′ and Q modal λ-terms. If P⇝βηκ P′, then P {Q/x}⇝∗βηκ P′ {Q/x}.
Moreover, there is a NQ such that Q {P/x}⇝∗βηκ NQ and Q {P′/x}⇝∗βηκ NQ.

Proof. To prove that P {Q/x}⇝∗βηκ P′ {Q/x} we first prove that the result holds for the
ground reduction steps:

– If P = (λy.M)N ⇝β1 M {N/y} = P′, then we have P {Q/x} = ((λy.M)N) {Q/x} =
(λy.M {Q/x})(N {Q/x}). We conclude by associativity of substitution.

– If P⇝β1 P′, we conclude similarly to the previous case.
– If P ⇝η1 λy.Py = P′, then (λy.Py) {Q/x} = λy.(P {Q/x})y. We conclude since,

definition of⇝η , we have that P {Q/x} {q/x}⇝η λy.(P {Q/x})y.
– If P ⇝η2 y

[
P/y

]
■ = P′, then P′ {Q/x} = y

[
(P {Q/x})/y

]
■. We conclude since, by

definition of⇝η , we have that P {Q/x}⇝η y
[
(P {Q/x})/y

]
■.

– If P = M′
[

#»
P ,N,

#»
Q/ #»x , y, #»z

]
■
⇝κ1 P′ = M′

[
#»
P ,

#»
Q/ #»x , #»z

]
■
, then P {Q/x} =

M′ {Q/x}
[

#»
P {Q/x} ,N {Q/x} ,

#»
Q {Q/x} / #»x , y, #»z

]
■
. We conclude since P′ {Q/x} =

M′ {Q/x}
[

#»
P {Q/x} ,

#»
Q {Q/x} / #»x , #»z

]
■
, thus P {Q/x}⇝κ1 P′ {Q/x}.

– If P = M′
[

#»
P ,N,N,

#»
Q/ #»x , y1, y2,

#»z
]
■
⇝κ2 P′ = M′ {v, v/y1, y2}

[
#»
P ,N,

#»
Q/ #»x , v, #»z

]
■
,

then P {Q/x} = M′ {Q/x}
[

#»
P {Q/x} ,N {Q/x} ,N {Q/x} ,

#»
Q {Q/x} / #»x , y1, y2,

#»z
]
■

and

P′ {Q/x} = (M′ {v, v/y1, y2}) {Q/x}
[

#»
P {Q/x} ,N {Q/x} ,

#»
Q {Q/x} / #»x , v, #»z

]
■
. We con-

clude since (M′ {v, v/y1, y2}) {Q/x} = (M′ {Q/x}) {v, v/y1, y2}, thus P {Q/x} ⇝κ2
P′ {Q/x}.

Then we conclude by showing that it also holds when reductions are applied in a
context.

– If P = λy.M for a M such that M ⇝βηκ M′, then P′ = λy.M′ and we conclude by
inductive hypothesis since P {Q/x} = λy.M {Q/x}⇝βηκ λy.M′ {Q/x}.

– If P = MN, then P {Q/x} = M {Q/x}N {Q/x}. In this case, either M ⇝βηκ M′ and
P′ = M′N, or N ⇝βηκ N′ and P′ = MN′. We conclude taking into account the
restriction of the possible application of the reduction steps in a context. Note that
without the restriction on ⇝η1 we could have had M {Q/x} ⇝η1 λy.(M {Q/x})y,
and therefore M {Q/x}N ⇝η1 λy.(M {Q/x})yN ⇝β1 M {Q/x}N;

5 The admissibility of weakening is easily proven by induction on the size of a derivation.

10 M. Acclavio et al.

– If P = M
[
N/y

]
■ then P {Q/x} = M {Q/x}

[
N {Q/x} /y

]
■. In this case, either M⇝βηκ

M′ and P′ = M′
[
N/y

]
■, or N ⇝βηκ N′ and P′ = M

[
N′/y

]
■. We conclude taking

into account the restriction of the possible application of the reduction steps in a
context. Note that without the restriction on⇝η2 we could have had N {Q/x}⇝η2

y
[
N {Q/x} /y

]
■, and therefore the following sequence of reductions.

M [N {Q/x} /z]■ ⇝η2 M
[
y
[
N {Q/x} /y

]
■ /z

]
■ ⇝β2 M [N {Q/x} /z]■

The fact that, for each Q, there is a NQ such that Q {P/x}⇝∗βηκ NQ and Q {P′/x}⇝∗βηκ
NQ is proven by induction on the structure of Q and considering the restrictions on the
definition of the rewriting steps in a context.

Proposition 1. The reduction⇝βηκ is locally confluent.

Proof. We show that if there are M, N1 and N2 with N1 , N2 such that M ⇝βηκ N1
and M⇝βηκ N2, then there exists N such that N1 ⇝

∗
βηκ N and⇝∗βηκ N. Without loss of

generality we have the following cases:

1. if M ⇝β1 N1 with M = (λx.P)Q and N1 = P {Q/x}, then N2 can only be obtained
by applying⇝βηκ the subterms P and Q of M. We conclude by Lemma 2;

2. if M⇝β2 N1 with M = M′
[

#»
P ,R

[
#»
N/ #»z

]
■
,

#»
Q/ #»x , y, #»w

]
■

and with

N1 = M′ {R/y}
[

#»
P ,

#»
N ,

#»
Q/ #»x , #»z , #»w

]
■
, then N2 must be a term obtained by applying

⇝βηκ on R or on one of the terms in
#»
P ,

#»
N or

#»
Q. We conclude again by Lemma 2;

3. if M ⇝η1 N1, then Γ ⊢ M : A → B and N1 = λx.Mx. Therefore, for any N2 such
that M⇝βηκ N2 we have that Γ ⊢ N2 : A→ B (by subject reduction). Then

– either N2 is not an abstraction and we conclude by letting N = λx.N2x.
– otherwise N2 = λy.M′ and we conclude since N1 ⇝η1 λx.N2x⇝β1 N2.

4. if M⇝η2 N1 with Γ ⊢ M : □A and N1 = x [M/x]■, then we conclude with a similar
argument with respect to the previous point by letting N = x [N2/x]■.

5. if M ⇝κ N1, M = M′
[

#»
P ,N,

#»
Q/ #»x , x, #»y

]
■
⇝κ1 M′

[
#»
P ,

#»
Q/ #»x , #»y

]
■
= N1, or

M = M′
[

#»
P ,N,N,

#»
Q/ #»x , y1, y2,

#»z
]
■
⇝κ2 M {y, y/y1, y2}

[
#»
P ,N,

#»
Q/ #»x , y, #»z

]
■
= N1.

In both cases we conclude with an argument similar to the one in Case (2).

In order to prove the termination of⇝βηκ, we define the following measures.

Definition 3. Let M be a modal λ-term. We define the following multisets of derivable
type assignments:

Est1(M) =
{
B→ C | P ∈ Sub(M) \ Λλ such that M , PQ and Γ ⊢ P : B→ C

}
Est2(M) =

{
□B | P ∈ Sub(M) \ Λ■ such that M , Q

[
#»
N1, P,

#»
N2/

#»x 1, x, #»x 2

]
■

and Γ ⊢ P : □B
}

We then define ∥M∥η B ∥M∥1η + ∥M∥
2
η with

∥M∥1η B
∑

A∈Est1(M)

∥A∥1η and ∥M∥2η B
∑

A∈Est2(M)

∥A∥2η

where
∥a∥1η = 0 ∥A→ B∥1η = ∥A∥

1
η + ∥B∥

1
η + 1 ∥□A∥1η = ∥A∥

1
η

∥a∥2η = 0 ∥A→ B∥2η = ∥A∥
2
η + ∥B∥

2
η ∥□A∥2η = ∥A∥

2
η + 1

Canonicity of Proofs in Constructive Modal Logic 11

We also define ∥M∥κ as the size of substitution subterms of M as follows:

∥x∥κ = 0 ∥λxM∥κ = ∥M∥κ ∥MN∥κ = ∥M∥κ + ∥N∥κ
∥M [N1, . . . ,Nn/x1, . . . , xn]■ ∥κ = ∥M∥κ + ∥N∥κ + n

Example 1. Intuitively, the measure ∥ · ∥η does not take into account all the subterms
of M, but only the ones on which we can apply the restricted ⇝η . For an example,
consider the modal λ-term M = (λza→a.z)y with ∥M∥η = 3 because all four subterms of
M are of type a→-formula, but the subterm λz.z is an abstraction, therefore no⇝η can
be applied on it. If M⇝η N, because of the restrictions on⇝η , we have that

– either N = (λz.z)(λv.yv) with ∥N∥η = 2 because no ⇝η can be applied to the
subterms y and λz.z (they occur on the left of an application) or λv.yv (it is an
abstraction), but only to the subterms z and the whole term N;

– or N = λva.((λz.z)y)v with ∥N∥η = 2 because⇝η can only be applied to the sub-
terms z and y.

Lemma 3. Let M and N be modal λ-terms. If M ⇝η N, either ∥N∥η < ∥M∥η or there
is N′ such that N ⇝η N′ and ∥N′∥η < ∥M∥η.

Proof. We only discuss the two following cases, since the others are direct consequence
of the definitions of ∥ · ∥1η and ∥ · ∥2η.

1. If Γ ⊢ M : C with C = A → B and M ⇝η1 N, then N = λx.Mx. Therefore,
∥C∥1η = ∥A→ B∥1η > 0 and

∥M∥1η =

 ∑
C′∈Est1(M)

∥C′∥1η

 > ∑
C′∈Est1(M)\{C}

∥C′∥1η > ∥λx.Mx∥1η = ∥N∥
1
η

Now consider ∥N∥2η. We reason by cases on the structure of the type A. If A is
not a box, we can conclude by setting N′ = N. If A is of the shape □A′ then
∥N∥2η =

∑
C′∈Est2(M)∪{A} ∥C′∥2η. This means that we can perform a step λx.Mx ⇝η2

λx.(M(z [x/z]■)) with z fresh. Now we set N′ = λx.(M(z [x/z]■)) since ∥N′∥2η =∑
C′∈Est2(M) ∥C′∥2η = ∥M∥

2
η. We remark that ∥N′∥1η = ∥N∥

1
η. Hence ∥N′∥η = ∥N∥1η +

∥M∥2η < ∥M∥
1
η + ∥M∥

2
η = ∥M∥η since ∥N∥1η < ∥M∥

1
η for what we said before.

2. If Γ ⊢ M : C with C = □A and M ⇝η2 N, then N = x [M/x]■. Therefore,
∥C∥2η = ∥□A∥2η > 0 and

∥M∥2η =

 ∑
C′∈Est1(M)

∥C′∥2η

 > ∑
C′∈Est1(M)\{C}

∥C′∥1η > ∥λx.Mx∥2η = ∥x [M/x]■ ∥
2
η = ∥N∥

2
η

Now consider ∥N∥1η. We reason by cases on the structure of the type A. If A is
not an implication, we can conclude by setting N′ = N. If A is of the shape
A′ → B then ∥N∥1η =

∑
C′∈Est1(M)∪{A} ∥C′∥2η. This means that we can perform a

step x [M/x]■ ⇝η2 (λy.xy) [M/x]■ with y fresh. Now we set N′ = (λy.xy) [M/x]■
since ∥N′∥1η =

∑
C′∈Est1(M) ∥C′∥2η = ∥M∥

1
η. We remark that ∥N′∥2η = ∥N∥

2
η. Hence

∥N′∥η = ∥N∥2η + ∥M∥
1
η < ∥M∥

2
η + ∥M∥

1
η = ∥M∥η since ∥N∥2η < ∥M∥

2
η for what we said

before.

12 M. Acclavio et al.

Lemma 4. Let P,Q,N be modal λ-terms. If P {Q/x} ⇝η N, then there are N1 and N2
such that P⇝∗η N1 and Q⇝∗η N2 with N1 {N2/x} = N.

Proof. We prove it by induction on the structure of P.

– If P = x then P {Q/x} = Q⇝η N. Then N1 = x and N2 = N.
– If P = λy.P′, then P {Q/x} = λy.P′ {Q/x}. By definition, if P {Q/x} ⇝η N then
Γ ⊢ P : A → B and then N = λz.P′′ with P′ {Q/x} ⇝η P′′. In this case we apply
inductive hypothesis to get N′1 and N′2 such that P′ ⇝η N′1 and Q ⇝η N′2 with
N′1

{
N′2/x

}
= P′′. We conclude by letting N1 = λy.N′1 and N2 = N′2;

– If P = S T , then P {Q/x} = S {Q/x}T {Q/x}. By definition of⇝η , if P {Q/x}⇝η N
then:
• if S {Q/x}T {Q/x} ⇝η1 λy.(S {Q/x}T {Q/x})y = N, then N1 = λy(S T)y and

N2 = Q;
• if S {Q/x}T {Q/x}⇝η2 y

[
S {Q/x}T {Q/x} /y

]
■ = N, then N1 = y

[
S T/y

]
■ and

N2 = Q;
• otherwise, the step N ⇝η N′ must be applied in a context. In this case, we

have that N = P1P2 and either S {Q/x}⇝η P1 or T {Q/x}⇝η P2. In the case
S {Q/x} ⇝η P1, by definition of the contextual step, {Q/x} ⇝η P1 cannot
be a step of ⇝η1 . By inductive hypothesis there are N1,2 and N2,2 such that
S ⇝η N1,2 and Q⇝η N2,2 with P1 = N1,1

{
N2,2/x

}
. Then N1 = N1,1(T {Q/x})

and N2 = N2,2. The other case is similar.
– If P = S

[
#»
T / #»y

]
■

then P {Q/x} = S {Q/x}
[

#»
T {Q/x} / #»y

]
■
. By definition of⇝η , if

P {Q/x}⇝η N then:
• if S {Q/x}

[
#»
T {Q/x} / #»y

]
■
⇝η1 λy.(S {Q/x}

[
#»
T {Q/x} / #»y

]
■
)y = N, then N1 =

λy.(S
[

#»
T / #»y

]
■
)y and N2 = Q;

• otherwise, the step N ⇝η N′ must be applied in a context. In this case, we
have that N = P1

[
#»
P2/

#»y
]
■

and either S {Q/x} ⇝η P1 or
#»
T {Q/x} ⇝η

#»
P2.

We do the case S {Q/x}⇝η P1. By inductive hypothesis there exists N1,2 and
N2,2 such that S ⇝η N1,2 and Q ⇝η N2,2 with P1 = N1,1

{
N2,2/x

}
. Then

N1 = N1,1

[
#»
T {Q/x} / #»y

]
■

and N2 = N2,2. The other case is similar.

Lemma 5. The following commutations between⇝β ,⇝η and⇝κ hold:

– if M⇝κ N ⇝β N′, then there is M′ such that M⇝β M′ and M′ ⇝∗κ N′ ;
– if M⇝η N ⇝κ N′, then there is M′ such that M⇝κ M′ and M′ ⇝∗η N′ ;
– if M⇝β N ⇝η N′, then there is M′ such that M⇝η M′ and M′ ⇝∗β N′ .

Proof. After Lemmas 1 and 4, we can reason on the structure of M only considering its
possible shape according to the ground steps of⇝βηκ.

– If M ⇝η1 N = λx.Mx, then, by lemma 4 we have N1 and N2 such that P ⇝η N1
and Q ⇝η N2 with N1 {N2/x} = N. We conclude by letting M′ = (λx.N1)N2. A
similar argument is applied if M⇝η2 N.

– If M = (λx.P)Q ⇝β1 P {Q/x} = N, then we have N1 and N2 such that P ⇝η N1
and Q ⇝η N2 with N1 {N2/x} = N. We conclude by letting M′ = (λx.N1)N2. A
similar argument is applied if M⇝β2 N.

Canonicity of Proofs in Constructive Modal Logic 13

– If M = M
[

#»
P ,N,

#»
Q/ #»x , y, #»y

]
■
⇝κ1 M

[
#»
P ,

#»
Q/ #»x , #»y

]
■
= N, then we can conclude

since any β-redex of N is also a β-redex of M. A similar argument is applied if
M⇝κ2 N.

Therefore, the following corollary trivially holds.

Corollary 1. The following hold.

– if M⇝κ N, then nfβ(M)⇝∗κ nfβ(N);
– if M⇝η N, then nfκ(M)⇝η nfκ(N);
– if M⇝β N, then nfη(M)⇝∗β nfη(N).

Theorem 2. The reduction relation⇝βηκ is strongly normalizing and confluent.

Proof. After Proposition 1, it suffices to prove that ⇝βηκ is strongly normalizing to
conclude by Newman’s lemma that⇝βηκ is also confluent.

To prove strong normalization we use the fact that the reductions⇝β ,⇝η and⇝κ
are strongly normalizing: for⇝β the proof can be found in [31], for⇝η the proof is
by induction on ∥ · ∥η using Lemma 3, and for⇝κ it follows the fact that, by definition
of ∥ · ∥κ, we have that ∥M∥κ > ∥N∥κ whenever M ⇝κ N. To conclude that⇝βηκ also
is strongly normalizing, the standard result (see, e.g., [49]) in rewriting theory ensuring
that given two strongly normalizing reduction relations⇝1 and⇝2 with⇝1 confluent,
if M ⇝2 N implies the existence of a reduction nf1(M) ⇝+2 nf1(N) for any M and N,
, then⇝1 ∪ ⇝2 is strongly normalizing. In our case, the fact that M ⇝2 N implies
nf1(M)⇝+2 nf1(N) is a corollary of Lemma 5.

Definition 4. The set Λ̂ is the set of modal λ-terms defined inductively as follows:

– if x is a variable, T1, . . . ,Tn ∈ Λ̂, and there are derivations for the types assignments
Γ ⊢ x : (A1, . . . , An) → C with C atomic and Γ ⊢ Ti : Ai for all i ∈ {1, . . . , n}, then
xT1 · · · Tn ∈ Λ̂. Variables are the special case with n = 0;

– if T ∈ Λ̂ and there is a derivation of Γ, x : A ⊢ T : C, then λxA.T ∈ Λ̂;
– if M ∈ Λ̂, FV(M) = {x1, . . . , xn} and the type assignment x1 : B1, . . . , xn : Bn ⊢

M : C is derivable, and if there are n distinct terms T1, . . . ,Tn ∈ Λ of the shape
Ti = yiUi1 · · ·Uiki with Ui j ∈ Λ̂ for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ki}, such
that the type assignment Γ ⊢ Ti : □Bi is derivable for all i ∈ {1, . . . , n}, then
M [T1, . . . ,Tn/x1, . . . , xn]■ ∈ Λ̂.

Proposition 2. The set Λ̂ is the set of modal λ-terms in βηκ-normal form nfβηκ(Λ).

Proof. By definition, every Λ̂ ⊆ nfβηκ(Λ) is ⇝βηκ-normal. To prove the converse we
proceed by induction on the structure of M ∈ nfβηκ(Λ):

– if M = x, then M ∈ Λ̂ by definition;
– if M = λx.M′ ∈ nfβηκ(Λ), then also M′ ∈ nfβηκ(Λ). By inductive hypothesis, this

implies M′ ∈ Λ̂. Therefore λx.M′ ∈ Λ̂;

14 M. Acclavio et al.

ax
Γ, x : c ⊢ x : c

Γ ⊢ M : C
ex ∗

σ(Γ) ⊢ M : C

x1 : A1, . . . , xn : An ⊢ M : C
K□ ⋆
∆, y1 : □A1, . . . , yn : □An ⊢ M

[
x1, . . . , xn/y1, . . . , yn

]
■ : □C

{Γ, y : B ⊢ Ni : Ai}i∈{1,...,n}
→ax

L §

Γ, y : (A1, . . . , An)→ c︸ ︷︷ ︸
B

⊢ yN1 · · ·Nn : c
Γ, x1 : A1, . . . , xn : An ⊢ M : C

→∗R
Γ ⊢ λxA1

1 · · · x
An
n .M : (A1, . . . An)→ C

{
Γ, ∆ ⊢ Ti, j : Ai, j

}
i∈{1,...,n}, j∈{1,...,ki}

Γ, ∆, x1 : □B1, . . . , xn : □Bn ⊢ M
[
x1, . . . , xn,

#»z /y1, . . . , yn,
#»w
]
■ : □C

→K
L †,§
Γ, f1 : (A1,1, . . . , A1,k1)→ □B1, . . . , fn : (An,1, . . . , An,kn)→ □Bn︸ ︷︷ ︸

∆

⊢ M
[
N1, . . . ,Nn,

#»z /y1, . . . yn,
#»w
]
■ : □C

∗ B σ permutation over {1, . . . , n} ⋆ B FV(M) = {x1, . . . xn} and y1, . . . , yn fresh
§ B each Ni = fiTi,1 · · · Ti,ki for i ∈ {1, . . . , n} † B Γ contains no formula of the shape (A1 · · · An)→ □B

Fig. 5. Typing rules of the typing system CKF.

– if M = PQ ∈ nfβηκ(Λ), then both P and Q are in nfβηκ(Λ) and there is a derivable
type assignment Γ ⊢ M : C, and derivable type assignments Γ ⊢ P : A → C and
Γ ⊢ Q : A. We have that no⇝η -rule can be applied to C because M ∈ nfη(Λ); thus
C must be atomic. We know that P cannot be in Λλ since M ∈ nfβ(Λ) and P cannot
be in Λ■ because Γ ⊢ P : A → C is derivable. Then by inductive hypothesis we
have that P = xT1, . . .Tn for some T1, . . . ,Tn ∈ Λ̂. We conclude that PQ ∈ Λ̂;

– if M = P [Q1, . . . ,Qn/x1, . . . , xn]■ ∈ nfβηκ(Λ), then there is a derivable type assign-
ment x1 : B1, . . . , xn : Bn ⊢ P : C and derivable type assignments Γ ⊢ Qi : □Bi

for all i ∈ {1, . . . , n}. Since M ∈ nfβηκ(Λ), then no⇝βηκ-rule can be applied to M,
nor to P; thus P ∈ nfβηκ(Λ). Similarly, since M ∈ nfβηκ(Λ), then Qi < Λ

■ (otherwise
we could apply⇝2

β), Qi ∈ nfβκ(Λ) (since no⇝βκ-rule can be applied to Qi) and Qi

cannot be in nfη(Λ) (because Qi : □Bi and otherwise⇝η -steps could be applied on
M) for all i ∈ {1, . . . , n}. We conclude that M ∈ Λ̂.

4 A Canonical Type System for CK

In this section we present an alternative typing system for modal λ-terms where each
term in Λ̂ admits exactly one typing derivation. The rules of this system (we call CKF)
are provided in Figure 5 and are conceived to reduce the non-determinism of the typing
process, following the same approach used in designing focused sequent calculi [7,41,11].
Derivations and derivability in CKF are defined analogously to Definition 1, using rules
in CKF instead of rules in NDCK. We remark that the structural rules of weakening and
contraction are admissible in the system.

We can now prove a result of canonicity of CKF with respect to typing derivations
of modal λ-terms in nfβηκ(Λ).

Theorem 3. Let T ∈ Λ̂ and Γ ⊢ T : A be a derivable type assignment. Then there is a
unique (up to ex-rules) derivation of Γ ⊢ T : A in CKF.

Proof. The proof of this theorem follows from the correspondence between the induc-
tive definition of terms in Λ̂ (definition 4) and the shape of the typing rules of CKF.

By definition of Λ̂, we have the following cases:

Canonicity of Proofs in Constructive Modal Logic 15

– if M = x is a variable, then A = a must be an atomic formula. Since the sequent
Γ ⊢ x : a is derivable in NDCK, then it can only be the conclusion of a Id-rule if
x : a ∈ Γ. We conclude since the rule Id is also in CKF and such a derivation is
unique;

– if T = xN1 · · ·Nm, then x : C = (A1, . . . , An) → A is in Γ and N1, . . . ,Nm ∈ Λ̂ with
size smaller than |M|. By inductive hypothesis, for each i ∈ {1, . . . ,m} the sequent
Γ ⊢ Ni : Ai is derivable in NDCK, therefore admits a unique derivation Di in CKF.
We conclude since we have a unique derivation of Γ ⊢ M : A starting with a by
→ax

L whose premises are the conclusionsD1, . . . ,Dn;
– if T = λxA1

1 · · · λxAn
n .M for a M , λy.N, then A = (A1, . . . , An)→ C for some types

A1, . . . , An,C. Applying n times the rule Abs we know that Γ ⊢ λxA1 . . . λxAn .M :
(A1, . . . , An) → C iff Γ, x : A1, . . . , xn : An ⊢ M : C. By induction, we know that
there is a unique derivation D1 of the sequent Γ, x : A1, . . . , xn : An ⊢ M : C in
CKF. We conclude since we have a unique derivation of Γ ⊢ M : A starting with a
by→∗R whose premise is the conclusion ofD1;

– if T = M
[
N1, . . . ,Nn/y1, . . . , yn

]
■, then, we have two cases:

• Ni = xi is a variable for all i ∈ {1, . . . , n}. In this case a NDCK derivation of
Γ ⊢ xi : □Ai can only be made of a single Id-rule. This implies that xi : □Ai ∈ Γ
for all i ∈ {1, . . . , n}; thus Γ = ∆, x1 : □A1, . . . xn : □An for a context ∆.
Moreover we must have a NDCK-derivation of x1 : A1, . . . , xn : An ⊢ M : C for
a C is such that □C = A; thus, since |M| < |T |, there is a unique derivation D1
of this latter sequent in CKF. We conclude since we have a unique derivation
of Γ ⊢ M : A starting with a by K□ whose premise is the unique derivation of
∆, x : A1, . . . , xn : An ⊢ M : C in CKF;
• there are some i ∈ {1, . . . , n} such that Ni is of the form fiTi,1 · · · Ti,ki with

fi : (Ai,1, . . . , Ai,ki) → □Bi and Ti,1, . . . ,Ti,ki ∈ Λ̂. For any i ∈ {1, . . . , n} and
j ∈ {1, . . . , ki} the sequent Γ ⊢ Ti, j : Ai, j is derivable in NDCK, then, since
the weakening rule is admissible, also Γ, f1 : (A1,1, . . . , A1,k1) → □B1, . . . , fn :
(An,1, . . . , An,kn) → □Bn ⊢ Ni, j : Ai j is derivable. Since |Ni, j| < |M|, we can
conclude by induction the existence of a unique derivation Di, j in CKF for
this latter sequent. By similar argument, there is also a unique derivation for
Γ, ∆, x1 : □B1, . . . , xn : □Bn ⊢ M

[
x1, . . . , xn,

#»z /y1, . . . , yn,
#»w
]
■ : □C allowing

us to conclude the existence of a unique derivation of Γ ⊢ M : A starting with
a by →K

L whose rightmost premise is the conclusion of D′ and whose other
premises are the derivationsDi, j with i ∈ {1, . . . , n} and j ∈ {1, . . . , ki};

5 Game Semantics for CK

In this section we recall definitions and results on the winning innocent strategies for
the logic CK defined in [4]. For this purpose, we first recall the construction extending
Hyland-Ong arenas [28,43] for intuitionistic propositional formulas to represent formu-
las containing modalities, and then we recall the characterization of the winning inno-
cent strategies representing proofs in CK. We conclude by proving the full-completeness
result between for those strategies by showing a one-to-one correspondence between
strategies for type assignments of terms in normal forms and their (unique) typing
derivations in CKF.

16 M. Acclavio et al.

5.1 Arenas with Modalities

We recall the definition of arenas with modalities from [4] extending the encoding of
arenas from [29,25]. For this purpose, we assume the reader familiar with the definition
of two-color directed graph (or 2-dag’s for short), i.e., directed acyclic graphs with two
disjoint sets of directed edges → and⇝ (details can be found in [4,25]).

Definition 5. The arena of a formula F is the 2-dag [[F]] with vertices are labeled by
elements in L = A∪ {□} inductively defined as follows:

[[a]] = a [[A→ B]] = [[A]]−▷ [[B]] [[□A]] = □ ∼▷ [[A]] (7)

where a and □ denote the graphs consisting of a single vertex labeled by a and □ re-
spectively, and where the binary operation −▷ and ∼▷ on 2-dag’s are defined as follows:

G−▷H = ⟨ VG ⊎ VH ,
G⊎H
→ ∪

(→
RG↷

→
RH

)
,
G⊎H
⇝ ⟩ and G∼▷H = ⟨ VG ⊎ VH ,

G⊎H
→ ,

G⊎H
⇝ ∪

(→
RG↷

→
RH

)
⟩ with

VG ⊎ VH =
{
(vi, i) | i ∈ {0, 1} and v0 ∈ VG and v1 ∈ VH

}
and ℓ((vi, i)) = ℓ(vi)

G⊎H
↷ =

{
((vi, i), (wi, i)) | i ∈ {0, 1} and (v0,w0) ∈

G
↷ and (v1,w1) ∈

H
↷

}
for each↷ ∈ {→,⇝}(→

RG↷
→
RH

)
=

{
((v, 0), (w, 1)) v ∈

→
RG,w ∈

→
RH

}
where

→
RX B {v ∈ VX | v

X
→w for no w ∈ VX}

The arena of a sequent A1, . . . , An ⊢ C is the arena A of [[(A1, . . . , An)→ C]].

Remark 2. By construction, an arena G of a formula or a sequent Γ ⊢ C always admits
a unique non □-labeled vertex in

→
RG, i.e., a unique vertex v with ℓ(v) , □ such that there

is no w ∈ VG such that v
G
→w.

We draw 2-dag’s by representing a vertex v by its label ℓ(v). If v and w are vertices
of an 2-dag, then we draw v w if v→w and v w if v⇝w. By means of example,
consider the arena below.

[[(
a→ □(b→ (c→ □d))

)
→ □(e→ f)

]]
=

a □ □

□

b e f
c d

(8)

Remark 3. All arenas of the form
[[
(Aσ(1), . . . , Aσ(n))→ C

]]
have the same representa-

tion for any σ permutation over {1, . . . , n}. More in general, it can be shown that the
arena of any two equivalent formulas modulo Currying A→ (B→ C) ∼ B→ (A→ C)
can be depicted by the same arena. However, whenever there may be ambiguity be-
cause of the presence of two vertices with the same label, we may represent the ver-
tex v = ((· · · (v′, i1) · · ·), in) (where i1, . . . , in ∈ {0, 1}) by ℓ(v)i1,...,in instead of simply
ℓ(v) = ℓ(v′) (see Example 2).

Definition 6. Let [[F]] be an arena and v one of its vertices. The depth of v is the number
d(v) of vertices in a →-path from v to a vertex in

→
R[[F]]

6. The address of v is defined as

6 As proven in [25,5], arenas are stratified, that is, all the →-path from a vertex v to any vertex
in
→

R[[F]] have the same length. Therefore the number d(v) is well-defined.

Canonicity of Proofs in Constructive Modal Logic 17

the unique sequence of modal vertices add(v) = m1, . . . ,mh in V[[F]] corresponding to
the sequence of modalities in the path in the formula tree of F connecting the node of v
to the root. If add(v) = m1, . . . ,mh, we denote by addk(v) = mk its kth element and we
call the height of v (denoted hv) the number of elements in add(v).

Example 2. Below an alternative representation of its arena of the formula
(
a→ □(b→

(c → □d))
)
→ □(e → f) in Equation (8) where the ambiguity of the vertex representa-

tion is avoided by the use of indices, the corresponding formula-tree, and the complete
list of the addresses of all vertices in this arena.

a □011110 □10

□010

b e f
c d

→

→ □10
a □011110 →

→ e f
b →

c □010

d

add(a) =ϵ
add(□011110)=ϵ
add(b) =□011110
add(c) =□011110
add(□010) =□011110
add(d) =□011110□010
add(□10) =ϵ
add(e) =□10
add(f) =□10

5.2 Games and Winning Innocent Strategies

In this subsection, we briefly recall the definitions of games and winning strategies from
[4] required to make the paper self-contained. Note that differently from the previous
works, we here include the additional information of the pointer function in the defini-
tion of views. This information is crucial for the results in Section 4 where we provide
a one-to-one correspondence between our winning strategies and modal λ-terms.

Definition 7. Let A be an arena. We call a move an occurrence of a vertex v of A with
ℓ(v) , □. The polarity of a move v is the parity of d(v): a move is a ◦-move (resp. a
•-move) if d(v) is even (resp. odd).

A pointed sequence in A is a pair p = ⟨s, f ⟩ where s = s0, . . . , sn is a finite se-
quences of moves in A and a pointer function f : {1, . . . , n} → {0, . . . , n − 1} such that

f (i) < i and si
A
→s f (i). The length of p (denoted |p|) is defined as the length of s, that is,

|p| = n + 1. Note that we also use ϵ to denote the empty pointed sequence ⟨ϵ, ∅⟩.

Remark 4. It follows by definition of view that the player ◦ (resp. •) can only play
vertices whose d(v) is even (resp. odd). For this reason, for each v ∈ VG we write v◦

(resp. v•) if the parity of d(v) even (resp. odd).
Note that the parity of a modality in the address of a move may not be the same as

the parity of the move itself. By means of example, consider the vertex c in Example 2
which belongs in the scope of two modalities □011110 and □010 with odd parity.

Given two pointed sequences p = ⟨s, f ⟩ and p′ = ⟨s′, f ′⟩ in A, we write p ⊑ p′

whenever s is a prefix of s′ (thus |s| ≤ |s′|) and f (i) = f ′(i) for all i ∈ {1, . . . , |p′|} and
we say that p is a predecessor of p′ if p ⊏ p′ and |p| = |p′| − 1.

Definition 8. Let A be an arena. A play on A is a pointed sequence p = ⟨s, f ⟩ such
that, either s = ϵ, or si and si+1 have opposite polarities for all i ∈ {0, . . . , |p| − 1}.

18 M. Acclavio et al.

Arena [[(□a)→ a]] =
□
•

a
•

a
◦

[[(□a→ □b)→ □(a→ b)]] =

□
◦

000 □
•

010 □
◦

10

b
•

b
◦

a
◦

a
•

WIS S1 = {ϵ, a◦, a◦a•} S2 = {ϵ, b◦, b◦b•, b◦b•a◦, b◦b•a◦a•}

(failed)
Derivation

FAIL
...............
□a ⊢ a

→R

⊢ □a→ a

FAIL
.............
⊢ a

K□

⊢ □◦a

ax
b ⊢ b

W
b, a ⊢ b

→L

b ⊢ a→ b
K□

□•b ⊢ □◦(a→ b)
→L

□◦a→ □•b ⊢ □◦(a→ b)
→R

⊢ (□◦a→ □•b)→ □◦(a→ b)

Fig. 6. Examples of WISs for arenas not corresponding to proofs.

The game of A (denoted GA) is the set of prefix-closed sets of plays over A.
A view is a play p = ⟨s, f ⟩ such that either p = ϵ or the following properties hold:

- p is ◦-shortsighted : f (2k) = 2k − 1 for every 2k ∈ {2, . . . , |p|};
- p is •-uniform : ℓ(s2k+1) = ℓ(s2k) for every 2k + 1 ∈ {0, . . . , |p|}.

A winning innocent strategy (or WIS for short) for the gameGA is a finite non-empty
prefix-closed set S of views in GA such that:

- S is ◦-complete: if p ∈ S and p as odd length,
then every successor of p (in GA) is also in S ;

- p is •-total: if p ∈ S and p has even length,
then exactly one successor of p (in GA) is in S ;

A view is maximal in S if it is not prefix of any other view in S. S is trivial if S = {ϵ}.
We say that S is a WIS for a sequent A1, . . . , An ⊢ C if S is a WIS for [[A1, . . . , An ⊢ C]].

The definition of WIS above is a reformulation of the one in the literature of game
semantics for intuitionistic propositional logic [28,13,25]. In presence of modalities,
this definition requires to be refined to guarantee the possibility of gather modalities in
batches corresponding to the modalities introduced by a single application of the K□

(see Figure 2). By means of example, consider the following arenas and their corre-
sponding WISs, which cannot represent valid proofs in CK because of the impossibility
of applying rules handling the modalities in a correct way.

Example 3. Consider the formulas F1 = (□a) → a and F2 = (□a → □b) → □(a → b)
and their arenas in Figure 6. The set of views S1 and S2 are WISs for F1 and F2
respectively. However, these formulas are not provable in SCK because the proof search
fails (see Figure 6). In particular, in the first case, no K□ can be applied because only
there is a mismatch between the modalities on the left-hand side and on the right-hand
side of the sequent; in the second case the problem is more subtle and, intuitively, is
related to the fact that each K□ can remove only a single □◦ at a time, corresponding to
the modality of the unique formula on the right-hand side of the sequent.

Therefore, in order to capture provability in CK, the notion of winning strategies
has to be refined as follows.

Canonicity of Proofs in Constructive Modal Logic 19

Definition 9. Let p = (s, f) be a view in a strategy S on an arena A, and let hp =

1 + max{hv | v ∈ p}. We define the batched view of p as the hp × n matrix F (p) =(
F (p)0, . . . ,F (p)n

)
with elements in VG∪{ϵ} such that the each column F (p)i is defined

as follows:

F (p)i =


F (p)hp

i
...

F (p)0
i

 where


F (p)hp

i = addhpi (pi), . . . ,F (p)
hp−hpi+1
i = add1(pi)

F (p)
hp−hpi
i = ϵ, . . . ,F (p)1

i = ϵ

F (p)0
i = pi

We say that p is well-batched if |add(s2k)| = |add(s2k+1)| for every 2k ∈ {0, . . . , |p| − 1}.

Each well-batched view p induces an equivalence relation
Gp
∼ over VG generated by:

u
Gp
∼ 1w iff u = F (p)h

2k and w = F (p)h
2k+1 for a 2k < n − 1 and a h ≤ hp (9)

A WIS S is linked if it contains only well-batched views and if for every p ∈ S the
Gp
∼ -classes are of the shape {v•1, . . . , v

•
n,w

◦}.
A CK-winning innocent strategy (or CK-WIS for short) is a linked WIS S. 7

Example 4. Consider the arenas in Figure 6. The batched view of the (unique) maximal

views in S1 and S2 are
(
ϵ □•

a◦ a•

)
and

(
□◦10 □

•
010 □

◦
000 □

◦
10

b◦ b• a◦ a•

)
respectively. The first is not

well-batched because a◦ has height 0 while a• has height 1, while the second, even if

well-batched, is not linked because the
Gp
∼ -class {□◦10,□

•
010,□

◦
000} contains two □◦.

The definition of CK-WISs allows us to obtain a full-completeness result with re-
spect to CK which, together with the good compositionality properties of CK-WISs
shown in [4,10], provides a full-complete denotational semantics for the logic CK. That
is, every given CK-WIS is the encoding of a derivation in CK, and if a derivation D
reduces via cut-elimination to a derivation D′, then they are encoded by the same CK-
WIS.

Theorem 4 ([4]). The set of CK-WISs is a full-complete denotational model for CK.

5.3 Full Completeness for Modal Lambda Terms in Normal Form

We can prove the full completeness result using the type system CKF and relying on
Theorem 3. For this purpose, we have to extend the definition of α-equivalence from
terms to type assignments in order to avoid technicality in our proofs, since in arenas
we keep no track of variable names. For example, consider the α-equivalent terms λx.x
and λy.y whose derivation should be considered non-equivalent due to the fact that α-
equivalence does not extends to type assignments, therefore the two occurrence of the
axiom rule with conclusion x : a ⊢ x : a and y : a ⊢ y : a should be considered distinct.8

7 We here provide a simpler definition of CK-WISs w.r.t. the one in [4]. In fact, we are able here
to simplify this definition because we are considering the ^-free fragment of CK.

8 Note that another possible way to deal with this problem is to label non-modal vertices of
arenas by pairs of propositional atoms and variables instead of propositional variables only.

20 M. Acclavio et al.


ax
Γ, x : c• ⊢ x : c◦


 = {ϵ, c◦, c◦c•}




D′

Γ, x1 : A1, . . . , xn : An ⊢ M : C
→∗R
Γ ⊢ λxA1

1 · · · x
An
n .M : (A1, . . . An)→ C


 = {{D′}}




{
Di

Γ, (A1, . . . , An)→ c ⊢ Ni : Ai

}
i∈{1,...,n}

→ax
L
Γ, y : (A1, . . . , An)→ c ⊢ yN1 · · ·Nn : c


 = {ϵ, c◦, c◦c•} ∪ {c◦c•p | ϵ , p ∈ {{Di}} for a i ∈ {1, . . . , n}}




D′

σ(Γ) ⊢ M : C
ex
Γ ⊢ M : C


 = {

fσ(p) | p ∈ {{D′}} , fσ isomorphism between [[Γ ⊢ M : C]] and [[σ(Γ) ⊢ M : C]]
}

where fσ(p) is the view obtained by applying fσ to each move in p (and updating its pointer accordingly)


D′

x1 : A1, . . . , xn : An ⊢ M : C
K□

∆, y1 : □A1, . . . , yn : An ⊢ M
[
x1, . . . , xn/y1, . . . , yn

]
■ : □C


 = {{D′}}




{
Di, j

Γ, ∆ ⊢ Ti, j : Ai, j

}
i∈{1,...,n}, j∈{1,...,ki}

D0

Γ, ∆, x1 : □B1, . . . , xn : □Bn ⊢ M
[
x1, . . . , xn,

#»z /y1, . . . , yn,
#»w
]
■ : □C

→K
L
Γ, f1 : (A1,1, . . . , A1,k1)→ □B1, . . . , fn : (An,1, . . . , An,kn)→ □Bn︸ ︷︷ ︸

∆

⊢ M
[
N1, . . . ,Nn,

#»z /y1, . . . yn,
#»w
]
■ : □C




=

{{D0}} ∪
(⋃

i∈{1,...,n}

{
c◦b•i p | ϵ , p ∈

{{
Di, j

}}
for a j ∈ {1, . . . , ki}

})
where c◦ (resp. b•i) is the unique non-□ vertex in

→

R[[□C]] (resp. in [[□Bi]]).

Fig. 7. Rules to construct a CK-WIS from a type derivation in CKF. For reasons of readability, we
assume there is an implicit map identifying the moves in the arenas of the type assignment in the
premises with the moves in the arena of the type assignment in the conclusion. Note that c◦ and
c• are occurrences of the same atom c, but we have decorate them to improve readability.

Definition 10. Let A1, . . . , An ⊢ C be a sequent. We define Λ(Γ ⊢ C) as the set of terms
M such that the typing derivation x1 : A1, . . . , xn : An ⊢ M : C is derivable, that is,

Λ(Γ ⊢ C) = {M ∈ Λ | x1 : A1, . . . , xn : An ⊢ M : C is derivable for some x1, . . . , xn} .

If M,N ∈ Λ(Γ ⊢ C), we define M =
Γ;C
α N as the smallest equivalence relation

generated by the rule
M {z1, . . . , zn/x1, . . . , xn} = N {z1, . . . , zn/y1, . . . , yn}

zi is fresh
M =Γ;C

α N
.

From now on, we consider derivations up the α-equivalence defined above, that is,
we consider derivations up to renaming of the variables occurring in a typing context.

Lemma 6. Let S be a non-trivial CK-WIS over the arena [[Γ ⊢ C]]. Then there is a
canonically defined TS ∈ Λ̂ ∩ Λ(Γ ⊢ C) admitting a unique typing derivation in CKF.

Proof. We define a term TS and a derivation DS(T) in CKF of the type assignment
Γ ⊢ TS : C by induction on the lexicographic order over the pairs (|S|, |C|):

1. if C = c is atomic, then S must contain the CK-WIS {ϵ, c◦, c◦c•} because c◦ is the
unique sink of [[Γ ⊢ C]] and c• is the unique (by •-totality) •-move justified by the
unique previous ◦-move in S. Note that by the well-batched condition we must
have add(c◦) = add(c•) = ϵ. Then

Canonicity of Proofs in Constructive Modal Logic 21

(a) either S = {ϵ, c, cc}, then Γ = ∆, c for a sequent ∆ such that no move in ∆ occurs
in S (because of ◦-completeness). In this case T = x and

DS(T) = ax
∆, x : c ⊢ x : c

(b) or, since S is prefix-closed and well-batched, S =
(
{ϵ, c◦, c◦c•}

⋃n
i=0 ccSi

)
for

some CK-WISs Si for a sequent Γ ⊢ Ai for each i ∈ {1, . . . , n}. Then Γ =
∆, (A0, . . . , An)→ c. In this case T = yN1 · · ·Nn and

DS(T) =
DS1 (N1)

∆, y : (A1, . . . , An)→ c ⊢ N1 : A1 · · ·

DSn (Nn)

∆, y : (A1, . . . , An)→ c ⊢ Nn : An
→ax

L
∆, y : (A1, . . . , An)→ c ⊢ c

2. if C = (A1, . . . , An)→ B, then T = λx1 · · · λxn.T ′ and

DS(T) =
DS(T ′)

Γ, x1 : A1, . . . , xn : An ⊢ T ′ : B
→∗R

Γ ⊢ T : (A1, . . . , An)→ B

3. C = □◦A is a □-formula, then, if a sink v of [[Γ]] occurs as a move in S, then it mus
be justified by a sink of [[□A]]. Therefore, by the well-batched condition, v must be
in the scope of a □. We have two cases:
(a) either Γ = Σ,□∆ and no move in Σ occurs in S. In this case we have that

T = M
[
x1, . . . , xn/y1, . . . , yn

]
■ and

DS(T) =
DS(M)

x1 : A1, . . . , xn : An ⊢ M : C
K□

∆, y1 : □A1, . . . , yn : An ⊢ M
[
x1, . . . , xn/y1, . . . , yn

]
■ : □C

(b) or Γ = ∆, (A1,1, . . . A1,k1)→ □B1, . . . , (An,1, . . . An,kn)→ □Bn for some k1, . . . , kn

such that k1 + · · · + kn > 0 and a sequent ∆ such that if □•D or (A1, . . . , An) →
□•D is in ∆, then □•0S□◦. In this case, by similar reasoning of (1.1b), there
are for some CK-WISs Si for the sequent Γ ⊢ Ai for each i ∈ {1, . . . , n}
and a CK-WIS S0 for the sequent Γ, ∆,□B1, . . . ,□Bn ⊢ □C such that S =(
S0 ∪

(⋃n
i=0 σiSi

))
. Therefore T = M

[
x1, . . . , xn,

#»z /y1, . . . , yn,
#»w
]
■ andDS(T)

is the following derivation{
DSi, j (Ti, j)

Γ, ∆ ⊢ Ti, j : Ai, j

}
i ∈ {1, . . . , n},
j ∈ {1, . . . , ki}

DS0 (M[x1,...,xn,
#»z /y1,...,yn,

#»w]■)
Γ, ∆, ∆′ ⊢ M

[
x1, . . . , xn,

#»z /y1, . . . , yn,
#»w
]
■ : □C

→K
L

Γ, ∆ ⊢ M
[
N1, . . . ,Nn,

#»z /y1, . . . yn,
#»w
]
■ : □C

where ∆ = f1 : (A1,1, . . . , A1,k1) → □B1, . . . , fn : (An,1, . . . , An,kn) → □Bn and
∆′ = x1 : □B1, . . . , xn : □Bn.

Theorem 5. There is a one-to-one correspondence between terms in Λ̂∩Λ(Γ ⊢ C) and
CK-WIS for Γ ⊢ C.

22 M. Acclavio et al.

Proof. Lemma 6 ensures that one CK-WIS S for Γ ⊢ C, we can define a (unique) typing
derivationDS in CKF of a term TS ∈ Λ̂ ∩ Λ(Γ ⊢ C).

Conversely, given a type assignment Γ ⊢ T : C for a T ∈ Λ̂, then, we can uniquely
define is a derivation DT in CKF. Thus, by Theorem 3, the type assignment Γ ⊢ T : C
is derivable. We define ST as the CK-WIS defined by induction on the number of rules
inDT using the rules in Figure 7.

We conclude since we have that STS = S and TST = T by definition.

6 Conclusion

In this paper we introduced a new modal λ-calculus for the ^-free fragment of the con-
structive modal logic CK (without conjunction or disjunction). This lambda calculus
builds on the work in [31], by adding a restricted η-reduction as well as two new reduc-
tion rules dealing with the explicit substitution constructor used to model the modality
□. We proved normalization and confluence for this calculus and we provide a one-to-
one correspondence between the set of terms in normal form and the set of winning
strategies for the logic CK introduced in [4].

We foresee the possibility of extending the result presented in this paper to the en-
tire disjunction-free fragment of CK, for which winning strategies are already defined
in [4] are a fully complete denotational semantics. For this purpose, we should consider
additional term constructors for terms whose type is a conjunction, as well as a new
Let-like operator to model terms whose type is the modality ^-formula similar to the
one proposed in [9]. For this reason, in future works we plan to reformulate our lambda-
calculus in the light of the novel line of research on calculi with explicit substitutions
[33,34,2,1]. This approach would allow us to simplify some of the technicalities and
achieve a more elegant operational semantics. Another interesting prospective is to ex-
tend our approach to operational semantics to the Fitch-style modal λ-calculus studied
in [52].

At the same time, we plan to make explicit that our game semantics provides a
concrete model for the cartesian closed categories provided with a strong monoidal
endofunctor [9,32]. Indeed, categorical semantics of the calculus in [9] is modeled by
means of cartesian closed categories equipped with a strong monoidal endofunctor tak-
ing into account the proof-theoretical behavior of the □-modality. We further conjecture
that the syntactic category obtained via the quotient of modal terms modulo the rela-
tions we introduce in this paper is indeed a free cartesian closed category on a set of
atoms with a strong monoidal endofunctor.

References

1. Accattoli, B.: Exponentials as substitutions and the cost of cut elimination in linear logic.
In: Baier, C., Fisman, D. (eds.) LICS ’22: 37th Annual ACM/IEEE Symposium on Logic
in Computer Science, Haifa, Israel, August 2 - 5, 2022. pp. 49:1–49:15. ACM (2022).
https://doi.org/10.1145/3531130.3532445, https://doi.org/10.1145/3531130.3532445

2. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardiza-
tion theorem. Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2535838.2535886, https://doi.org/10.1145/2535838.2535886

Canonicity of Proofs in Constructive Modal Logic 23

3. Acclavio, M.: Proof diagrams for multiplicative linear logic: Syntax and semantics. Journal
of Automated Reasoning 63(4), 911–939 (2019). https://doi.org/10.1007/s10817-018-9466-
4, https://doi.org/10.1007/s10817-018-9466-4

4. Acclavio, M., Catta, D., Straßburger, L.: Game semantics for constructive modal logic. In: In-
ternational Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods. pp. 428–445. Springer (2021)

5. Acclavio, M., Straßburger, L.: Combinatorial Proofs for Constructive Modal Logic. In: Ad-
vances in Modal Logic 2022. Rennes, France (Aug 2022), https://hal.inria.fr/hal-03909538

6. Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and kripke semantics for
constructive S4 modal logic. In: Fribourg, L. (ed.) Computer Science Logic, 15th Interna-
tional Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France, Septem-
ber 10-13, 2001, Proceedings. Lecture Notes in Computer Science, vol. 2142, pp. 292–307.
Springer (2001). https://doi.org/10.1007/3-540-44802-0_21, https://doi.org/10.1007/3-540-
44802-0_21

7. Andreoli, J.M.: Focussing and proof construction. Annals of Pure and Applied Logic 107,
131–163 (2001)

8. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with
Types. Perspectives in logic, Cambridge University Press (2013),
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-
sets/lambda-calculus-types

9. Bellin, G., De Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a basic con-
structive modal logic. In: In Proceedings of Methods for Modalities (05 2001)

10. Catta, D.: Les preuves vues comme des jeux et réciproquement: sémantique dialogique de
langages naturel ou logiques. (Proofs as games and games as proofs: dialogical semantics
of logical and natural languages). Ph.D. thesis, University of Montpellier, France (2021),
https://tel.archives-ouvertes.fr/tel-03588308

11. Chaudhuri, K., Marin, S., Straßburger, L.: Modular focused proof systems for intuitionis-
tic modal logics. In: Kesner, D., Pientka, B. (eds.) 1st International Conference on Formal
Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal.
LIPIcs, vol. 52, pp. 16:1–16:18. Leibniz-Zentrum fuer Informatik (2016)

12. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Jour-
nal of Symbolic Logic 44(1), 36–50 (1979)

13. Danos, V., Herbelin, H., Regnier, L.: Game semantics & abstract machines. In: Proceed-
ings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996. pp. 394–405. IEEE Computer Society (1996).
https://doi.org/10.1109/LICS.1996.561456, https://doi.org/10.1109/LICS.1996.561456

14. Das, A., Marin, S.: Brouwer meets kripke: constructivising modal logic.
https://prooftheory.blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-logic/,
posted on August 19 2022

15. Das, A., Pous, D.: Non-wellfounded proof theory for (Kleene+action)(algebras+lattices).
In: Computer Science Logic (CSL). Birmingham, United Kingdom (Sep 2018).
https://doi.org/10.4230/LIPIcs.CSL.2018.19, https://hal.archives-ouvertes.fr/hal-01703942

16. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3), 555–604
(2001). https://doi.org/10.1145/382780.382785, https://doi.org/10.1145/382780.382785

17. Di Cosmo, R., Kesner, D.: Combining algebraic rewriting, extensional lambda
calculi, and fixpoints. Theoretical Computer Science 169(2), 201–220 (1996).
https://doi.org/https://doi.org/10.1016/S0304-3975(96)00121-1

18. Došen, K.: Identity of proofs based on normalization and generality 9, 477–503 (2003)
19. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthe-

size synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982).

24 M. Acclavio et al.

https://doi.org/10.1016/0167-6423(83)90017-5, https://doi.org/10.1016/0167-
6423(83)90017-5

20. Fairtlough, M., Mendler, M.: Propositional lax logic. Information and Computation 137(1),
1–33 (1997)

21. Fitch, F.: Intuitionistic modal logic with quantifiers. Portugaliae Mathematica 7(2), 113–118
(1948)

22. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987).
https://doi.org/10.1016/0304-3975(87)90045-4

23. Girard, J.Y.: Proof-nets : the parallel syntax for proof-theory. In: Ursini, A., Agliano, P. (eds.)
Logic and Algebra. Marcel Dekker, New York (1996)

24. Guglielmi, A., Gundersen, T., Parigot, M.: A Proof Calculus Which Re-
duces Syntactic Bureaucracy. In: Lynch, C. (ed.) Proceedings of the 21st In-
ternational Conference on Rewriting Techniques and Applications. LIPIcs,
vol. 6, pp. 135–150. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2010). https://doi.org/10.4230/LIPIcs.RTA.2010.135,
http://drops.dagstuhl.de/opus/volltexte/2010/2649

25. Heijltjes, W., Hughes, D., Straßburger, L.: Intuitionistic proofs without syntax. In: LICS
2019 - 34th Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 1–
13. IEEE, Vancouver, Canada (Jun 2019). https://doi.org/10.1109/LICS.2019.8785827,
https://hal.inria.fr/hal-02386878

26. Heilala, S., Pientka, B.: Bidirectional decision procedures for the intuitionistic proposi-
tional modal logic IS4. In: International Conference on Automated Deduction. pp. 116–131.
Springer (2007)

27. Hughes, D.: Proofs Without Syntax. Annals of Mathematics 164(3), 1065–1076 (2006).
https://doi.org/10.4007/annals.2006.164.1065

28. Hyland, J.M.E., Ong, C.L.: On full abstraction for PCF: i, ii, and III.
Inf. Comput. 163(2), 285–408 (2000). https://doi.org/10.1006/inco.2000.2917,
https://doi.org/10.1006/inco.2000.2917

29. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I. Models, observables and the
full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and
universal game model. Information and Computation 163, 285–408 (2000)

30. Jay, C.B., Ghani, N.: The virtues of eta-expansion. J. Funct. Program. 5(2), 135–154 (1995).
https://doi.org/10.1017/S0956796800001301, https://doi.org/10.1017/S0956796800001301

31. Kakutani, Y.: Call-by-name and call-by-value in normal modal logic. In: Shao, Z. (ed.) Pro-
gramming Languages and Systems. pp. 399–414. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2007)

32. Kavvos, G.A.: Dual-context calculi for modal logic. Log. Methods Comput. Sci. 16(3)
(2020). https://doi.org/10.23638/LMCS-16(3:10)2020, https://lmcs.episciences.org/6722

33. Kesner, D.: The theory of calculi with explicit substitutions revisited. In: Duparc, J., Hen-
zinger, T.A. (eds.) Computer Science Logic. pp. 238–252. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007)

34. Kesner, D.: A theory of explicit substitutions with safe and full composition. Log. Methods
Comput. Sci. 5(3) (2009), http://arxiv.org/abs/0905.2539

35. Kojima, K.: Semantical study of intuitionistic modal logics. Ph.D. thesis, Kyoto University
(2012)

36. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6, https://doi.org/10.1016/0304-
3975(82)90125-6

37. Krivine, J.: Lambda-calculus, types and models. Ellis Horwood series in computers and their
applications, Masson (1993)

Canonicity of Proofs in Constructive Modal Logic 25

38. Kuznets, R., Marin, S., Straßburger, L.: Justification logic for constructive modal logic. Jour-
nal of Applied Logics: IfCoLog Journal of Logics and their Applications 8(8), 2313–2332
(2021), https://hal.inria.fr/hal-01614707

39. Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Information and
Computation 209(12), 1465–1490 (2011)

40. Meyer, J.J., Veltmanw, F.: Intelligent agents and common sense reasoning.
In: Blackburn, P., Van Benthem, J., Wolter, F. (eds.) Handbook of Modal
Logic, Studies in Logic and Practical Reasoning, vol. 3, pp. 991 – 1029. El-
sevier (2007). https://doi.org/https://doi.org/10.1016/S1570-2464(07)80021-8,
http://www.sciencedirect.com/science/article/pii/S1570246407800218

41. Miller, D., Volpe, M.: Focused labeled proof systems for modal logic. In: Logic for Program-
ming, Artificial Intelligence, and Reasoning: 20th International Conference, LPAR-20 2015,
Suva, Fiji, November 24-28, 2015, Proceedings. pp. 266–280. Springer (2015)

42. Mints, G.E.: Closed categories and the theory of proofs. Journal of Soviet Mathematics
(1981). https://doi.org/10.1007/BF01404107

43. Murawski, A.S., Ong, C.L.: Discreet games, light affine logic and PTIME computation. In:
Clote, P., Schwichtenberg, H. (eds.) Computer Science Logic, 14th Annual Conference of
the EACSL, Fischbachau, Germany, August 21-26, 2000, Proceedings. Lecture Notes in
Computer Science, vol. 1862, pp. 427–441. Springer (2000). https://doi.org/10.1007/3-540-
44622-2_29, https://doi.org/10.1007/3-540-44622-2_29

44. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math.
Struct. Comput. Sci. 11(4), 511–540 (2001). https://doi.org/10.1017/S0960129501003322,
https://doi.org/10.1017/S0960129501003322

45. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Founda-
tions of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November
1977. pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.1977.32,
https://doi.org/10.1109/SFCS.1977.32

46. Prawitz, D.: Natural Deduction, A Proof-Theoretical Study. Almquist and Wiksell (1965)
47. Simpson, A.: The Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D. thesis,

University of Edinburgh (1994)
48. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard isomorphism. Elsevier (2006)
49. Terese: Term rewriting systems. Cambridge University Press (2003)
50. Tubella, A.A., Straßburger, L.: Introduction to Deep Inference (Aug 2019),

https://hal.inria.fr/hal-02390267, lecture
51. Vakarelov, D.: Modal logics for knowledge representation systems. Theor. Comput. Sci. 90,

433–456 (01 1991)
52. Valliappan, N., Ruch, F., Tom’e Corti nas, C.: Normalization for fitch-style modal cal-

culi. Proc. ACM Program. Lang. 6(ICFP), 772–798 (2022). https://doi.org/10.1145/3547649,
https://doi.org/10.1145/3547649

