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Handsome proof nets were introduced by Retoré as a syntax for multiplicative linear logic. These
proof nets are defined by means of cographs (graphs representing formulas) equipped with a vertices
partition satisfying simple topological conditions. In this paper we extend this syntax to multiplica-
tive linear logic with units and exponentials. For this purpose we develop a new sound and complete
sequent system for the logic, enforcing a stronger notion of proof equivalence with respect to the one
usually considered in the literature. We then define combinatorial proofs, a graphical proof system
able to capture syntactically the proof equivalence, for the cut-free fragment of the calculus. We
conclude the paper by defining the exponentially handsome proof nets as combinatorial proofs with
cuts and defining an internal normalization procedure for this syntax.

1 Introduction

One of the novelties introduced by linear logic [16] was the syntax of proof nets. Proof nets are a graph-
ical syntax [27, 28] for proofs able to capture the proof equivalence in the multiplicative fragment of
linear logic (denoted MLL): proof nets are canonical representative of equivalent proofs modulo inde-
pendent rules permutations. In addition, proof nets are a sound and complete proof system in the sense
of [9] for MLL, since it is possible to check if a graph represents a correct derivation in polynomial time
with respect to the size of the graph. This test can be conducted by means of a topological criterion, often
refereed to as correctness criterion [16, 13, 19, 45].

Several extensions of proof nets have been proposed to cover multiplicative linear logic with units
(MLLu), but none of them can be considered to be fully satisfactory. In presence of the units, the correct-
ness criterion requires to add additional edges, called jumps, to a proof net in order to connect the gates
of the unit ⊥ to an axiom or an unit 1 [23].

The quest for a satisfactory syntax for MLLu-proofs has come to an end after the publication of [22]
where is shown that it is not possible to have at the same time a syntax capturing the whole MLLu proof
equivalence and a polynomial correctness criterion, unless P = PSPACE. This result depends on the
presence of the jumps: on one hand they are needed in order to check in polynomial time if the proof
net is correct, but on the other hand they enforce a coarse notion of proof equivalence which requires to
“rewire” the jumps to capture the full proof equivalence.

A similar problem occurs in the multiplicative exponential linear logic (MELL) due to the presence
the weakening rule1 [52, 51]. Moreover, the presence of the promotion rule in this fragment poses an
additional difficulty since this rule is context-sensitive. However this latter problem is easily addressed by
including in the proof net syntax the so called boxes whose scope is to delimit portions of the graph [36,
31, 33, 3, 2], as shown in Figure 1.

Handsome proof nets are an alternative syntax for MLL proofs introduced by Retoré in [40, 45] using
the results from his PhD thesis [38]. In this syntax, the information contained in a proof is represented

1Indeed, the decidability of MELL is still an open question and depends on the presence of the weakening rule [26, 50].

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Exponentially Handsome Proof Nets and Their Normalization

−−−−−− ax
b̄,b

−−−−−− ax
a, ā
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− wj↓
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Figure 1: Upper row: a derivation of the sequent d̄,d⊗(?c`!a),?(ā⊗ b̄),?b in MELL and a corresponding
proof net (with jump drawn as a dotted edge). Lower row: a decomposed derivation in MELLj of the
same sequent and its corresponding exponentially handsome proof net. In this latter, the gray shadings
represent cut-rules, and the vertex ◦ represents the jump.

by specific graphs encoding formulas (called cographs2) together with a perfect matching which satisfies
specific topological conditions. For this reason, we this syntax is called RB-cographs.

Combinatorial proofs were introduced by Hughes [24, 25, 47] to capture proof equivalence in classi-
cal logic [48, 4]. They can be considered as an extension of handsome proof nets since they are defined
as specific graph homomorphisms from a RB-cograph to a cograph encoding a formula. In particular,
combinatorial proofs indirectly give us a decomposition result, allowing to separate the “linear” part of
the proof, that is, the part containing the logical interactions between its components, from the “resource
management” part, that is, the part taking care of erasing and duplicating components.

Contribution of the paper. In this paper we extend Retoré’s handsome proof nets for MLL and we
define a syntax able to represent proofs in MLLu and MELL. For this purpose, we define combinatorial
proofs for cut-free MELL-derivations, and then we show how to also encode derivation with cuts.

To achieve our goal, we first definite of a new sound and complete proof system for MELL, called
MELLj, and we prove cut-elimination for it. This system contains the weak promotion rule from elemen-
tary linear logic [12, 18, 29, 32] and the digging rule instead of regular promotion. Moreover, the system
uniquely assigns each unit ⊥ and each weakening rule to an branch of a derivation thanks to ad-hoc
rules. This choice allows us to mimic jumps assignation in proof nets and reduce the complexity of proof
equivalence.

We then extend the results in [6] in order to define combinatorial proofs for MELLj. This allows us to
represent equivalent cut-free derivations in MELLj. We show that this syntax has a polynomial correctness
criterion and is able to syntactically capture the proof equivalence, that is, equivalent MELLj-derivations
are represented by the same syntactic object.

We conclude by defining exponentially handsome proof nets as extensions of the combinatorial

2A cograph is a graph containing no induced subgraph isomorph to the four-vertices path P4. In [14] it is shown that a graph
encodes a formula iff it is a cograph.
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Figure 2: Sequent calculus rules for MELL and the cut-rule

proofs syntax. Exponentially handsome proof nets allow us to encode derivations containing cuts, hence
to compose proofs. Finally, we provide a cut-elimination procedure for this syntax by means of a termi-
nating graph rewriting.

Organization of the paper. In Section 2 we discuss the notion of proof equivalence for the stan-
dard MELL sequent calculus. Then we define a sound and complete proof system MELLj for MELL,
where MELL-proof equivalence is restricted. We then prove a decomposition theorem for MELLj using
deep inference rules [20, 21, 8]. In Sections 3 to 5 we define the three components needed to define
combinatorial proofs for MELLj. In particular, in Section 3 we recall relation webs [20, 7], which gen-
eralize cographs, and we show how they can be used to encode formulas with modalities. In Section 4
we extend the correctness criterion for Retoré’s RB-cographs to relation webs with special matchings,
called RGB-cographs, which encode the linear part of a MELLj proof. In Section 5 we define the MELL-
fibrations taking care of encoding the resource management part of our proofs. In Section 6 we define
combinatorial proofs as MELL-fibrations from an RGB-cograph to a relation web. Finally, in Section 7,
we define exponentially handsome proof nets as MELL-combinatorial proofs of sequents containing ad-
ditional formulas keeping track of the cut-rules, and we provide a cut-elimination procedure for this
syntax.

2 Proof Systems for MELL

In this section we recall the sequent systems for multiplicative exponential linear logic (with units) and
its subsystems. We then discuss in Section 2.2 the notion of proof equivalence for these logics and in
Section 2.3 we define a sound and complete proof system for MELL, enforcing a coarser notion of proof
equivalence. In Section 2.4 we show that this new proof system admits a decomposition theorem, which
we exploit in Section 6 to define the syntax of combinatorial proofs for MELL.

We define formulas in negation normal form generated from a countable set of propositional variables
A = {a,b, . . . } and set of constants {1,⊥,◦}3 by the following grammar:

A,B ::= a | ā | A`B | A⊗B | !A | ?A | ⊥ | 1 | ◦

A literal is a formula of the shape a or ā for an a ∈ A. A MELL-formula is a formula containing no

occurrences of ◦. Linear negation ·̄ is defined on MELL formulas through the De Morgan laws: A = A,
A⊗B = A`B, !A = ?Ā, 1̄ = ⊥. A sequent Γ = A1, . . . ,An is a non-empty multiset of formulas.

In this paper we consider multiplicative linear logic and its extensions with units and and exponen-
tials4 denoted respectively by MLL, MLLu and MELL [16]. We use the same names to denote the cut-free
sequent calculi for these logics defined using the sequent calculus rules in Figure 2.

MLL = {ax,⊗,`} MLLu = MLL∪{⊥,1} MELL = MLLu∪{!p,w?,c?,der?}

We say that a formula F is provable in X (denoted by
X

F) if there is a derivation of F in the system X.
3The symbols ⊥ and 1 are called units. The symbol ◦ is a special symbol which we use as a “placeholder” for ⊥ and

weakening rules.
4In this paper, where not otherwise specified, we consider multiplicative exponential linear logic including units.
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Figure 3: Upper row: gates for MLL proof nets and the way the promotion rule is encoded. Lower row:
gates for RB-proof nets and the intuition on how the promotion rule should be encoded in this syntax.

We recall the cut-elimination result for MELL, which encompasses also MLL and MLLu.

Theorem 1 ([16]). Let F be a formula. Then F is provable in MELL iff it is provable in MELL∪{cut}.

2.1 From Proof Nets to Handsome Proof Nets

Proof nets are a graphical syntax for proofs in linear logic introduced by Girard in [16]. In this syntax,
MLL proofs are represented by replacing each instance of a rule by a corresponding gate whose inputs
are the active formulas of the rule and whose outputs are the principal formulas, as shown in the upper
row of Figure 3. The graphs generated by these gates are called proof structures and some of them do not
have a corresponding proof in MLL. Therefore, a topological correctness criterion needs to be defined
to decide whether a proof structure is a proof net, i.e., is the translation of a MLL proof. Beside Girard’s
duable trip condition, several alternative criteria have been proposed in the literature [13, 19].

Using RB-graphs, which are graphs with two kind of edges (Red or Regular, and Blue or Bold),
Retoré defined in [40] the syntax of RB-proof nets where gates are represented as the RB-graphs, as
shown in the lower row of Figure 3. In this syntax the correctness criterion can be formulated by requiring
the absence of elementary (i.e., non self-intersecting) cycles made of alternating colours edges. From
RB-proof nets, he then discovered the syntax of handsome proof nets (or RB-cographs) by using the
transformation in Equation (1) below, allowing to remove from an RB-graph all the nodes which are not
labelled by literals [40, 41, 45]. This syntax is formally presented in Section 4. Aim of this paper is to
further develop RB-cographs by adding an encoding of the linear logic modalities and units.

• •
... ◦ ◦

...

• •

 

• •
...

...

• •

where the labels of the nodes ◦ are not literals (1)

The encodings for modalities we employ in this paper uses the same kind of directed edges from the
handsome proof nets for pomset logic [39, 7, 42, 43, 45, 44] (we here represent these edges by green
squiggly arrows instead of red arrows). The upper row of the rightmost column of Figure 3 shows the
usual encoding of the promotion rule of MELL by means of boxes isolating a portion of the proof net. In
the lower row of the same column we provide the intuitive representation of how the same box should be
represented in terms of the RB-proof nets. This intuition might help the reader familiar with proof nets;
however, it is not further developed in the paper, as our approach focuses on generalizing RB-cographs.
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∆,A

∆,B,C Σ,D
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
Γ,∆,Σ,A⊗B,C⊗D

'

∆,A Σ,B,C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
Γ,∆,A⊗B,C Σ,D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
Γ,∆,Σ,A⊗B,C⊗D

Γ,∆,Σ
−−−−−−−−−−−−−− ρ
Γ,A,Σ
−−−−−−−−−−−−−− τ
Γ,A,B

'

Γ,∆,Σ
−−−−−−−−−−−−−− τ
Γ,∆,B
−−−−−−−−−−−−−− ρ
Γ,A,B

Γ,∆,B
−−−−−−−−−−−−−− ρ
Γ,A,B ∆,C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
Γ,∆,A,B⊗C

'

Γ,∆,B ∆,C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
Γ,∆,∆,B⊗C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ρ
Γ,∆,A,B⊗C

Figure 4: Independent rules permutations defined for all ρ,τ ∈ {`,⊥,w?,c?,der?}.
Γ,?A1,?A2,?A3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− c?

Γ,?A1,?A
−−−−−−−−−−−−−−−−−−−−−−− c?

Γ,?A

'

Γ,?A1,?A2,?A3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− c?

Γ,?A,?A3
−−−−−−−−−−−−−−−−−−−−−−− c?

Γ,?A

Γ,?A,?A
−−−−−−−−−−−−−−−−−−−− c?

Γ,?A
−−−−−−−−−−−−−−−−−−−− w?
Γ,?A,?A

' Γ,?A,?A

Γ,?A
−−−−−−−−−−−−−−−−−−−− w?
Γ,?A,?A
−−−−−−−−−−−−−−−−−−−− c?

Γ,?A

' Γ,?A

?Γ,A
−−−−−−−−−−−−−−−−−−−− w??Γ,A,?B
−−−−−−−−−−−−−−−−−−−−−− !p
?Γ, !A,?B

'

?Γ,A
−−−−−−−−−−−−− !p
?Γ, !A
−−−−−−−−−−−−−−−−−−−−−− w??Γ, !A,?B

?Γ,A,?B,?B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− c??Γ,A,?B
−−−−−−−−−−−−−−−−−−−−−− !p
?Γ, !A,?B

'

?Γ,A,?B,?B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− !p
?Γ, !A,?B,?B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− c??Γ, !A,?B

Figure 5: Additional rules permutations. The first line is called the weakening-contraction comonad.

2.2 Proof Equivalence

The notion of proof equivalence in MELL is defined (e.g., in [37, 11]) as the equivalence relation ' over
MELL-derivations generated by independent rules permutations, i.e., the permutations of rules which
have disjoint sets of principal and active formulas shown in Figure 4, together with the ones in Figure 5. It
is worth noticing that these rules permutations are heavily used in the proof of cut-elimination theorems.

As shown in [22], the instances of rule permutations from Figure 4 involving⊥-rule are responsible of
the PSPACE complexity bound of checking proof equivalence in MLLu. In fact, these rules permutations
allows to move the⊥ formula between different derivation branchings as shown in the following example,
where the leftmost and rightmost derivations, which are equivalent, are “naturally” represented by two
different proof nets.

⊥ a ⊗ b
ā⊗ b̄

axax

f

−−−−− ax
a, ā
−−−−−−−−−− ⊥
a, ā,⊥

−−−−− ax
b, b̄

−−−−−−−−−−−−−−−−−−−−−−−− ⊗
a, ā⊗ b̄,b,⊥

'

−−−−− ax
a, ā

−−−−− ax
a, ā

−−−−−−−−−−−−−−−−−−−−− ⊗
a, ā⊗ b̄,a
−−−−−−−−−−−−−−−−−−−− ⊥
a, ā⊗ b̄,b,⊥

' −−−−− ax
a, ā

−−−−− ax
b, b̄
−−−−−−−−−− ⊥
b, b̄,⊥

−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
a, ā⊗ b̄,b,⊥

 a ⊗ b ⊥

ā⊗ b̄

ax ax

As consequence of this complexity result, we cannot design a syntax S for MLLu satisfying the two
following desiderata at the same time under the assumption P , PSPACE:

• correctedness in S can be checked in polynomial time: we can check in polynomial time if an
object expressed in the syntax S represents a correct proof in MLLu;

• S captures proof equivalence: if JπK and Jπ′K are the encodings in S of two derivations π and π′ in
MELL such that π ' π′, then JπK = Jπ′K.

The same argument applies to MELL-derivations in presence of the rule w?. The complexity of
checking proof equivalence depends on the fact that each w? and ⊥must be assigned to an instance of ax
or of 1 by permuting them upwards in a derivation. We refer to such assignation as jump. Since ' allows
to re-assign jumps, the equivalence check has to test all possible jumps, whose number is exponential
with respect to the number of ⊥ and w? in a derivation.

2.3 Restricting Proof Equivalence in MELL

As consequence of [22], we cannot aspire to design a proof system5 which captures the proof equivalence
' of MELL. To overcome this problem, in this subsection we define MELLj, a sound and complete proof

5In the sense of [9], that is, in which we can check if a syntactic object is correct in polynomial time.
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??A,Γ
−−−−−−−−−− dig??A,Γ

Γ,?◦
−−−−−−−− dig◦
Γ,◦

Figure 6: On the left: the sequent rules fixing jump assignations. On the right: the weak promotion rule,
the digging rule and the additional digging rule for ◦.

−−−−− ax
a, ā
π
∥∥∥∥∥∥
Γ
−−−−−−− ⊥
Γ,⊥

'

−−−−− ax
a, ā
−−−−−−−−−− ⊥
a, ā,⊥
π,⊥

∥∥∥∥∥∥
Γ,⊥

!

−−−−−−−−− ax ja, ā,◦
−−−−−−−−−− ⊥j

a, ā,⊥
π,⊥

∥∥∥∥∥∥
Γ,⊥

A,?Γ
−−−−−−−−−− !p
!A,?Γ

 

A,Γ
−−−−−−−−−−−− w!p
!A,??Γ
============ dig?!A,?Γ

A,Γ
−−−−−−−−−− w!p
!A,?Γ

 

A,Γ
======== der?A,?Γ
−−−−−−−−−− !p
!A,?Γ

−
π
∥∥∥∥∥∥MELLj

??A,Γ
−−−−−−−−−− dig??A,Γ

 −
π′

∥∥∥∥∥∥MELL

??A,Γ

−−−−−−− ax
Ā,A
−−−−−−−−− der?Ā,?A

============ 2× !p
!!Ā,?A

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
?A,Γ

 ∗
cut

−
π′′

∥∥∥∥∥∥MELL

?A,Γ

Figure 7: How to transform a ⊥ associate to a specific ax-rule to a ⊥j associate to a ax j-rule, and how
to replace !p with a derivation using w!p and dig? and vice versa. Note that elimination of the dig?
introduces a cut, which can be eliminated relying on the cut-elimination result in MELL.

system for MELL enforcing a coarser proof equivalence, denoted by 'J, with respect to '. In fact, in
MELLj each⊥- and w?-rule instance is uniquely associated to a specific ax- or 1-rule instance, mimicking
the way in which the corresponding nodes are linked by jumps in a proof net.

We define the following sequent systems using the rules in Figures 2 and 6

MLLj
u = {ax j,1 j,⊥

j,`,⊗} MELLj = {ax j,1 j,⊥
j,wj,`,⊗,w!p,der?,dig?,dig◦,c?}

where ax j = {axn
j | n ∈N} and 1 j = {1n

j | n ∈N}. The proof equivalence 'J over MELLj derivations is defined
as in Figure 4 by considering ρ and τ ranging over {⊥j,wj,`,der?,dig?,dig◦,c?} plus the associativity of
contraction, that is, the rule permutation in the left-hand side of Figure 5.

In these systems the relation between one ⊥j- or wj-rule and one ax j- or 1 j-rule is syntactically
encoded in the sequent system syntax, as jumps in proof nets are. Each instance of ax j and 1 j introduces
a bunch of jump place-holders denoted by ◦. Since each occurrence of a ◦ is unique, each place-holder
is further used by a single ⊥ or w? instance.

Remark 2. Another solution to uniquely associate ⊥ and w? to an axiom would be to introduce an axiom
rule with non-empty contexts, i.e., a rule having as conclusion any sequent of the shape Γ,a, ā, as done
in sequent calculus for classical logic G [53]. Such axiom rule would keep track of whole information
of the weakened formula, making the syntax of the structures described in Section 4 heavier.

Moreover, in MELLj we replace the promotion rule !p with the weak promotion rule w!p used in ele-
mentary linear logic [12] and in soft linear logic [29, 32] and the digging rule. This choice is motivated
by the fact that weak promotion allows to group the ! introduced by a promotion with all the ? of its
context formulas. In particular, weak promotion is a context-free rule, that is, it can be applied indepen-
dently form the shape of the premise context, while the regular promotion rule !p is a context-sensitive
rule, in the sense that it can be applied only if the context is of the form ?Γ. The digging rules dig? and
dig◦ are required to make the system sound and complete with respect to MELL.

Theorem 3. If F is a fomula, then
X

F iff
X j

F.

Proof. By rules permutations, we can move each occurrence ρ of a w?- or a ⊥-rule up in the derivation
until it reaches the assigned occurrenceσρ of an ax j- or a 1 j-rule. Then we replaceσρ with an occurrence
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−−−−−−−−−−−−−−−−−−−−−−−−−−−− ax ja, ā,◦, · · · ,◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ax ja, ā,◦′, · · · ,◦′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
a, ā,◦, · · · ,◦,◦′, · · · ,◦′

 cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ax ja, ā,◦, · · · ,◦,◦′, · · · ,◦′

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ρ j
Ξ,◦, · · · ,◦,◦cut
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊥j
Ξ,◦, · · · ,◦,⊥

−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 j1,◦′, · · · ,◦′
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Ξ,◦, · · · ,◦,◦′, · · · ,◦′

 cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ρ j
Ξ,◦, · · · ,◦,◦′, . . . ,◦′

Γ,A,B
−−−−−−−−−−−−−−−−−−−`
Γ,A`B

∆, Ā Σ, B̄
−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
∆,Σ, Ā⊗ B̄

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
Γ,∆,Σ

 cut

Γ,A,B ∆, Ā
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆,B Σ, B̄
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆,Σ

Γ,A
−−−−−−−−−−−−− w!p
?Γ, !A

Ā,∆,B
−−−−−−−−−−−−−−−−−−−−−−− w!p
?Ā,?∆, !B

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
?Γ,?∆, !B

 cut

Γ,A Ā,∆,B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆,B
−−−−−−−−−−−−−−−−−−−−−− w!p
?Γ,?∆, !B

Γ,A
−−−−−−−−−−−−− w!p
?Γ, !A

Ā,∆
−−−−−−−−−−− der??Ā,∆

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
?Γ,∆

 cut

Γ,A Ā,∆
−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆
=========== |Γ| ×der??Γ,∆

Γ,A
−−−−−−−−−−−−− w!p
?Γ, !A

?Ā,?Ā,∆
−−−−−−−−−−−−−−−−−−−−− c??Ā,∆

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
?Γ,∆

 cut

Γ,A
−−−−−−−−−−−−− w!p
?Γ, !A

Γ,A
−−−−−−−−−−−−− w!p
?Γ, !A ?Ā,?Ā,∆
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

?A,?Γ,∆
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

?Γ,?Γ,∆
==================== |Γ| ×c??Γ,∆

Γ,A
−−−−−−−−−−−−− w!p
?Γ, !A

−−−−−−−−−−−−−− ρ j
◦cut,Ξ
−−−−−−−−−−−−−− wj
?Ā,Ξ

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
?Γ,Ξ

 cut
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ρ j
◦1, . . . ,◦|Γ|,Ξ
=============================== |Γ| ×wj

?Γ,Ξ

Γ,A
−−−−−−−−−−−−− w!p
?Γ, !A

Ā,∆′
==================== (n + 1)×w!p
?n+1Ā,∆
==================== n×dig??Ā,∆

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut
?Γ,∆

 cut

Γ,A Ā,∆′
−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆′
=================== (n + 1)×w!p
?n+1Γ,∆
=================== n |Γ| ×dig??Γ,∆

Figure 8: The cut-elimination steps in MELLj, where ρ j ∈ {ax j,1 j} is the unique rule introducing the ◦cut

which is the active premise of the ⊥j or wj involved in the cut-elimination step.

of the same rule σρ with an additional ◦ in the conclusion, and ρ with an occurrence of ρj applied to this
fresh ◦ (an example is shown in Figure 7). Moreover, every !p can be replaced by a w!p followed by a
finite number of dig? and vice versa by MELL cut-elimination theorem [16] (see Figure 7). �

Strictly speaking, the proof system MELLj does not satisfy the subformula property because of the
presence of the rules dig? and dig◦. However, we can prove a cut-elimination result. Observe that a
weaker notion of the subformula property holds since all formulas that can appear in a derivation of an
arbitrary sequent are going to be subformulas of a formula at the root or formulas of the form ? · · ·?A
where ?A is a subformula of a formula at the root. At the moment this paper is written, the decidability
of MELL is an open question [50]. Thus we do not focus on proof search for MELLj.

Theorem 4. Let F be a formula. Then F is provable in MELLj iff F is provable in MELLj∪{cut}.

Proof. Assuming the equivalences 'J, we define the rewritings in Figure 8, which decrease the size of
the cut-formula, and the ones in Figure 9, which permute the rule w!p above der?, dig?, dig◦, wj, ⊥j and
c?, permute the rules der?, dig? and dig◦ above wj, ⊥j and c?, and permute the rules wj and ⊥j above c?.

Note that the cut-elimination steps involving ◦ are non-local rewritings which reassign or introduce
new ◦ in ax j or 1 j rules. Moreover, after the rules in Figure 9, the step involving dig? has to involve at
least two different w!p.

To prove cut-elimination we define some rewriting steps behaving similarly to the ones used in [1],
that is, where rewriting deals with multiple boxes at a time. �

2.4 Decomposing MELL Proofs

In order to prove the decomposition result for our system MELLj, we introduce deep inference rules [20,
21, 8]. These rules can be applied at any depth of the sequent, i.e., to any subformula occurring in it,
allowing us to push to the bottom of the derivation the w?, c?, dig? and der? inferences.

We denote by Γ{ } a context, which is a sequent or a formula with an “hole” in place of a formula, and
we define the following sets of rules, composed of sequent rules from Figure 2 and the deep inference
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A,Γ,B
−−−−−−−−−−−−− der??A,Γ,B
−−−−−−−−−−−−−−−−−−− w!p
??A,?Γ, !B

 cut

A,Γ,B
−−−−−−−−−−−−−−−−− w!p
?A,?Γ, !B
−−−−−−−−−−−−−−−−−−− der???A,?Γ, !B

??A,Γ,B
−−−−−−−−−−−−−−− dig??A,Γ,B
−−−−−−−−−−−−−−−−−−− w!p
??A,?Γ, !B

 cut

??A,Γ,B
−−−−−−−−−−−−−−−−−−−−− w!p
???A,?Γ, !B
−−−−−−−−−−−−−−−−−−−−− dig???A,?Γ, !B

◦,Γ,B
−−−−−−−−−−− wj/⊥j

X,Γ,B
−−−−−−−−−−−−−−−−− w!p
?X,?Γ, !B

 cut

◦,Γ,B
−−−−−−−−−−−−−−−− w!p
?◦,?Γ, !B
−−−−−−−−−−−−−−−− dig?
◦,?Γ, !B
−−−−−−−−−−−−−−−−− wj

?X,?Γ, !B

?A,?A,Γ,B
−−−−−−−−−−−−−−−−−−−− c??A,Γ,B
−−−−−−−−−−−−−−−−−−− w!p
??A,?Γ, !B

 cut

?A,?A,Γ,B
−−−−−−−−−−−−−−−−−−−−−−−−−−−− w!p
??A,??A,?Γ, !B
−−−−−−−−−−−−−−−−−−−−−−−−−−−− c???A,?Γ, !B

◦,Γ
−−−−−− wj/⊥j

X,Γ
−−−−−−−− der??X,Γ

 cut
◦,Γ
−−−−−−−− wj

?X,Γ

◦,Γ
−−−−−−−−−− wj

??A,Γ
−−−−−−−−−− dig??A,Γ

 cut
◦,Γ
−−−−−−−− wj

?A,Γ

?A,?A,Γ
−−−−−−−−−−−−−−− c??A,Γ
−−−−−−−−−− der???A,Γ

 cut

?A,?A,Γ
=================== 2×der???A,??A,Γ
−−−−−−−−−−−−−−−−−−− c???A,Γ

??A,??A,Γ
−−−−−−−−−−−−−−−−−−− c???A,Γ
−−−−−−−−−− dig??A,Γ

 cut

??A,??A,Γ
=================== 2×dig??A,?A,Γ
−−−−−−−−−−−−−−− c??A,Γ

??A,Γ
−−−−−−−−−− dig??A,Γ
−−−−−−−−−− der???A,Γ

 cut??A,Γ

?◦,Γ
−−−−−−−− dig◦
◦,Γ
−−−−−−−− der??◦,Γ

 cut?◦,Γ

?A,Γ
−−−−−−−−−− der???A,Γ
−−−−−−−−−− dig??A,Γ

 cut?A,Γ

◦,Γ
−−−−−−−− der??◦,Γ
−−−−−−−− dig◦
◦,Γ

 cut◦,Γ

Figure 9: Commutative cut-elimination steps

Γ{A}
−−−−−−−−− der↓?Γ{?A}

Γ{??A}
−−−−−−−−−−− dig↓?Γ{?A}

Γ{?◦}
−−−−−−−−− dig↓◦
Γ{◦}

Γ{◦}
−−−−−−−− ⊥↓

Γ{⊥}

Γ{◦}
−−−−−−−−− w↓?Γ{?A}

Γ{?A` ?A}
−−−−−−−−−−−−−−−−−−− c↓?Γ{?A}

Figure 10: Deep inference rules for dereliction and digging, for ⊥ and ?-weakening, and for ?-
contraction.

rules from Figure 10.

MLL` = MLL MLLu
` = {ax j,1 j,`,⊗} MELL` = {ax j,1 j,`,⊗,w!p}

MLL↓ = ∅ MLLu
↓ = {⊥↓} MELL↓ = {der↓? ,dig↓? ,dig↓◦,⊥↓,w

↓

? ,c
↓

?}
(2)

Theorem 5. Let F be a formula. Then
MELL

F iff there is a formula F′ such that
MELL`

F′
MELL↓

F. More

precisely, if
MELL

F, then there are some formulas F′, F′′ and F′′′ such that

MELL`
F′
{der↓? ,dig↓? ,dig↓◦}

F′′
{w↓? ,⊥

↓}

F′′′
{c↓? }

F

Proof. After Proposition 3, it suffices to replace each occurrence of dig?, dig◦, der?, ⊥j, wj, and c? by an
occurrence of their corresponding deep version dig↓? , dig↓◦, der↓? , ⊥↓, w↓? , and c↓? and then to push these
inferences to the bottom of the derivation6.

The converse is proven by reverting the previous argument, that is, by pushing up all deep rules
applications and replace them by the corresponding non-deep rules. �

6A part of these rules permutations may be performed without using deep inference rules, as shown in Figure 9, but they are
not enough to prove the result.
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3 Relation Webs

Cographs are graphs encoding formulas constructed using a conjunction and a disjunction connec-
tive [14]. In this section we present modal relation webs, which generalize cographs, and which will
be used in the next sections to encode MELL-formulas We define modal relation webs as mixed graphs
(i.e., graphs with both directed and undirected edges) satisfying certain topological conditions. More-
over, we show that they identify formulas modulo associativity and commutativity of ⊗ and `.

A directed graph G = 〈VG,
G
 〉 is a set VG of vertices equipped with an irreflexive binary edge rela-

tion
G
 ⊆ VG ×VG. An undirected graph G = 〈VG,

G
_〉 is a graph whose edge relation

G
_ ⊆ VG ×VG is

irreflexive and symmetric. A mixed graph is a triple G = 〈VG,
G
_,

G
 〉 where 〈VG,

G
_〉 is an undirected

graph and 〈VG,
G
 〉 is a directed graph, such that

G
_ ∩

G
 = ∅ and

G
 is irreflexive. We omit the in-

dex/superscript G when it is clear from the context. When drawing a graph we draw v w whenever
v_w, and v w whenever v w; otherwise we either draw no edge at all, or we draw v w when we
want to underline the absence of edges. A mixed graph is L-labeled if each vertex v carries a label l(v)
selected from a label set L. In this paper we fix the label set to be L =A∪Ā∪{!,?,1,⊥,◦}.

Definition 6. A relation web is a non-empty mixed graph G = 〈VG,
G
_,

G
 〉 such that:

•
G
 is transitive and irreflexive;

• 〈VG,
G
_〉 is a cograph, 〈VG,

G
 〉 is a series-parallel order and G is 3-color triangle-free, that is, G

contains no induced subgraphs of the following shape:

u v

y z

u v

y z

w

u v

w

u v
(3)

A cograph is an undirected graph containing no induced subgraph as the leftmost one in Equation (3).

Let G andH be two disjoint mixed graphs. We define the following operations:

G`H = 〈VG∪VH ,
G
_∪

H
_ ,

G
 ∪

H
 〉

GCH = 〈VG∪VH ,
G
_∪

H
_ ,

G
 ∪

H
 ∪{(u,v) | u ∈ VG,v ∈ VH }〉

G⊗H = 〈VG∪VH ,
G
_∪

H
_∪{(u,v), (v,u) | u ∈ VG,v ∈ VH } ,

G
 ∪

H
 〉

(4)

which can be visualized as follows:

G`H GCH G⊗H

G

•
...

•

H

•
...

•

G

•
...

•

H

•
...

•

G

•
...

•

H

•
...

•

Theorem 7 ([20, 7]). A mixed graph is a relation web if and only if it can be constructed from single
vertices using the three operations `, C and ⊗ defined in Equation (4).
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For each formula F we define the L-labeled relation web JFK. We use the notations a, ā, !, ?, 1, ⊥ and
◦ for the graph consisting of a single vertex that is labeled with a, ā, !, ?, 1, ⊥ and ◦ respectively.

JaK = a

JāK = ā

JA⊗BK = JAK⊗JBK
JA`BK = JAK` JBK

J!AK = !C JAK
J?AK = ?C JAK

J1K = 1

J⊥K = ⊥
J◦K = ◦ (5)

For a sequent Γ = A1, . . . ,An we define JΓK = JA1, . . . ,AnK = JA1K` · · ·` JAnK.

Definition 8. A relation web G is properly labeled if for each v,w ∈ VG we have v w iff l(v) ∈ {!,?}.
Moreover, we say that a relation web G is modal if it is properly labeled and for any vertices u, v,

w with u w and v w we have u v or v u or u = v, i.e., G does not contain the two configurations
below.

Forbidden configurations for modal relation webs:
w

u v

w

u v
(6)

By adapting the proofs in [6], we have the following results:

Theorem 9. A relation web is the translation of a formula iff it is modal.

Proof. If G = JFK for some formula F, then each vertex with an outgoing -edge is the encoding of the
modality of a subformula of F, hence such vertex is labeled with ! or ?. Moreover, if two distinct such
vertices u and v have a  -edge to some vertex w, then that w is the encoding of a modality or an atom
occurring in a subformula in the scope of the modalities corresponding to u and v. Thus one of such
modalities is in the scope of the other and we have u v or v u. The converse follows from Theorem 7
and the fact that the operation C in Equation (4) is associative. �

If G is a modal relation web, we denote by V•
G

, V1
G

, V◦
G

, V !
G

and V?
G

the set of vertices in VG with
labels respectively inA∪Ā, {1}, {◦}, {!} and {?}. We call atomic, unit, jump, and modal vertices the ones
respectively in V•

G
, V1
G

, V◦
G

, and V !?
G

= V !
G
∪V?
G

.

Proposition 10. Given a set VG and two binary edge relations
G
_ and

G
 on vertices it can be checked

in time polynomial on the size
∣∣∣VG∣∣∣, whether G = 〈VG,

G
_,

G
 〉 is a modal relation web.

Proof. Checking the transitivity and irreflexivity of
G
 and symmetry of

G
_ is polynomial on

∣∣∣VG∣∣∣. Then,
to check the absence of the forbidden configurations in (3) and (6) we just check all triples and quadruples
of vertices, which is O(

∣∣∣VG∣∣∣4). Checking the property of being properly labeled is liner on
∣∣∣VG∣∣∣. �

By associativity of the graph operations `, ⊗ and C in Equation (4) and the commutativity of ` and
⊗ we have the following equivalence.

Proposition 11. For two formulas F and F′, we have JFK = JF′K iff F and F′ are equivalent modulo
associativity of and commutativity of ⊗ and `.

4 RGB-Cographs

As discussed in Section 2.1, RB-cograph are an alternative syntax for MLL proof nets. In this paper we
consider RGB-cographs from [6], which are an extension of the RB-cograph syntax. We provide a further
extension of RGB-cographs and we establish a correspondence between these graphs and MELL`-proofs.
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−−−−−−−−−−−−−−−−−−−−−−−−−−−− ax j
a ā

◦ . . . . . . ◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 j
1

◦ . . . . . . ◦

〈G′,A,B |
G
g〉

−−−−−−−−−−−−−−−−−−−−−−−−−−`
〈G′,A`B | Gg〉

〈G′,A |
G
g〉 〈B,H ′ |

H
g〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗

〈G′,A⊗B,H ′ |
G
g∪

H
g〉

〈G1,G2, . . . ,Gn |
G
g〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w!p
〈!CG1, ?CG2, . . . , ?CGn |

G
g∪

∗
g〉

where ∗
g = {(v,w) | v,w ∈ V !]V? such that v,w < VG1 ∪ · · ·∪VGn}

Figure 11: Translating MELL` sequent proofs into RGB-cographs

Definition 12. An RGB-cograph is a tuple G = 〈VG,
G
_,

G
 ,

G
g〉 where bGc = 〈VG,

G
_,

G
 〉 is a modal

relation web, and
G
g is an equivalence relation over VG, called the linking, such that

• if v ∈ V•
G

then there is exactly another w ∈ V•
G

with vgw and v , w;

• if v ∈ V1
G

then w ∈ V◦
G

for all wgv such that w , v;

• if v ∈ V◦
G

then there is a u ∈ V•
G
∪V1
G

such that wgv;

• if v ∈ V !
G
∪V?
G

then there is a unique w ∈ V !
G

such that wgv and no w ∈ V◦
G

such that wgv ;

In particular, an RB-cograph is an RGB-cograph G with VG = V•
G

.

These conditions can be interpreted as follows: the jumps vertices are associated to either to a pair
of atomic vertices or to a single unit vertex; modal vertices are grouped in classes containing a unique
vertex in V !

G
. For readers familiar with proof nets syntax, ◦-vertices can be seen as placeholders for

the proof net jumps while the g-classes containing ! and ?-vertices can be thought as encoding borders
of boxes, where the unique !-vertex is the box principal ports and the ?-vertices are the auxiliary ports.
More precisely, the content of the box delimited by a g-class is the induced suggraph containing all the
vertices v such that w v for a w in the g-class7.

In drawing an RGB-cograph we use bold (blue) edges v w when v , w and vgw. We may omit
edges which can be deduced by transitivity:

Definition 13. An æ-path in an RGB-cograph G is an elementary path x0, x1, . . . , xn in the graph 〈V,_∪
 ∪ g〉 whose edges are alternating in g and in ∪_. A chord in an æ-path is an edge xi_x j or
xi x j for i, j ∈ {0, . . . ,n} and i + 2 ≤ j. A chordless æ-path is an æ-path without chord. An æ-cycle is
an æ-path such that x0 = xn. An RGB-cograph G is æ-connected if any two vertices are connected by a
chordless æ-path, and G is æ-acyclic if it contains no chordless æ-cycle.

Connectedness and acyclicity are used to define the following notions of correctness.

Definition 14. We say that an RGB-cograph G is MELL-correct if it satisfies the following conditions:

1. VG , ∅ and G is æ-connected and æ-acyclic;

2. if w
G
 v and vgv′, then there is w′gw such that w′

G
 v′.

We say that RGB-cograph is MLL-correct (or MLLu-correct) if MELL-correct and V = V• (respectively
V = V•∪V◦ )8.

Lemma 15. Let X ∈ {MLL,MLLu,MELL} and F be a formula. If
X`

F then there is a X-correct RGB-
cograph G such that bGc = JFK.

7A similar process of reconstructing boxes from the paths in the graph can be found in [30].
8Note that for MLL-correct and MLLu-correct RGB-cographs condition 2 is always trivially satisfied since V!∪V? = ∅.



12 Exponentially Handsome Proof Nets and Their Normalization

Proof. Let π be a derivation of F in X. We define a derivation of a RGB-cograph G such that bGc = JFK
by induction on the size of π using the rules in Figure 11. In fact, all these rules preserve the condition
in Definition 14. �

Lemma 16. Let X ∈ {MLL,MLLu,MELL} and G be a RGB-cograph with bGc = JFK. If G is X-correct,

then
X`

F.

Proof. If X = MLL, then each MLL-correct RGB-cograph is an æ-connected æ-acyclic RB-cograph, the
result is proven in [38, 41, 45]. The proof proceeds by induction on the size of an RB-cograph G showing

that each RB-cograph is either an g-class or there is a splitting, that is, VG = U]V and if u
G
gv then either

u,v ∈ U or u,v ∈ V , and there are U′ ⊂ U and V ′ ⊂ V such that for all u ∈ U and v ∈ V , u
G
_v iff u ∈ U′

and u ∈ V ′. In particular, each g-class {a, ā} of a MLL-correct RGB-cograph G encodes an ax-rule with
conclusion a, ā, and each splitting encodes a ⊗-rule.

If X = MLLu, then the statement straightforwardly follows the the previous result. In this case each
g-class encodes either an ax j-rule if it contains a pair of atomic vertices, or a 1 j-rule in case it contains
a unit vertex.

If X = MELL, the proof strategy is to define for each MELL-correct RGB-cograph G a MLLu-correct
RGB-cograph ∂(G), and then apply the previous results. Then we shall use the derivation corresponding
to ∂(G) to reconstruct a derivation for G.

Definition of ∂(G): We define ∂(G) as follows. We define a vertex set V∗ = {v′, v̄′ | v ∈ V !
G
]V?
G
} and

let V∂(G) = V•
G
]V1

G
]V◦

G
]V∗, i.e., we replace in G each modal vertex by a dual pair of atomic vertices,

that are linked by
G
g. Moreover, the relation

∂(G)
g is the same as in

G
g on vertices in V•

G
]V1
G
]V◦
G

. In order

to define
G
_, we define the following relation:

x
G

__y ⇐⇒ x
G
_y and there is no v ∈ V !

G
]V?
G

with x
G
_v

G
 y or y

G
_v

G
 x

Now, let x
∂(G)
_ y iff one of the following cases holds:

• x,y ∈ V•
G

and x
G

__y;

• x ∈ V•
G

and y = w′ for some w ∈ V !
G
]V?
G

with x
G

__w;

• x = v′ and y = w′ for some v,w ∈ V !
G
]V?
G

with v
G

__w;

• x = v̄′ for some v ∈ V !
G
]V?
G

and y ∈ V•
G

with v
G
 y;

• x = v̄′ and y = w′ for some v,w ∈ V !
G
]V?
G

with v
G
 w;

• x = v̄′ for some v ∈ V !
G
]V?
G

and y ∈ V•
G

and there is a u ∈ V !
G
]V?
G

with v
G
gu

G
 y;

• x = v̄′ and y = w′ for some v,w ∈ V !
G
]V?
G

and there is a u ∈ V !
G
]V?
G

with v
G
gu

G
 w;

Properties of ∂(G). The intuition behind this construction can be explained using Theorem 7. Fol-
lowing [20], we use the term BV-formula for an expression built from the atoms and the symbols !, ? and
◦ using the binary operations `, ⊗, and C. In [20] it is shown that BV-formulas, modulo associativity
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and commutativity of ` and ⊗, and associativity of C, are in one-to-one correspondence with relation
webs via (4) and Theorem 11. We write fm(G) and ∂(fm(G)) = fm(∂(G)) for a corresponding BV-formula

expression for respectively G and ∂(G). If v1, . . . ,vn ∈ V !
G
]V?

G
form an

G
g-equivalence class, this means

that fm(G) is of shape F{v1 C B1} · · · {vn C Bn} for some n-ary context F{ } · · · { } (because G is modal).
We can reformulate the translation above as follows:

∂(F{v1CB1} · · · {vnCBn}) = (v̄′1⊗· · ·⊗ v̄′n⊗∂(B1 ` · · ·`Bn))`∂(F{v′1} · · · {v
′
n}) (7)

We can use (7) to construct ∂(G) from G inductively on the number of g-classes and show that if G is an
RGB-cograph, then ∂(G) is an RB-cograph. More precisely, if G is æ-connected and æ-acyclic then ∂(G)
and each of the ∂(B1 ` · · ·`Bn) determined by the g-classes of modalities are. For this, observe that, a
priori, moving a Bi out from the context could create or destroy æ-paths. However, we only claim that æ-
connectedness and æ-acyclicity are preserved, i.e., if the original RGB-cograph is correct, then so is the
one constructed via Equation (7). By way of contradiction, assume the RB-cograph in the right-hand side
sequent of Equation (7) contains a chordless æ-cycle and ∂(B1 ` · · ·`Bn) is æ-connected. This chordless
cycle cannot contain atoms from both v̄′1⊗· · ·⊗ v̄′n⊗ fm(B1 ` · · ·` Bn) and fm(F{v′1} · · · {v

′
n}). If the cycle

contains two vertices in fm(B1 ` · · ·`Bn), then it must have chords, since ∂(B1 ` · · ·`Bn) is connected.
Hence, the cycle cannot contain any v′i or v̄′i . This means that the cycle is fully contained inside the
context F{ } · · · { } or inside B1 ` · · ·` Bn. Therefore the cycle must already be present in the original
RGB-cograph. Contradiction. Now pick any two vertices x′ and y′ in the right-hand side sequent of
Equation (7). We show that there is a chordless æ-path between them. Let x and y be the corresponding
vertices in the original RGB-cograph (if x′ or y′ are one of the v′i or v̄′i , take the corresponding vi). By
assumption there is a chordless æ-path between x and y. We can recover this path in the right-hand side
sequent of Equation (7). If the original path passes through a vi, then in the new graph we can pass
through the new edge v′i v̄′i . The converse is proved similarly. Figure 12 shows two examples of the
definition of ∂(G).

Sequentialization of G using ∂(G). We can now piggyback on Retoré’s proof [45] of sequential-
ization for RB-cographs, to produce an MLL-K sequent proof for fm(G). Since ∂(G) and each of the
∂(B1 ` · · ·`Bn) determined by the g-classes of modalities are æ-connected and æ-acyclic RB-cograph,
there is a splitting tensor in fm(∂(G)) (we can remove roots ` via the `-rule). If this splitting tensor
is also present in fm(G), we can directly apply the ⊗ rule and proceed by induction hypothesis. If it
is not present in fm(G) then it must be of shape v̄′1⊗· · ·⊗ v̄′n⊗∂(B1 ` · · ·`Bn) and be introduced by the
translation in Equation (7). Since ∂(G) is æ-connected, we can without loss of generality assume the the
context consists only of v′1, . . . ,v

′
n. Otherwise our tensor would not be splitting. Hence, we have

−−−−−−−−− ax
v′1, v̄

′
1 · · ·

−−−−−−−−− ax
v′n, v̄

′
n

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
v′1, . . . ,v

′
n, v̄
′
1⊗· · ·⊗ v̄′n

−∥∥∥∥∥∥
∂(B1 ` · · ·`Bn)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊗
v′1, . . . ,v

′
n, v̄
′
1⊗· · ·⊗ v̄′n⊗∂(B1 ` · · ·`Bn)

(8)

whose conclusion is ∂((v1 CB1)` · · ·` (vn CBn)). Thus, we can apply the w!p-rule and we can proceed
by induction hypothesis.

Moreover, if V◦
G
, ∅, then we conclude similarly to the case of MLLu-correct RGB-cographs. �

We summarize the main results of this section by means of the following theorem:

Theorem 17. Let G be a RGB-cograph with bGc = JFK and X ∈ {MLL,MLLu,MELL}. Then

F provable in X` ⇐⇒ G is X-correct
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• • ◦ •

!1 • • • •

?1 ?2

• • !2 • •

∂
 

• • ◦

!̄′1

!′1 • • • •

?̄′1 ?̄′2

?′1 !̄′2 ?′2

• • !′2 • •

• • • •

• ! ? •

∂
 

• •

• !̄ ?̄ •

• ! ? •

Figure 12: The RGB-cographs for F1 = d̄ ` (d⊗ !(b̄⊗c)` ē` (e⊗?c̄)` ?(b⊗ !(a` ā)))` ? f and F2 =

b` (b̄⊗ !a)` (?ā⊗c)` c̄, and the corresponding RB-cographs ∂(F1) and ∂(F2).

5 MELL-Fibrations

In this section we show how specific morphisms between modal relation webs, which we call MELL-
fibrations, allow us encode MELL↓ derivations. We here present some of the results in [6] where skew
fibrations are meant to capture (deep) weakening-contraction derivations in modal logic. In fact, thanks
to additional definitions, we are able to restrain the these rules applications only to the ones on ?-formulas
(or ⊥). In the syntax proposed in this paper (deep) weakening-rules cannot properly be pushed down in
the derivation since the information of the jump, represented by the propositional constant ◦, is firmly
attached to an an axiom- or a 1-rule. Nevertheless, we separate the instantiation of a weakening (the
jump appearing in a ax j- or 1 j) from the weakening application (the w↓?- or ⊥j↓-rule).

Definition 18. Let G and H be modal relation webs . A linear fibration f : G→H is a function from
VG to VH such that

1. f preserves _ and , that is, if vRGw then f (v)RH f (w) for R ∈ {_, }:

v
G
_w =⇒ f (v)H_ f (w) and v

G
 w =⇒ f (v)

H
 f (w)

v w

f (v) f (w)
(9)

2. f has the skew-lifting property, that is

for every v ∈ VG and w ∈ VH and R ∈ {_, } with wRH f (v) ,

there is a u ∈ VG such that uRG v and w
H

6_ f (u) and w
H

6 f (u).

u v

f (u) f (v) w
(10)

3. f is modal, that is

if u G^v and f (u)
H
 f (v), then there is a w ∈ VG such that

w
G
 v and f (u) = f (w), or u

G
 w and f (v) = f (w).

u w v

f (u) = f (w) f (v)
(11)

4. f preserves non-jump labels and assign jumps, that is

if l(v) , ◦, then l(v) = l( f (v)); if l(v) = ◦, then l( f (v)) ∈ {◦,⊥,?}. (12)

5. f has the ◦-domination property, i.e.,

if w ∈ VH \ f (VG), then there is a u ∈ V◦
G

such that f (u) w, l( f (u)) = ?,
and if R ∈ {_, }, then f (v)RH f (u) iff f (v)RHw.

(13)
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Γ{A⊗(B⊗C)}
−−−−−−−−−−−−−−−−−−−−−−−− ≡
Γ{(A⊗B)⊗C}

Γ{A` (B`C)}
−−−−−−−−−−−−−−−−−−−−−−−−− ≡
Γ{(A`B)`C}

Γ{B⊗A}
−−−−−−−−−−−−−− ≡
Γ{A⊗B}

Γ{B`A}
−−−−−−−−−−−−−−− ≡
Γ{A`B}

Figure 13: Deep rules for formula equivalence.

6. f has the ?-domination property, i.e.:

if f (v1) = f (v2), then there are w1 , w2 such that f (w1) = f (w2) = w, l(w) = ? and
either w1 = v1 and w2 = v2 or w1 v1 and w2 v2

(14)

The conditions in Theorem 18 have a simple interpretation if we identify the vertices of G and H
with the atoms, ⊥, ◦, ? and ! occurring in the corresponding encoded formulas G and H, and the and
nodes in the formula trees of G and H. In fact, there is a _ between two vertices iff their least common
ancestor in the formula tree is a ⊗. Similarly, there is a from a vertex v to a vertex w iff w is an atom
in the scope of a modality v; more precisely, v is the least common ancestor of v and w. According with
this remark the above conditions have the following interpretation:

1. a linear fibration does not modify the least common ancestor of the corresponding nodes in the
formula tree;

2. if the image of a vertex u is a modality dominating the image of a vertex v, then there is a vertex w
with the same image of u such that it is a modality dominating v;

3. a skew fibration can replace an internal node n by a disjunction node with one child n and the other
child any formula tree; a skew fibration can attach a formula tree below a node of a modality with
no child;

4. all labels except the ◦ are preserved by f . If l(v), then l( f (v)) may be preserved or become either a
⊥ or a ?;

5. if a vertex in H is not image of a vertex in G, then there is a target of a  with source a vertex
f (u) with such that l( f (u)) = ? and l(u) = ◦;

6. if a vertex v ofH is the image of n > 1 distinct vertices v1, . . . ,vn in G, then each of these vertices
is an atom or a modality of a formula of the shape ?A.

These conditions allow us to restraint the correspondence between contractions-weakening deriva-
tions and skew fibrations [24, 47, 6, 5, 35] on the formulas on the form ?A. However, since in relation
web we consider formulas modulo associativity and commutativity of ⊗ and ` (see Theorem 11), we
need to also consider the additional (deep) rules in Figure 13 taking care of this equivalence.

Proposition 19. If Γ and Γ′ are sequents, then f : JΓ′K→ JΓK is a linear fibration iff Γ′
{w↓? ,⊥

↓,c↓? ,c
↓
◦≡
↓}

Γ.

Proof. If f and f ′ are linear fibrations, then by definition also f ◦ f ′ is. We then conclude by showing

that for any ρ ∈ {w↓? ,⊥
↓,c↓? ,c

↓
◦,≡
↓} if

F′
ρ −−−

F
, then there is a skew fibration f ρ : JF′K→ JFK.

If ρ ∈ {≡↓}, then f ρ is an identity, hence a linear fibration. If ρ ∈ {⊥↓}, then f ρ is an identity preserving
labels with the exception of a unique u such that l(u) = ◦ and l( f (u)) = ⊥; thus f ρ is a linear fibration.
If ρ ∈ {w↓?}, then f ρ is an identity over the image of f ρ preserving labels with the exception of a unique
u ∈ V◦ such that l( f (u)) = ?. Moreover, any vertex w in JFK which is not image of a vertex in JF′K is
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dominated by f (u), that is f (v) w. If ρ ∈ {c↓?} then F′ = Γ{?A` ?A} and F = Γ{?A}, f ρ restricted to
VJΓ{ }K is an identity. Moreover, f ρ preserves _ and  , is modal and has the ?-domination property
(◦-domination is trivially satisfied). The case if ρ ∈ {c↓◦} is proven similarly.

Conversely, by the result in [6, 35], we know that since f is a modal skew fibration, then Γ′
C↓,W↓,≡↓

Γ

where W and C are the classical logic weakening and contraction rules. To conclude the proof it suffices
to show that the Conditions 4-6 restrict the application of a W↓ inside the scope of a ? image of a jump-
vertex (i.e. a w↓?), and an application of a C↓ on ?-formulas, that is, an application of a c↓? . Equation (13)
ensures that if a W↓ has been applied, then a vertex v with l(v) = ◦ has been mapped in f (v) with l( f (v)) = ?
and the weakened formula A is entirely in the scope of this ?, that is, for every vertex w ∈ VJAK we have
f (v) w. If no W↓ has been applied, since f preserves non-jump labels, then either l( f (u)) = ◦, or
l( f (v)) = ⊥ – in which case a ⊥↓ has been applied. Moreover, by 6 if a C↓ has been applied then the
contracted formula C is of the shape ?A. Otherwise Condition 6 fails. In particular, if C = ⊥ or C = !A,
the condition on labels fails; while if C = A`B or C = A⊗B, this condition fails the condition of existence
of a the vertices w1 and w2. �

In order to capture der? and dig? rules application, it suffices to adapt the results from [6].

Definition 20. We say that two vertices v and w in a relation web G are clones if for all u with u , v and
u , w we have uRv iff uRw for all R ∈ {_, ,f,^}. If v = w then they are trivially clones.

A ?-map is a mapping f : G→H where G and H are modal relation webs, such that the following
conditions are fulfilled:

• if v , w and f (v) = f (w), then v and w are clones in G, v
G
 w, l( f (v)) = l(w) ∈ {?,◦};

• if f (v) , f (w) then vRGw implies f (v)RH f (w) for any R ∈ {_, ,f,^};

• if v ∈ VH is not in the image of f then l(v) = ? and there is a w ∈ VH with v w.

Proposition 21. Let Γ and Γ′ be sequents. Then, Γ′
der↓? ,dig↓? ,dig↓◦

Γ iff there is a ?-map f : JΓ′K→ JΓK.

Proof. The follows the result in [6] for {4↓, t↓}-maps. It suffices to remark that the modalities ! and ? of
MELL behave similarly to the modalities � and ^ of S4, and that ◦ can be also considered as a ^ with
no subformulas in its scope. �

We can now define fibrations capturing MELL↓-derivations.

Definition 22. Let f : G→H be a map between modal relation web. We say that

• f is an MELL-fibration if f = f ′′ ◦ f ′ for some f ′ : G→ G′ and f ′′ : G′→H , where f ′ is a linear
fibration and f ′′ is a ?-map;

• f is a MLLu-fibration if f is a MELL-fibration with V !?
H

= ∅;

• f is a MLL-fibration if f is a bijection and V◦
H
∪V !?
H

= ∅.

Theorem 23. Let Γ and Γ′ be sequents, then Γ′
MELL↓

Γ iff there is a MELL-fibration f : JΓ′K→ JΓK.

Proof. As consequence of Theorem 5, we have that Γ′
MELL↓

Γ iff there is a sequent Γ′′ such that

Γ′
{der↓? ,dig↓? ,dig↓◦}

Γ′′
{≡,w↓? ,⊥

↓,c↓? ,c
↓
◦}

Γ. By Theorem 21 there is a ?-map f ′ : JΓ′K→ JΓ′′K iff Γ′
{der↓? ,dig↓? ,dig↓◦}

Γ′′
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and by Theorem 19 there is a linear fibration f ′′ : JΓ′′K→ JΓK iff Γ′′
{w↓? ,⊥

↓,c↓? ,c
↓
◦,≡}

Γ. We conclude since,
by definition, a MELL-fibration is the composition of a ?-map and a linear fibration.

To prove the converse, we define the relation web H ′ such that f = f ′ ◦ f ′′ with f ′′ : H →H ′ and
f ′ : H ′→G. We constructH ′ fromH as follows:

• for each pair of clones v and w with v w inH such that f (v) = f (w), remove v;

• if w ∈ VG such that w f (v) for some v ∈ VH and w = f (u) for no u ∈ VH , then add w toH ad all
needed edges such that wRH ′v iff wRG f (v) for R ∈ {_, }.

We define f ′′ as the identity over non-clones vertices and as f on clones vertices. We define f ′ in such a
way f = f ′ ◦ f ′′. By definition f ′′ is a ?-map and f ′ is a linear fibration. �

Proposition 24. IfH and G are relation webs and f : H →G a function from VH to VG, then it can be
decided if f is a MELL-fibration in time polynomial in |G|+ |H|.

Proof. We decompose f = f ′ ◦ f ′′ using the same procedure used in the proof of Theorem 23. To check
if f ′′ is a ?-map we have to check if the label of all vertices which are not in the image of f ′′ are ?, and
to check if the vertices with the same image are clones. This requires a quadratic time on the size of
VG. Similarly, checking if f ′ is a linear fibration is quadratic on the size of H ′, which is bounded by
|VH |+

∣∣∣VG∣∣∣. �

6 Combinatorial Proofs

In this section we present a combinatorial proof syntax for MELLj using the results in the previous
sections. In particular, Theorem 5 gives us a decomposition result allowing us to separate in MELLj

derivation, the linear part, that is, MELL`, form the resource management part, that is, MELL↓. The first
part of the proof is encoded by RGB-cographs, while the second by MELL-fibrations.

Definition 25. A map f : G→ JFK from an RGB-cograph G to a the relation web JFK is allegiant if the
following conditions are satisfied:

• if v,w ∈ V•
G

and v
G
gw then f (v) and f (w) are labeled by dual atoms inA;

• if v ∈ VG \V◦
G

then l( f (v)) = l(v);

• if v ∈ V◦
G

then l( f (v)) ∈ {⊥,?}.

Definition 26. For X ∈ {MLL,MLLu,MELL}, an X-combinatorial proof of a sequent Γ is an X-fibration
f : G→ JΓK from an X-correct RGB-cograph G to the relation web of Γ.

Theorem 27. If F is a formula and X ∈ {MLL,MLLu,MELL}, then
X

F iff there is a X-combinatorial
proof f : G→ JFK.

Proof. By Proposition 3 and Theorem 5, if
X

F then there is a formula F′ such that
X`

F′
X↓

F. We
conclude by Theorems 17 and 23. �

After the result in [6] we have that MELL-combinatorial proofs represent two 'J-equivalent proofs
with the same syntactic object.

Proposition 28. Let π1 and π2 be two derivations in MELLj, then π1 'J π2 iff they are represented by the
same MELL-combinatorial proof.
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Proof. It follows by the fact that MELLj can be seen as modal logic S4 with additional axiom-like rules
(ax j and 1 j) and restricted versions of weakening and contraction rule. Note that, in [6] the proof
equivalence is stated in such a way rule that permutations of W and C below w!p are not allowed. �

In particular, there is a one-to-one correspondence between MLLu-combinatorial proofs and MLLu

proof nets with jumps in [23].

Theorem 29. For all X ∈ {MLL,MLLu,MELL}, X-combinatorial proofs are a sound and complete proof
system for X in the sense of [9].

Proof. Let G = 〈VG,
G
_,

G
 ,

G
g〉 be a labeled mixed graph equipped with an equivalence relation, H =

〈VH ,
H
_,

H
 〉 be a labeled mixed graph and f : G→H mapping vertices of G to vertices ofH . Checking

if the two mixed graphs are relation web is polynomial by Theorem 10 on the sizes of
∣∣∣VG∣∣∣+ |VH | and

checking ifG is an X-correct RGB-cograph is polynomial on
∣∣∣VG∣∣∣. By Theorem 24 we have that checking

if f is a X-fibration is polynomial on
∣∣∣VG∣∣∣ + |VH |. Then, since checking if f is allegiant is linear on∣∣∣VG∣∣∣+ |VH |, we conclude the proof. �

7 Handsome Proof Nets for MELL

The combinatorial proofs defined in the previous section can be interpreted as an extension of both
Retoré’s [45] and Hughes’ [24] syntaxes. They only allow to represent cut-free proofs as unfolded
Retoré’s proof nets [41] do. In this section we define exponentially handsome proof nets (or MELL-
combinatorial proofs with cuts) by extending MELL-combinatorial proofs. We conclude by providing a
cut-elimination procedure for exponentially handsome proof nets.

We adapt the solution proposed in [24, 25] where instances of cut are replaced by conjunction rules
producing contradictions, i.e. formulas of the form A⊗ Ā, which are later “discarded” at the end of the
derivation. In the classical setting, this substitution creates no further interaction of the contradiction
with any other rule in the derivation. The presence of the weak promotion rule prevents us from ignoring
the presence of these contradictions, but we here propose a solution for this problem.

Remark 30. Another extension of combinatorial proof for classical logic allowing to represent proofs
with cuts is given in [48] by means of combinatorial flows. In this setting cut is in some way encoded as
sequential composition of flows. This syntax is strongly related with the property of the deep inference

system SKS for classical logic [20] which states that if
SKS

Ā` B, then A
SKS

B. Such a result is out of
the scope of this paper, but it could be obtained by defining a deep inference system for MELLj based on
the systems in [46, 49].

Definition 31. If F is a formula, we write ?nF to denote the formula ?nF =

n times︷︸︸︷
? · · ·? F. In particular,

?0F = F. A contradiction is a formula of the form C = A⊗ Ā for a MELL-formula A, and a weaken-
contradiction is a formula of the form ?nC with C a contradiction.

Theorem 32. Let Γ be a sequent and C1, . . . ,Cn weaken-contradictions. If
MELL

Γ,C1, . . . ,Cn then
MELL

Γ.
Conversely, if Γ admits a derivation in MELL∪{cut} containing k occurrences of the cut-rule with pairs

of active formulas (A1, Ā1), . . . , (Ak, Āk) then
MELL

Γ,?n1(A1⊗ Ā1), . . . ,?nk (Ai⊗ Āi) for some n1, . . . ,nk ∈ N.

Proof. By induction on the number of weaken-contradictions formulas k. If Γ,C is provable in MELL
and C = ?n(A⊗ Ā), then in any derivation of Γ,C there is an occurrence of a rule ⊗ with principal formula
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A⊗ Ā and active formulas A and Ā. We can obtain a derivation of Γ by replacing such an occurrence with
a cut having the same active formulas, and then removing each occurrence of the active formula A⊗ Ā
from the derivation.

Γ,A Ā,∆
−−−−−−−−−−−−−−−−−− ⊗
Γ,A⊗ Ā,∆

!
Γ,A Ā,∆
−−−−−−−−−−−−−−−−−− cut

Γ,∆

Then we conclude thanks to Theorem 1.
The converse is proven by similarly. In this case ni is defined as the number of occurrences of w!p

below the cut with active formulas formula Ai and Āi for each i ∈ {1, . . .k}. �

Definition 33. An exponentially handsome proof net of a sequent Γ is a MELL-combinatorial proof
f : G→ JΓ,∆K where ∆ is a (possibly empty) sequent of weaken-contradictions.

In drawing such objects, we shade in gray the backgrounds of the portion of the relation web of Γ

containing the vertices of the weaken-contradictions (for a graphical example refer to Figure 1).
We conclude this section by defining a graphical rewriting allowing us to produce a MELL-combinatorial

proof from an exponentially handsome proof net.

Theorem 34. If f : G → JΓ,∆K is an exponentially handsome proof nets of Γ, then there is a MELL-
combinatorial proof f ′ : G→ JΓK.

Proof. If ∆ = ∅, then f is a MELL-combinatorial proof. Otherwise, in order prove this result we imple-
ment cut-elimination by translating the rewriting in Figure 8. We consider the following key cases which
are shown in Figure 14:

•
ax-VS-ax
 cut : remove the two vertices in the contradiction and merge their g-classes;

•
⊥-VS-1
 cut : similarly to the previous one;

•
⊗-VS-`
 cut : remove the _-edges between the vertices in B and the ones in A and Ā, and remove the
_-edges between the vertices in A and the ones in B̄;

•
w!p-VS-w!p
 cut : replace the _-edges between ? and a vertex in A with  -edge from ? to a vertex in

A. Merge the g-classes of ! and ? and then remove the vertex !;

•
w!p-VS-der?
 cut : remove the ! and the vertices in its g-class;

•
w!p-VS-wj

 cut : remove the ! and any vertex pointed by the ? in its g-class. Then replace each ? in with
a new ◦ having the same image by f . Add to the g-class of the ◦cut which is in the pre-image of
the ? of the cut-formula the new ◦-vertices. Finally remove ◦cut.

•
w!p-VS-c?
 cut : remove any _ connecting !A to any copy of ?Ā; for each pre-mage of ? excepting one,

make a copy of the connected component of the RGB-cograph containing the g-class of ! for each
? in the pre-image of the ? of the cut-formula ?Ā. add the _-edges between each copy of !A and
the corresponding copy of ?Ā;

•
w!p-VS-dig?
 cut : remove any _ connecting !A to any ? with image the ? of the cut-formula; make a

copy of the g-class of ! for each ? in the pre-image of the ? of the cut-formula ?Ā. Add the _-edge
and the -edges in such a way each new copy of ? and ! is a clone of the original one. Add a _
between each new copy of ! and the corresponding ?.
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Note that proof equivalence and the permutations in Figure 9 are already captured by the syntax.
Let ∆ = C1, . . . ,Cn. We define the function W∆ associating to an exponentially handsome proof nets

g : H → JΣK the string W∆(g) = (|Σ|C1 , . . . , |Σ|Cn) where |Σ|C is the number of occurrences of the the
formula C in Σ. The reduction strategy consists in selecting and applying reduction to one weaken-
contradiction in f at a time, selecting the weaken-contradictions according with the following the order
on ∆: we do not select a weaken-contradiction Ci+1 until we have not removed all the occurrences of
Ci. At the end of each sub-routine removing an occurrence of a weaken-contradiction Ci, we may have
created new copies of the weaken-contradictions, but only copies of the C j with j > i. The reduction
order is the lexicographic order on the pair (

∣∣∣VJCK
∣∣∣ ,W∆(g)) where C is the currently selected weaken-

contradiction in the elimination process. Since each rewriting rule in Figure 14 either reduces
∣∣∣JCK

∣∣∣ or
W∆, then the cut-elimination procedure ends. �

8 Conclusions

In this paper we extended Retoré’s RB-cograph syntax for multiplicative proof nets [45] in order to
include units and exponentials, refining the combinatorial proofs for modal logic from [6].

Aware of the limits in designing a syntax able to capture proof equivalence and with a polynomial
correctness criterion [22], we restrained the notion of proof equivalence by introducing the proof system
MELLj for MELL, enforcing a coarser proof equivalence. We topologically characterized mixed graphs
equipped with vertices partitions encoding linear proofs in MELLj, as well as the graph homomorphisms
capturing the resource management part of proofs in MELLj. Using these results we introduced combina-
torial proofs for MELL and then exponentially handsome proof nets for MELL, defined as compositions
of combinatorial proofs. We also provided a normalization procedure by means of graph rewriting rules.

The RGB-cographs can be interpreted as a coherent interaction graphs [34] for MLL∪ {w!p}. We
foresee a further application of exponentially handsome proof nets to explore the geometry of interaction
of MELL [17] using the same approach from [15], where handsome proof nets are employed to investigate
coherent spaces of MLL.

On Removing Jumps. Is it possible to modify exponentially handsome proof nets by removing jumps
and thus recover a less coarse notion of proof equivalence including jump rewiring, at the price of loosing
the polynomiality of the correctness criterion.

For this purpose, we should consider the following set of rules:

{ax,1,◦,`,⊗,mix,w!p,der?,dig?,dig◦,⊥
j,wj,c?} with

Γ ∆
−−−−−−−−−mix
Γ,∆

and −−− ◦
◦

A correctness criterion for RGB-cographs encoding linear proofs of this proof system, that is, derivations
containing only rules in {ax,1,◦,`,⊗,mix,w!p}, is obtained by dropping the æ-connectness from 14.

Note that we cannot get rid of ◦ in presence of the restricted weakening rule of linear logic: without
placeholders we could not represent the proof below on the left, because the skew lifting condition (see
Equation (10)) would fail for any _-edge connecting a vertex in A with a vertex in B.

−
π
∥∥∥∥∥

Γ,A

−
π′

∥∥∥∥∥
∆

−−−−−−−− w?
?B,∆

−−−−−−−−−−−−−−−−−−− ⊗
Γ,∆,A⊗?B

−
π
∥∥∥∥∥

Γ,A

−
π′

∥∥∥∥∥
∆
−−−−−−W
∆,B

−−−−−−−−−−−−−−−−−− ∧
Γ,∆,A∧B

 

−
π′

∥∥∥∥∥
∆

================= W
Γ,A∧B,∆

The use of excising, that is, the transformation above on the right cannot be used to overcome this
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◦ . . . ◦ ◦ . . . ◦

a ā a ā

Γ{ ā a }

ax-VS-ax
 cut

◦ . . . ◦ ◦ . . . ◦

a ā

Γ{ }

x1 . . . xn xn+1 . . . xm
◦ 1

Γ{ ◦ ⊗ 1 }

⊥-VS-1
 cut

x1 . . . xn xn+1 . . . xm

Γ{ }

B B̄
A Ā

Γ{ ( A ⊗ B ) ⊗ ( Ā ` B̄ ) }

⊗-VS-`
 cut

B B̄
A Ā

Γ{ ( A ⊗ Ā ) ` ( B ⊗ B̄ ) }

A Ā
?. . .? ! ? ! ?. . .?

Γ { ! A ⊗ ? Ā }

w!p-VS-w!p
 cut

A Ā
?. . .? ? ! ?. . .?

Γ{ ?( A ⊗ Ā )}

B1 . . . Bn A Ā
? . . . ? !

Γ{ ? B1 } · · · { ? Bn }{ ! A ⊗ ? Ā }

w!p-VS-der?
 cut

B1 . . . Bn A Ā

Γ{ ? B1 } · · · { ? Bn }{ A ⊗ Ā }

A Ā
B1 . . . Bn

? . . . ? !
? . . . ?

Γ{ ? B1 } · · · { ? Bn }{ ! A ⊗ ? Ā }

w!p-VS-dig?
 cut

A Ā
B1 . . . Bn

? . . . ?

? . . . ? ! . . . !

Γ{ ? B1 } · · · { ? Bn }{ ! . . . ! ( A ⊗ Ā )}

x1 . . . xn
B1 . . . Bn A ◦cut

? . . . ? !

Γ{ ? B1 } · · · { ? Bn }{ ! A ⊗ ? Ā }

w!p-VS-wj

 cut

x1 . . . xn

◦1 . . . ◦n

Γ{ ? B1} · · · { ? Bn}{}

or Γ if n = 0

B1 . . . Bn A
Ā . . . Ā

? . . . ? !
? . . . ?

Γ{ ? B1 } · · · { ? Bn }{ ! A ⊗ ? Ā }

w!p-VS-c?
 cut

B1 . . . Bn A
? . . . ? !
...

...
...

...
...

... Ā . . . Ā
B1 . . . Bn A

? . . . ? ! ? . . . ?

Γ{ ? B1 } · · · { ? Bn }{( ! A ⊗ ? Ā )` · · ·` ( ! A ⊗ ? Ā )}

Figure 14: Cut-elimination steps for exponentially handsome proof nets. Dotted lines delimit modules,
that is, sets of vertices having the same _- and  -relation with any vertex outside. To simplify the
reading we write with the same symbol a formula and its pre-image by f .

problem as it is done in classical logic (see [24, 4]) since, in linear logic, this proof transformation
cannot be performed.

On Generalized ?-Nodes. The rule permutations allowing to push weakening and contraction below
the promotion rule (see last line of Figure 5) are allowed in MELL proof nets, thanks to the so-called
generalized ?-nodes [10]. The syntax with generalized ?-nodes captures these equivalences, allowing a
“flexible” representation of boxes, which are the syntactic elements representing promotion rules. In fact,
generalized ?-nodes allow to identify nets where boxes may have different amounts of auxiliary ports.
This depends on the fact that boxes have a different status with respect to the interaction net syntax [28].

In exponentially handsome proof nets, each (weak) promotion is rigidly encoded: each !-vertex is the
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principal port of a box and each auxiliary port is encoded by a ?-vertex in the same g-class. In particular,
this allows us to keep track of the depth of a propositional letter a, a ◦ or a 1 in terms of the number
of incoming in the RGB-cograph. This clearly prevents any rule permutation which may change the
number of auxiliary ports of a box.
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