
Sequent Systems on Undirected Graphs

Matteo Acclavio1[0000−0002−0425−2825]�

University of Sussex, Brighton, UK, m.acclavio@sussex.ac.uk

Abstract. In this paper we explore the design of sequent calculi operating on
graphs. For this purpose, we introduce logical connectives allowing us to extend
the well-known correspondence between classical propositional formulas and
cographs. We define sequent systems operating on formulas containing such con-
nectives, and we prove, using an analyticity argument based on cut-elimination,
that our systems provide conservative extensions of multiplicative linear logic
(without and with mix) and classical propositional logic. We conclude by show-
ing that one of our systems captures graph isomorphism as logical equivalence
and that it is sound and complete for the graphical logic GS.

Keywords: Sequent Calculus · Graph Modular Decomposition · Analyticity.

1 Introduction

In theoretical computer science, formulas play a crucial role in describing complex ab-
stract objects. At the syntactical level, the formulas of a logic describe complex struc-
tures by means of unary and binary operators, usually thought of as connectives and
modalities respectively. On the other hand, graph-based syntaxes are often favored in
formal representation, as they provide an intuitive and canonical description of proper-
ties, relations and systems. By means of example, consider the two graphs below:

a b c d or a b c d

It follows from results in [62,21] that describing any of the above graphs by means
of formulas only employing binary connectives would require repeating at least one
vertex. As a consequence, formulas describing complex graphs are usually long and
convoluted, and specific encodings are needed to standardize such formulas.

Since graphs are ubiquitous in theoretical computer science and its applications, a
natural question to ask is whether it is possible to define formalisms having graphs, in-
stead of formulas, as first-class terms of the syntax. Such a paradigm shift would allow
the design of efficient automated tools, reducing the need to handle the bureaucracy
introduced in order to deal with the encoding required to represent graphs. At the same
time, a graphical syntax would provide a useful tool for investigations such as the ones
in [36] or [27,25], where the authors restrain their framework to sequential-parallel or-
ders, as these can be represented by means of formulas with at most binary connectives.

Two recent lines of work have generalized proof theoretical methodologies to graphs,
extending the correspondence between classical propositional formulas and cographs.
In these works, systems operating on graphs are defined via local and context-free

2 M. Acclavio

rewriting rules, similar to the approach in deep inference systems [33,34,8]. The first
line of research, carried out by Calk, Das, Rice and Waring in various works, explores
the use of maximal stable sets/cliques-preserving homomorphisms to define notions of
entailment1, and study the resulting proof theory [17,16,63,23,24]. Here, The use of a
deep inference formalism is natural, since the rules of the calculus are local rewritings.
The second line of research, investigated by the author, Horne, Mauw and Straßburger
in several contributions [4,5,3], studies the (sub-)structural proof theory of arbitrary
graphs, with an approach inspired by linear logic [29] and deep inference [33]. The
main goal of this line of research, partially achieved with the system GVsl operating on
mixed graphs [3], is to obtain a generalization of the completeness result of the logic
BV with respect to pomset inclusion. The logic BV contains a non-commutative binary
connective ◁ allowing to represent series-parallel partial order multisets as formulas in
the syntax (as in Retoré’s Pomset logic [57]), and to capture order inclusion as logical
implication. However, as shown in [60], no cut-free sequent system for BV can exist –
therefore neither for Pomset logic, which strictly contains it [54,53]. For this reason,
the aforementioned line of work focused on deep inference systems, and the question
about the existence of a cut-free sequent calculus for GS (the restriction of GVsl on
undirected graphs originally defined in [4]) was left open.

In this paper, we focus on the definition of sequent calculi for graphical logics, and
we positively answer the above question by providing, among other results, a cut-free
sound and complete sequent calculus for GS. By using standard techniques in sequent
calculus, we thus obtain a proof of analyticity for this logic which is simpler and more
concise with respect to the one in [5].

To achieve these results, we introduce graphical connectives, which are operators
that can be naturally interpreted as graphs. We then define the sequent calculi MGL,
MGL◦ and KGL, containing rules to handle these connectives. After showing that cut-
elimination holds for these systems, we prove that MGL, MGL◦ and KGL define con-
servative extensions of multiplicative linear logic, multiplicative linear logic with mix
and classical propositional logic respectively. We then prove that formulas interpreted
as the same graph are logically equivalent, thus justifying the fact that we consider
these systems as operating on graphs rather than formulas. We conclude by showing
that MGL◦ is sound and complete with respect to the logic GS, thus providing a simple
sequent calculus for the logic.

The paper is structured as follows. In Section 2 we show how to use the notion of
modular decomposition for graphs from [28,41] to define graphical connectives. In this
way, we extend to general graphs the well-known correspondence between classical
propositional formulas and cographs [28,41,21]. Then, in Section 3, we introduce the
proof systems MGL, MGL◦ and KGL, and we prove their cut-elimination and analyticity.
This section also discusses the conservativity results. In Section 4 we show that formu-
las representing isomorphic graphs are logically equivalent in these logics. Finally, in
Section 5 we prove that MGL◦ is sound and complete with respect to the graphical logic
GS. We conclude with Section 6, by discussing future research directions and appli-
cations. Due to space limitations, details of certain proofs have been omitted from this
manuscript However, detailed proofs can be found in [2].

1 A similar approach was proposed in [56] for studying pomsets.

Sequent Systems on Undirected Graphs 3

2 From Graphs to Formulas

In this section we first recall standard results from the literature on graphs, the notion
of modular decomposition and the one of cographs, which are graphs whose modular
decomposition only contains two prime graphs which can be naturally interpreted as
(binary) conjunction and disjunction. We then introduce the notion of graphical con-
nectives, allowing us to extend the correspondence between cographs and propositional
formulas to general graphs, allowing us to represent graphs via formulas constructed
using graphical connectives.

2.1 Graphs and Modules

In this work are interested in using (labeled) graphs to represent patterns of interactions
by means of the binary relations (edges) between their components (vertices). We recall
the standard notion of identity on labeled graphs (i.e., isomorphism) and define the
rougher notion of similarity (isomorphism up-to vertex labels).

Definition 1. A L-labeled graph (or simply graph) G = ⟨VG, ℓG,
G
⌢⟩ is given by a

finite set of vertices VG, a partial labeling function ℓG : VG → L associating a label
ℓ(v) from a given set of labels L to each vertex v ∈ VG (we may represent ℓG as a set of
equations of the form ℓ(v) = ℓv and denote by ∅ the empty function), and a non-reflexive
symmetric edge relation

G
⌢ ⊂ VG × VG whose elements, called edges, may be denoted

vw instead of (v,w). The empty graph ⟨∅,∅,∅⟩ is denoted ∅ and we define the edge

relation
G
̸⌢ B

{
(v,w) | v , w and vw <

G
⌢
}
.

A similarity between two graphs G and G′ is a bijection f : VG → VG′ such that

x
G
⌢y iff f (x) G′

⌢ f (y) for any x, y ∈ VG. A symmetry is a similarity of a graph with itself.
An isomorphism is a similarity f such that ℓ(v) = ℓ(f (v)) for any v ∈ VG. Two graphs
G and G′ are similar (denoted G ∼ G′) if there is a similarity between G and G′. They
are isomorphic (denoted G = G′) if there is an isomorphism between G and G′. From
now on, we consider two isomorphic graphs to be the same graph.

Two vertices v and w in G are connected if there is a sequence v = u0, . . . , un = w
of vertices in G (called path) such that ui−1

G
⌢ui for all i ∈ {1, . . . , n}. A connected

component of G is a maximal set of connected vertices in G. A graph G is a clique

(resp. a stable set) iff
G
̸⌢ = ∅ (resp.

G
⌢ = ∅).

Note 1. When drawing a graph or an unlabeled graph we draw v w whenever v⌢w,
we draw no edge at all whenever v ̸⌢w. We may represent a vertex by using its label
instead of its name. For example, the single-vertex graph G = ⟨{v}, ℓG,∅⟩ may be rep-
resented either by the vertex (name) v or by the vertex label ℓG(v) (in this case we may
write • if ℓG(v) is not defined).

Example 1. Consider the following graphs:

F = ⟨ {u1, u2, u3, u4} , {ℓ(u1) = a, ℓ(u2) = b, ℓ(u3) = c, ℓ(u4) = d} , {u1u2, u2u3, u3u4} ⟩

G = ⟨ {v1, v2, v3, v4} , {ℓ(v1) = b, ℓ(v2) = a, ℓ(v3) = c, ℓ(v4) = d} , {v1v2, v1v3, v3v4} ⟩

H = ⟨ {w1,w2,w3,w4} , {ℓ(w1) = a, ℓ(w2) = b, ℓ(w3) = c, ℓ(w4) = d} , {w1w2,w1w3,w3w4} ⟩

(1)

4 M. Acclavio

c
d

e
f

a b g h i

=

c d e f

a b g h i
=

P4

(∣∣∣`La, bM,⊗Lc, dM,⊗Le, f M,⊗Lg,⊗Lh, iMM
∣∣∣)

or
P4

(∣∣∣a ` b, c⊗ d, e⊗ f , g⊗(h⊗ i)
∣∣∣)

Fig. 1. A graph and one of its modular and the corresponding formula-like representations.

We have F ∼ G ∼ H and G = F = a b c d , b a c d = H.

Note 2. Whenever we say that two graphs are the same, we assume they share the same
set of vertices and labeling function, therefore implicitly assuming the isomorphism f
to be given. This allows us to verify whether two graphs are isomorphic (i.e., the same)
in polynomial time on the number of vertices.

We recall the notion of module [28,41,35,45,48,26], allowing us to represent a graph
using a tree-like syntax. A module is a subset of vertices of a graph having the same
edge-relation with any vertex outside the subset, generalizing what can usually be ob-
served in formulas, where, in the formula tree, each literal in a subformula has the same
least common ancestor with a given literal not belonging to the subformula itself.

Definition 2. Let G = ⟨VG, ℓG, EG⟩ be a graph and W ⊆ VG. The graph induced by W
is the graph G|W B ⟨W, ℓG |W ,

G
⌢ ∩ (W ×W) ⟩ where ℓG |W (v) B ℓG(v) for all v ∈ W.

A module of a graph G is a subset M of VG such that x⌢z iff y⌢z for any x, y ∈ M,
z ∈ VG \ M. A module M is trivial if M = ∅, M = VG, or M = {x} for some x ∈ VG.
From now on, we identify a module M of a graph G with the induced subgraph G|M .

Remark 1. A connected component of a graph G is a module of G.

Note 3. We may optimize graph representations by bordering vertices of a same module
by a closed line. An edge connected to such a closed line denotes the existence of
an edge to each vertex inside it (see Figure 1). By means of example, consider the
following graph and its more compact modular representation.

a c
e

b d
=

a

b

c

d
e (2)

The notion of module is related to a notion of context, which can be intuitively
formulated as a graph with a “hole”.

Definition 3. A context C[□] is a (non-empty) graph containing a single occurrence of
a special vertex □ (with ℓ(□) undefined). It is trivial if C[□] = □. If C[□] is a context
and G a graph, we define C[G] as the graph obtained by replacing □ by G. Formally,

C[G] B ⟨
(
VC[□] \ {□}

)
⊎ VG ,

ℓC ∪ ℓG ,{
vw | v,w ∈ VC[□] \ {□}, v

C[□]
⌢ w
}
∪

{
vw | v ∈ VC[□] \ {□},w ∈ VG, v

C[□]
⌢ □
} ⟩

Sequent Systems on Undirected Graphs 5

Remark 2. The notion of context and the one of module are interdefinable. In fact, a set
of vertices M is a module of a graph G iff there is a context C[□] such that G = C[M].

Note that M is a module of a graph G iff there is a context C[□] such that G = C[M].
We generalize this idea of replacing a vertex of a graph with a module by defining the
operations of composition-via a graph, where all vertices of a graph are replaced in a
“modular way” by modules.

Definition 4. Let G be a graph with VG = {v1, . . . , vn} and let H1, . . . ,Hn be graphs.
We define the composition of H1, . . . , Hn via G as the graph GLH1, . . . ,HnM obtained
by replacing each vertex vi of G with a module Hi for all i ∈ {1, . . . , n}. Formally,

GLH1, . . . ,HnM = ⟨
n⊎

i=1

VHi ,

n⋃
i=1

ℓHi ,

 n⋃
i=1

Hi
⌢

 ∪ { (x, y) x ∈ VHi , y ∈ VH j , vi
G
⌢v j

}
⟩ (3)

The subgraphs H1, . . . ,Hn are called factors of GLH1, . . . ,HnM and, by definition, are
(possibly not maximal) modules of GLH1, . . . ,HnM.

Remark 3. The operation of composition-via G forgets the information carried by the
labeling function ℓG. Moreover, if σ is a similitude between two graphs G and G′, then
GLH1, . . . ,HnM = G′LHσ(1), . . . ,Hσ(n)M.

In order to establish a connection between graphs and formulas, from now on we
only consider graphs whose set of labels belong to the set L =

{
a, a⊥ | a ∈ A

}
whereA

is a fixed set of propositional variables. We then define the dual of a graph.

Definition 5. Let G = ⟨VG, ℓG, EG⟩ be a graph. We define the dual graph of G as the

graph G⊥ B ⟨VG,
G
̸⌢, ℓG⊥⟩ with ℓG⊥ (v) = (ℓG(v))⊥ (assuming a⊥⊥ = a for all a ∈ A).

2.2 Classical Propositional Formulas as Cographs

The set of classical (propositional) formulas is generated from a set of propositional
variable A using the negation (·)⊥, the disjunction ∨ and the conjunction ∧ using the
following grammar:

ϕ, ψ B a | ϕ ∨ ψ | ϕ ∧ ψ | ϕ⊥ with a ∈ A. (4)

We define a map from literals to single-vertex graphs, which extends to formulas via
the composition-via the unlabeled two-vertices stable set and two-vertices clique.

Definition 6. Let ϕ be a classical formula, and let S2 = ⟨{v1, v2},∅,∅⟩ and K2 =

⟨{v1, v2},∅, {v1v2}⟩. We define the graph
[[
ϕ
]]

as follows:

[[a]] = a
[[
ϕ⊥
]]
=
[[
ϕ
]]⊥ [[

ϕ ∨ ψ
]]
= S2

(∣∣∣[[ϕ]] , [[ψ]]∣∣∣) [[
ϕ ∧ ψ

]]
= K2

(∣∣∣[[ϕ]] , [[ψ]]∣∣∣)
where we denote by a the single-vertex graph, whose vertex is labeled by a. A cograph
is a graph G such that there is a classical formula ϕ such that G =

[[
ϕ
]]
.

6 M. Acclavio

Example 2. Let ϕ and ψ classical formulas containing occurrences of atoms {a1, . . . , an}

and {b1, . . . bm} respectively. Then the graph
[[
ϕ ∧ ψ

]]
can be represented as follows:

[[
ϕ ∧ ψ

]]
=

a 1
...

a n

b 1
...

b m

=

a 1
...

a n

b 1
...

b m

=

a 1
...

a n

⊥

b 1
...

b m

⊥
⊥

=
([[
ϕ⊥ ∨ ψ⊥

]])⊥
Note that an equivalent definition of cographs can be given using only the graph S2 (or
K2) and duality.

We can easily observe that the map [[·]] well-behaves with respect to the equivalence
over formulas generated by the associativity and commutativity of connectives and the
de Morgan laws below.

Equivalence laws
{
ϕ ∨ ψ ≡ ψ ∨ ϕ ϕ ∨ (ψ ∨ χ) ≡ (ϕ ∨ ψ) ∨ χ
ϕ ∧ ψ ≡ ψ ∧ ϕ ϕ ∧ (ψ ∧ χ) ≡ (ϕ ∧ ψ) ∧ χ

De-Morgan laws
{
(ϕ⊥)⊥ ≡ ϕ (ϕ ∧ ψ)⊥ ≡ ϕ⊥ ∨ ψ⊥

(5)

Proposition 1. Let ϕ and ψ be classical formulas. Then ϕ ≡ ψ iff
[[
ϕ
]]
=
[[
ψ
]]
.

We finally recall an alternative definition of cographs as graphs containing no in-
duced subgraph of a specific shape, and we recall the theorem establishing the relation
between

Definition 7. A graph G is P4-free if there it contains no four vertices v1, v2, v3, v4 such
that the induced subgraph G|{v1,v2,v3,v4} is similar to the graph a b c d .

Theorem 1 ([28]). Let G be a graph. Then G is a cograph iff G is P4-free.

2.3 Modular Decomposition of Graphs

We recall the notion of prime graph, allowing us to provide canonical representatives
of graphs via modular decomposition. (see e.g., [28,41,35,45,48,26]).

Definition 8. A graph G is prime if |VG | > 1 and all its modules are trivial.

We recall the following standard result from the literature.

Theorem 2 ([41]). Let G be a graph with at least two vertices. Then there are non-
empty modules M1, . . . ,Mn of G and a prime graph P such that G = PLM1, . . . ,MnM.

This result allows us to describe graphs using its modular decomposition, that is,
using single-vertex graphs and operations of composition-via prime graphs only.

Definition 9. Let G be a non-empty graph. A modular decomposition of G is a way to
write G using single-vertex graphs and the operation of composition-via prime graphs:

– if G is a graph with a single vertex x labeled by a, then G = a;

Sequent Systems on Undirected Graphs 7

– if H1, . . . ,Hn are maximal modules of G such that VG =
⊎n

i=1 VHi , then there is a
unique prime graph P such that G = PLH1, . . . ,HnM.

Ambiguity arises in modular decomposition due to the presence of cliques or stable
sets with more than three vertices, graph symmetries, and the presence of symmetric
but non-isomorphic graphs. The first two ambiguities are akin to the one observed in
propositional logic, where conjunction and disjunction are considered associative and
commutative. These are addressed similarly in the framework we discuss in this paper.
However, to reduce the latter source of ambiguity, we introduce the notion of basis of
graphical connectives.

Definition 10. A graphical connective C = ⟨VC,
C
⌢⟩ (with arity n = |VC|) is given by

a finite list of vertices VC = ⟨v1, . . . , vn⟩ and a non-reflexive symmetric edge relation
C
⌢ over the set of vertices occurring in VC. We denote by GC the graph corresponding
to C, that is, the graph GC = ⟨{v | v in VC},∅,

C
⌢⟩. The composition-via a graphical

connective is defined as the composition-via the graph GC . A graphical connective is
prime if GC is a prime graph. A set P of prime graphical connectives is a basis if for
each prime graph P there is a unique connective C ∈ P such that P ∼ GC .

Given an n-ary connective C, we define the group2 of symmetries of C (S(C)) and
the set of dualizing symmetries of C (S⊥(C)) as the following sets of permutations over
the set {1, . . . , n}:

S(C) B
{
σ | CLH1, . . . ,HnM = CLHσ(1), . . . ,Hσ(n)M

}
S⊥(C)B

{
σ | (CLH1, . . . ,HnM)⊥ = CLH⊥σ(1), . . . ,H

⊥
σ(n)M
} (for any H1, . . . ,Hn). (6)

We introduce the following graphical connectives:
`Lv1, v2M B ⟨⟨v1, v2⟩,∅⟩ = v1 v2 ⊗Lv1, v2M B ⟨⟨v1, v2⟩, {v1v2}⟩ = v1 v2

PnLv1, . . . , vnMB⟨⟨v1, . . . , vn⟩, {vivi+1 | i ∈ {1, . . . , n − 1}}⟩ = v1 v2 · · · vn

BullLv1, . . . , v5MB⟨⟨v1, . . . , v5⟩, {(v1v2, v2v3, v3v4, v5v2, v5v3)}⟩=
v1 v2 v3 v4

v5

(7)

We can reformulate the standard result on modular decomposition as follows.

Theorem 3. Let G be a non-empty graph and P a basis. Then there is a unique way (up
to symmetries of graphical connectives and associativity of ` and ⊗) to write G using
single-vertex graphs and the graphical connectives in P.

Corollary 1. Two graphs are isomorphic iff they admit a same modular decomposition.

2.4 Graphs as Formulas

In order to represent graphs as formulas, we define new connectives beyond conjunc-
tion and disjunction to represent graphical connectives in a basis P. From now on, we
assume to be fixed a basis P containing the graphical connectives in Equation (7).

2 It can be easily shown that Sn contains the identity permutation (denoted id) and is a subgroup
of the group of permutations over the set {1, . . . , n}.

8 M. Acclavio

Definition 11. The set of formulas is generated by the set of propositional atomsA, a
unit ◦, and a basis of graphical connective P using the following syntax:

ϕ1, . . . , ϕn B ◦ | a | a⊥ | κPLϕ1, . . . , ϕnPM with a ∈ A and P ∈ P (8)

We simply denote ` (resp. ⊗) the binary connective κ` (resp. κ⊗) and we write ϕ ` ψ
instead of κ`Lϕ, ψM (resp. ϕ⊗ψ instead of κ⊗Lϕ, ψM). The arity of the connective κP is
the arity nP of P. A literal is a formula of the form a or a⊥ for an atom a ∈ A. The set of
literals is denoted L. A formula is unit-free if it contains no occurrences of ◦ and vacu-
ous if it contains no atoms. A formula is pure if non-vacuous and such that its vacuous
subformulas are ◦. A MLL-formula is a formula containing only occurrences of con-
nectives ` and ⊗. A context formula (or simply context) ζ[□] is a formula containing
an hole □ taking the place of an atom. Given a context ζ[□], the formula ζ[ϕ] is defined
by simply replacing the atom □ with the formula ϕ. For example, if ζ[□] = ψ` (□⊗ χ),
then ζ[ϕ] = ψ` (ϕ⊗ χ).

For each ϕ formula (or context), the graph
[[
ϕ
]]

is defined as follows:

[[□]] = □ [[◦]] = ∅ [[a]] = a
[[
a⊥
]]
= a⊥

[[
κPLϕ1, . . . , ϕnM

]]
= P
(∣∣∣[[ϕ1
]]
, . . . ,

[[
ϕn
]]∣∣∣) (9)

Note 4. We may consider a formula ϕ over the set of occurrences of literals {x1, . . . , xn}

as a synthetic connective ϕ with arity n. That is, we may denote by ϕLψ1, . . . , ψnM the
formula obtained by replacing each literal xi (with i ∈ {1, . . . , n}) with a formula ψi. The
set of symmetries of ϕ (denoted S(ϕ)) is the set of permutations σ over {1, . . . , n} such
that
[[
ϕLx1, . . . , xnM

]]
=
[[
ϕLxσ(1), . . . , xσ(n)M

]]
.

Definition 12. The equivalence relation ≡ over formulas is generated by the following:

Equivalence laws


κPLϕ1, . . . , ϕnPM ≡ κPLϕσ(1), . . . , ϕσ(nP)M

ϕ⊗(ψ⊗ χ) ≡ (ϕ⊗ψ)⊗ χ
ϕ` (ψ` χ) ≡ (ϕ` ψ) ` χ

De-Morgan laws


◦⊥ ≡ ◦ ϕ⊥⊥ ≡ ϕ

only if S⊥(P) = ∅ :
(
κPLϕ1, . . . ϕnPM

)⊥
≡ κP⊥Lϕ⊥σ(1), . . . , ϕ

⊥
σ(nP)M

only if S⊥(P) , ∅ :
(
κPLϕ1, . . . ϕnPM

)⊥
≡ κPLϕ⊥ρ(1), . . . , ϕ

⊥
ρ(nP)M

for each P ∈ P (with arity nP = |VP|), and for each σ ∈ S(P) and ρ ∈ S⊥(P).
The (linear) negation over formulas is defined by letting

◦⊥ = ◦ and ϕ⊥⊥ = ϕ and
(
κPLϕ1, . . . , ϕnPM

)⊥
= κQLϕ⊥σ(1), . . . , ϕ

⊥
σ(nP)M

where Q is the (unique) prime connective in P such that we have
[[
κPLa1, . . . , anM

]]
=

QLa⊥σ(1), . . . , a
⊥
σ(n)M for a permutation σ over the set {1, . . . , n}. 3

The linear implication ϕ ⊸ ψ is defined as ϕ⊥ ` ψ, while the logical equivalence
ϕ� ψ is defined as (ϕ⊸ ψ)⊗(ψ⊸ ϕ).

3 Note that the permutation σ may be not unique. If we consider formulas up-to the equivalence
relation ≡, this is irrelevant. Otherwise, in the definition of the linear negation we should also
provide a specific permutation σP for each prime connective P ∈ P.

Sequent Systems on Undirected Graphs 9

Remark 4. As explained in [5] (Section 9), the graphical connectives we discuss in this
paper are multiplicative connectives (in the sense of [22,32,47,6]) but they are not the
same as the connectives-as-partitions discussed in these works. In fact, there is a unique
4-ary graphical connective P4, which has the symmetry group {id, (1, 4)(2, 3)}, while, as
shown in [47,6], there is a unique pair of dual non-decomposable (i.e., which cannot be
described using smaller connectives) 4-ary multiplicative connectives-as-partitions G4
and G⊥4 , and S(P4) ⊊ S(G4) = S(G⊥4).

The following result is a consequence of Theorem 2.

Proposition 2. Let ϕ and ψ be formulas. If ϕ ≡ ψ, then
[[
ϕ
]]
=
[[
ψ
]]
. Moreover, if ϕ and

ψ are unit-free, then ϕ ≡ ψ iff
[[
ϕ
]]
=
[[
ψ
]]
.

For an example of why the equivalence result does not hold in the presence of units,
consider the (non-equivalent) formulas ◦⊗ ◦ and ◦` ◦.

3 Sequent calculi over graphs-as-formulas

We assume the reader to be familiar with the definition of sequent calculus derivations
as trees of sequents (see, e.g., [61]) but we recall here some definitions.

Definition 13. A sequent is a set of occurrences of formulas. A sequent system S is a
set of sequent rules as the ones in Figure 2. A derivation (resp. open derivation) over
S is a tree of sequents such that each node (resp. each node except some leaves, called
open premises) is the conclusion of a rule with premises its children. In a sequent rule
r, we say that a formula is active (resp. principal) if it occurs in one of its premises
(resp. in its conclusion) but not in its conclusion (resp. but in none of its premises) A

proof of a sequent Γ is a derivation with root Γ denoted
π S

Γ
. We denote by

Γ′

π′ S

Γ
an open

derivation with conclusion Γ and a single open premise Γ′. A rule is admissible in S if
there is a derivation of the conclusion of the rule whenever all premises of the rule are
derivable. A rule is derivable in S, if there is a derivation in S from the premises to the
conclusion of the rule.

Definition 14. We define the following sequent systems using the rules axiom (ax), par
(`), tensor (⊗), weakening (w), contraction (c), mix (mix), dual connectives (d-κ)
unitor (uκ), and weak-distributivity (wd⊗) in Figure 2.

Multiplicative Graphical Logic : MGL = {ax,`,⊗, d-P | P ∈ P}
Multiplicative Graphical Logic with mix : MGL◦ = MGL ∪

{
mix,wd⊗, uκ

}
Classical Graphical Logic KGL = MGL ∪ {w, c}

(10)

Remark 5. Rules axiom (ax), par (`), tensor (⊗), cut (cut), and mix (mix) are the
standard as in multiplicative linear logic with mix. Note that ax is restricted to atomic
formulas. The rule d-κ handles a pair of dual connectives at the same time, as it may
be done by rules in focused proof systems (see, e.g.[9,51,50]) or rules for modalities

10 M. Acclavio

ax a ∈ A
⊢ a, a⊥

⊢ Γ, ϕ, ψ`
⊢ Γ, ϕ` ψ

⊢ Γ, ϕ ⊢ ψ, ∆
⊗

⊢ Γ, ϕ⊗ψ, ∆

⊢ Γ
w
⊢ Γ, ϕ

⊢ Γ1, ϕσ(1), ψτ(1) · · · ⊢ Γn, ϕσ(n), ψτ(n)
d-κ

σ ∈ S(κ)
τ ∈ S(κ⊥)⊢ Γ1, . . . , Γn, κLϕ1, . . . , ϕnM, κ⊥Lψ1, . . . ψnM

⊢ Γ, ϕ, ϕ
c
⊢ Γ, ϕ

⊢ Γ1 ⊢ Γ2
mix
⊢ Γ1, Γ2

⊢ Γ, ϕk ⊢ ∆, κLϕ1, . . . , ϕk−1, ◦, ϕk+1, . . . , ϕnM
wd⊗

⊢ Γ, ∆, κLϕ1, . . . , ϕnM
⊢ Γ, χLϕσ(1), . . . , ϕσ(n)M

uκ

σ ∈ S(χ)[[
κLϕ1, . . . , ϕk , ◦, ϕk+1, . . . , ϕnM

]]
=
[[
χLϕσ(1), . . . , ϕσ(n)M

]]
, ∅⊢ Γ, κLϕ1, . . . , ϕk, ◦, ϕk+1, . . . , ϕnM

Fig. 2. Sequent rules.

in modal logic and linear logic (see, e.g., [31,12,14,44]). Intuitively, while in standard
two-sided sequent calculi the right-conjunction rule (∧R below) internalizes a meta-
conjunction between the premises of the rule, that is,

Γ1, ϕ1 ⊢ ψ1, ∆1 “and” Γ2, ϕ2 ⊢ ψ2, ∆2
∧R

Γ1, Γ2, ϕ1, ϕ2 ⊢ ψ1 ∧ ψ2, ∆1, ∆2

(11)

the rule d-κ internalizes a meta-κ-connective between the premises by introducing the
same connective on both sides of the sequent, as shown below in the case κ = P4.

P4

(∣∣∣∣ Γ1, ϕ1 ⊢ ψ1, ∆1 , Γ2, ϕ2 ⊢ ψ2, ∆2 , Γ3, ϕ3 ⊢ ψ3, ∆3 , Γ4, ϕ4 ⊢ ψ4, ∆4

∣∣∣∣)
Γ1, Γ2, Γ3, Γ4, κP4Lϕ1, ϕ2, ϕ3, ϕ4M ⊢ κP4Lψ1, ψ2, ψ3, ψ4M, ∆1, ∆2, ∆3, ∆4

(12)

Note that in the rule ∧R in Equation (11) only a single occurrence of the connective ∧
occurs in the conclusion, on the right-hand side of ⊢. This because the absence of the
conjunction ∧ on the left-hand side is irrelevant since a two-sided sequent Γ ⊢ ∆ is
interpreted as the formula

(∧
ϕ∈Γ ϕ

⊥
)
∨
(∨

ψ∈∆ ψ
)
.

The names of the rules unitor (uκ) and weak-distributivity (wd⊗) are inspired by the
literature of monoidal categories [46] and weakly distributive categories [59,20,19].
The rule uκ internalizes the fact that the unit ◦ is the neutral element for all connectives
(its side condition prevents the creation of non-pure formulas). Under the assumption
of the existence of a ◦ which is the unit of both ⊗ and `, the rule wd⊗ generalizes the
weak-distributive law of the ⊗ over the `, that is,

ϕ⊗(ψ` χ) −→ (ϕ⊗ψ) ` χ (13)

to the weak-distributive law of ⊗ over any connective (see below on the top)

χ⊗ κLϕ1, . . . , ϕk, ψ, ϕk+1, . . . , ϕnM −→ κLϕ1, . . . , ϕk, ψ⊗ χ, ϕk+1, . . . , ϕnM
κLϕ1, . . . , ϕk, ψ` χ, ϕk+1, . . . , ϕnM −→ κLϕ1, . . . , ϕk, ψ, ϕk+1, . . . , ϕnM ` χ

(14)

Note that an additional law is required to formalize the weak-distributive law of all
connectives over ` (see the bottom of Equation (14)). This law corresponds to the rule
wd` in Figure 3.

Sequent Systems on Undirected Graphs 11

AX ϕ pure
⊢ ϕ, ϕ⊥

⊢ Γ1, ϕ ⊢ Γ2, ϕ
⊥

cut
⊢ Γ1, Γ2

⊢ Γ, κLϕ, ψ1, . . . , ψnM
wd` ϕ , ◦
⊢ Γ, κL◦, ψ1, . . . , ψnM, ϕ

⊢ Γ, ϕ ⊢ ∆, ψ
deep

[[
ζ[◦]
]]
=
[[
ψ
]]

⊢ Γ, ∆, ζ[ϕ]

⊢ Γ1, ϕσ(1), ψτ(1) · · · ⊢ Γn, ϕσ(n), ψτ(n)
d-χ

σ ∈ S(χ)
τ ∈ S(χ⊥)⊢ Γ1, . . . , Γn, χLϕ1, . . . , ϕnM, χ⊥Lψ1, . . . ψnM

Fig. 3. Admissible rules in MGL◦.

3.1 Properties of the sequent systems

We start by observing that these systems are initial coherent [10,50], that is, we can
derive the implication ϕ ⊸ ϕ for any pure formula ϕ only using atomic axioms. To
prove this result we observe that the generalized version of d-κ (that is, the rule d-χ) is
derivable by induction on the structure of χ using the rule d-κ

Lemma 1. Let χ be a pure formula. Then rule d-χ is derivable.

Corollary 2. The rule AX is derivable in MGL and in MGL◦.

Theorem 4. MGL, MGL◦, and KGL are initial coherent w.r.t. pure formulas.

The admissibility of cut is proven via cut-elimination.

Theorem 5. Let X ∈ {MGL,MGL◦,KGL}. The rule cut is admissible in X.

Proof. We define the size of a formula as the sum of the number of ◦, connectives
and twice the number of literals in it. The size of a derivation is the sum of the sizes
of the active formulas in all cut-rules. In Figure 4 we only provide the less standard
cut-elimination steps: the ones for ax, w, c, and ⊗ -vs-` are the standard ones, while
d-κ-vs-d-κ and uκ -vs-uκ (where both uκ rules introduce a ◦ in the same “position”) are
as expected, that is, by cutting each of the corresponding premises of the rules. The
result for MGL and MGL◦ follows by the fact that each cut-elimination step applied to
any cut-rule reduces the size of a derivation, while for KGL we have to consider also
weak-normalization result via a cut-elimination strategy prioritizing the elimination of
top-most cut-rules.

Note that to ensure that both active formulas of a cut-rule are principal with respect
to the rule immediately above it, we also need to consider among the standard com-
mutative cut-elimination steps (independent rule permutations) and the special step in
Figure 5. The treatment of these steps, as well as the definition of a size taking into
account them, is not covered in detail here because it is standard in the literature.

Corollary 3. Let X ∈ {MGL,MGL◦,KGL}. If ⊢X ϕ⊸ ψ and ⊢X ψ⊸ χ, then ⊢X ϕ⊸ χ.

The admissibility of the cut-rule implies analyticity of MGL and KGL via the stan-
dard sub-formula property, that is, all formulas occurring in a premise of a rule are
subformulas of the ones in the conclusion. However, as already observed in [4,5,3],
the same result does not hold for MGL◦ because the rule uκ and more-than-binary con-
nectives introduce the possibility of having sub-connectives, that is, connectives with
smaller arity behaving as if certain entries of the connective are fixed to be units.

12 M. Acclavio

⊢ Γ1, ϕ1 ⊢ Γ2, κPL◦, ϕ2, . . . , ϕnM
wd⊗

⊢ Γ1, Γ2, κPLϕ1, . . . , ϕnM
⊢ ∆1, ϕ

⊥
1 ⊢ ∆2, κP⊥L◦, ϕ⊥2 , . . . , ϕ

⊥
n M

wd⊗
⊢ ∆, κP⊥Lϕ⊥1 , . . . , ϕ

⊥
n M

cut
⊢ Γ1, Γ2, ∆1, ∆2

⇝

⊢ Γ1, ϕ1 ⊢ ∆1, ϕ
⊥
1

cut
⊢ Γ1, ∆1

⊢, Γ2, κPL◦, ϕ2, . . . ϕnM ⊢ ∆2, κP⊥L◦, ϕ⊥2 , . . . ϕ
⊥
n M

cut
⊢ Γ2, ∆2

mix
⊢ Γ1, Γ2, ∆1, ∆2

⊢ Γ1, ϕ1, ψ1 · · · ⊢ Γn, ϕn, ψn
d-κ
⊢ Γ1, . . . , Γn, κPLϕ1, . . . , ϕnM, κP⊥Lψ1, . . . , ψnM

⊢ ∆, ψ⊥1 ⊢ Σ, κPL◦, ψ⊥2 , . . . , ψ
⊥
n M

wd⊗
⊢ ∆, Σ, κPLψ⊥1 , . . . , ψ

⊥
n M

cut
⊢ Γ1, . . . , Γn, ∆, Σ, κPLϕ1, . . . , ϕnM

⇝

⊢ Γ1, ϕ1, ψ1 ⊢ ∆, ψ⊥1
cut

⊢ Γ1, ∆, ϕ1

⊢ Γ2, ϕ2, ψ2 · · · ⊢ Γn, ϕn, ψn
d-χ
⊢ Γ2, . . . , Γn, κχLϕ1, . . . , ϕnM, κ⊥χ Lψ1, . . . , ψnM

2×uκ
⊢ Γ2, . . . , Γn, κPL◦, ϕ1, . . . , ϕnM, κP⊥L◦, ψ1, . . . , ψnM ⊢ Σ, κPL◦, ψ⊥2 , . . . , ψ

⊥
n M

cut
⊢ Γ2, . . . , Γn, Σ, κPL◦, ϕ2, . . . , ϕnM

wd⊗
⊢ Γ1, . . . , Γn, ∆, Σ, κPLϕ1, . . . , ϕnM

Fig. 4. The cut-elimination steps for the structural rules.

⊢ Γ, χLϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕ j−1, ϕ j+1, . . . , ϕnM
uκ
⊢ Γ, κPLϕ1, . . . , ϕi−1, ◦, ϕi+1, . . . , ϕ j−1, ϕ j+1, . . . , ϕnM

uκ
⊢ ΓκPLϕ1, . . . , ϕi−1, ◦, ϕi+1, . . . , ϕ j−1, ◦, ϕ j+1, . . . , ϕnM

⇝

⊢ Γ, χLϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕ j−1, ϕ j+1, . . . , ϕnM
uκ
⊢ Γ, κP′Lϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕ j−1, ◦, ϕ j+1, . . . , ϕnM

uκ
⊢ Γ, κPLϕ1, . . . , ϕi−1, ◦, ϕi+1, . . . , ϕ j−1, ◦, ϕ j+1, . . . , ϕnM

Fig. 5. Special commutative cut-elimination step for uκ .

Definition 15. Let P and Q be prime graphs and let i1 < . . . < ik be integers in
{1, . . . , |P|}. If PL◦, . . . , ◦, vi1 , ◦, . . . , ◦, vik , ◦, . . . , ◦M ∼ QLv1, . . . , vnM for (any) single-
vertex graphs v1, . . . , vn, then we say that the connective κQ is a sub-connective of κP

and we may write κP|i1 ,...,ik = κQ. A quasi-subformula of a formula ϕ = κPLψ1, . . . , ψnM
is a formula of the form κP′ |i1 ,...,ik Lψ

′
i1
, . . . , ψ′ikM with ψ′i j

a quasi-subformula of ψi j for all
i j ∈ {i1, . . . , ik}.

Corollary 4 (Conservativity). MGL is a conservative extension of MLL = {ax,`,⊗}.
MGL◦ is a conservative extension of MLL◦ = {ax,`,⊗,mix}. KGL is a conservative
extension of LK = MLL ∪ {w, c}.

Proof. The results for MGL and KGL follow from the fact that these systems satisfy the
standard sub-formula property for cut-free derivations, therefore no connective other
than ` and ⊗ can be introduced during proof search. The result for MGL◦ follows from
the fact that it satisfies the quasi-subformula property (i.e., every formula in the premise
of a rule is a quasi-subformula a formula in its conclusion), and that ` and ⊗ have no
sub-connectives.

For both MGL and MGL◦ we have the following splitting result, ensuring that it
is always possible, during proof search, to apply a rule removing a connective after
having applied certain rules in the context. Note that, in the literature of linear logic, the

Sequent Systems on Undirected Graphs 13

⊢ Γ, ϕ, ψ`
⊢ Γ, ϕ` ψ

wd`
⊢ Γ, ϕ, ◦` ψ

⇝
⊢ Γ, ϕ, ψ

uκ
⊢ Γ, ϕ, ◦` ψ

⊢ Γ, ϕ ⊢ ∆, ψ
⊗

⊢ Γ, ∆, ϕ⊗ψ
wd⊗
⊢ Γ, ∆, ϕ, ◦⊗ψ

⇝

⊢ Γ, ϕ ⊢ ∆, ψ
mix
⊢ Γ, ∆, ϕ, ψ

uκ
⊢ Γ, ∆, ϕ, ◦⊗ψ

⊢ Γ, χLϕ, ψ2, . . . , ψn−1M
uκ
⊢ Γ, κLϕ, ψ2, . . . , ψn−1, ◦M

wd`
⊢ Γ, κL◦, ψ2, . . . , ψn−1, ◦M, ϕ

⇝

⊢ Γ, χLϕ, ψ2, . . . , ψn−1M
wd`
⊢ Γ, χL◦, ψ2, . . . , ψn−1M, ϕ

uκ
⊢ Γ, κL◦, ψ2, . . . , ψn−1, ◦M, ϕ

⊢ Γ1, ψk ⊢ Γ2, κLϕ, ψ2, . . . , ψk−1, ◦, ψk+1, . . . , ψnM
wd⊗

⊢ Γ1, Γ2, κLϕ, ψ2, . . . , ψnM
wd`
⊢ Γ1, Γ2, κL◦, ψ2, . . . , ψnM, ϕ

⇝

⊢ Γ1, ψ
′

⊢ Γ2, κLϕ, ψ2, . . . , ψk−1, ◦, ψk+1, . . . , ψnM
wd`
⊢ Γ2, κL◦, ψ2, . . . , ψk−1, ◦, ψk+1, . . . , ψnM, ϕ

wd⊗
⊢ Γ, κL◦, ψ2, . . . , ψk, ψ

′, ψk+1, . . . , ψnM, ϕ
⊢ Γ1, ϕ, ψ1 ⊢ Γ2, ϕ2, ψ2 · · · ⊢ Γn, ϕn, ψn

d-κ
⊢ Γ1, . . . , Γn, κ

⊥Lψ1, . . . , ψnM, κLϕ, ϕ2, . . . , ϕnM
wd`
⊢ Γ1, . . . , Γn, κ

⊥Lψ1, . . . , ψnM, κL◦, ϕ2, . . . , ϕnM, ϕ

⇝

⊢ Γ1, ϕ, ψ1

⊢ Γ2, ψ2, χ2 · · · ⊢ Γn, ψn, χn
d-χ
⊢ Γ2, . . . , Γn, χ

⊥Lψ2, . . . , ψnM, χLϕ2, . . . , ϕnM
2×uκ
⊢ Γ2, . . . , Γn, κ

⊥L◦, ψ1, . . . , ψnM, κL◦, ϕ2, . . . , ϕnM
wd⊗

⊢ Γ1, . . . , Γn, κ
⊥Lψ1, . . . , ψnM, κL◦, ϕ2, . . . , ϕnM, ϕ

Fig. 6. Steps to eliminate wd` rules.

splitting lemma is usually formulated as a special case of the next lemma, ensuring that
an occurrence of the connective ⊗ can be removed (by applying a ⊗-rule), but without
requiring the possibility of the need of applying rules to the context.

Lemma 2 (Splitting). Let Γ, κLϕ1, . . . , ϕnM be a sequent and let X ∈ {MGL,MGL◦}. If
⊢X Γ, κLϕ1, . . . , ϕnM, then there is a derivation of the following shape

π1

⊢ Γ′, χLϕ1, . . . , ϕk−1, ϕk+1, ϕnM
uκ
⊢ Γ′, κLϕ1, . . . , ϕk−1, ◦, ϕk+1, ϕnM

π0

⊢ Γ, κLϕ1, . . . , ϕk−1, ◦, ϕk+1, ϕnM

or

π1

⊢ ∆1, ϕ1 · · ·

πn

⊢ ∆n, ϕn
r
⊢ Γ′, κLϕ1, . . . , ϕnM

π0

⊢ Γ, κLϕ1, . . . , ϕnM

with r ∈ {`,⊗, d-κ} .

Proof. By case analysis of the last rule occurring in a proof π of Γ, κLϕ1, . . . , ϕnM.

We conclude this section by proving the admissibility of rules wd` and deep.

Lemma 3. The rule wd` is admissible in MGL◦.

14 M. Acclavio

⊢ Γ, ζ[ψ]
w↓
⊢ Γ, ζ[ψ` ϕ]

⊢ Γ, ζ[ϕ` ϕ]
c↓
⊢ Γ, ζ[ϕ]

⊢ Γ, ζ[a ` a]
ac↓

⊢ Γ, ζ[a]

⊢ Γ, ζ[PLϕ1, . . . , ϕnM ` PLψ1, . . . , ψnM]
m ` , P prime
⊢ Γ, ζ[PLϕ1 ` ψ1, . . . , ϕn ` ψnM]

Fig. 7. Deep inference structural rules, the atomic contraction and the generalized medial rule.

Proof. In Figure 6 we provide a procedure to remove (top-down) all occurrences of
wd`. Similar to cut-elimination, this procedure requires the use the commutative steps
to ensure that the active formula of a wd` we aim at removing is principal with respect
to the rule immediately above it.

Lemma 4. The rule deep is admissible in MGL◦.

Proof. By induction on the structure of ζ[□]. The case with ζ[□] = □ is an application
of wd⊗, otherwise we conclude using Lemma 2.

3.2 A decomposition result for KGL

We can extend the decomposition result for deep inference systems in the context of
classical logic [13,15] to KGL using the deep inference (structural) rules from Figure 7,
including the generalized medial rule proposed in [17].

Theorem 6 (Decomposition). Let Γ be a sequent. If ⊢KGL Γ, then:

1. there is a sequent Γ′ such that ⊢MGL Γ
′⊢{w↓,c↓} Γ

2. there are sequent Γ′, ∆′, and ∆ such that ⊢MGL Γ
′⊢{m} ∆

′⊢{ac↓} ∆⊢{w↓} Γ

Proof. The proof of Item 1 is immediate by replacing structural rules with deep ones,
and applying rule permutations. Item 2 is a consequence of the previous point after
showing (by induction) that each instance of c↓-rule can be replaced by a derivation
containing m and ac↓ only, and conclude by applying rule permutations to push ac-
rules below m-rules, and w↓ to the bottom of a derivation. For a reference, see [7].

4 Graph Isomorphism as Logical Equivalence

In this section we show that two pure formulas ϕ and ψ are interpreted by the same
graph (i.e.,

[[
ϕ
]]
=
[[
ψ
]]
) iff they are logically equivalent (i.e., ϕ� ψ).

Theorem 7. Let ϕ and ψ be formulas.

1. If ϕ and ψ are unit-free, then
[[
ϕ
]]
=
[[
ψ
]]

iff ⊢MGL ϕ� ψ.
2. If ϕ and ψ are pure, then

[[
ϕ
]]
=
[[
ψ
]]

iff ⊢MGL◦ ϕ� ψ.

Proof. After Proposition 2, to prove Item 1 it suffices to show that each De Morgan law
ϕ ≡ ψ in Definition 12 (with ϕ and ψ unit-free) corresponds to a logical equivalence
ϕ� ψ which is derivable in MGL. We then conclude by Corollary 3. To prove Item 2,
we first show that we can find unit-free formulas ϕ′ and ψ′ such that ϕ � ϕ′ and
ψ � ψ′ are derivable in MGL◦ (using AX, d-κ, and uκ only), and we then conclude
using the previous point.

Sequent Systems on Undirected Graphs 15

∅
ai↓

a⊥ ` a

(M1 ` N1)⊗ · · · ⊗ (Mn ` M′n)
p↓

P⊥LM1, . . . ,MnM ` PLM′1, . . . ,M
′
nM

PLM1, . . . ,Mi−1,Mi ` N,Mi+1, . . .MnM
s`

Mi ` PLM1, . . . ,Mi−1,N,Mi+1, . . . ,MnM
Mi ⊗ PLM1, . . . ,Mi−1,N,Mi+1, . . . ,MnM

s⊗
PLM1, . . . ,Mi−1,Mi ⊗N,Mi+1, . . . ,MnM

Fig. 8. Inference rules in GS, with P any prime graph and Mi , ∅ , M′i for all i ∈ {1, . . . , n}.

5 Soundness and Completeness of MGL◦ with respect to GS

In this section, we show that the graphical logic GS from [4,5], defined by a deep
inference system operating on graphs, is the set of graphs corresponding to formulas
that are provable in MGL◦. Note that we here consider the system GS = {ai↓, s`, s⊗, p↓}
defined by the rules in Figure 8, which have a slightly different formulation with respect
to [4] and [5]: we consider p-rules with a stronger side condition which is balanced by
the presence of s⊗ in the system.4

To prove the main result of this section, we use the admissibility of wd` and deep
(Lemmas 3 and 4) to prove that if H and G are graphs such that there is an application
of a rule s`, s⊗, or p↓ (even deep in a context) with premise H and conclusion G, then
there are formulas ϕ and ψ, with

[[
ϕ
]]
= H and

[[
ψ
]]
= G, such that ψ⊸ ϕ.

Lemma 5. Let r ∈ {s`, s⊗, p↓}. If
H

r
G

, then there are formulas ϕ and ψ with
[[
ϕ
]]
= G

and
[[
ψ
]]
= H such that ⊢MGL◦ ψ

⊥, ϕ.

Proof. If C[□] = □, then the following implications trivially hold in MGL◦:

κLµ1, . . . , µi−1, µi ` ν, µi+1, . . . µnM⊸ µi ` κLµ1, . . . , µi−1, ◦` ν, µi+1, . . . µnM
µi ⊗ κLµ1, . . . , µi−1, ◦⊗ ν, µi+1, . . . µnM⊸ κLµ1, . . . , µi−1, µi ⊗ ν, µi+1, . . . µnM

(µ1 ` ν1)⊗ · · · ⊗(µn ` νn)⊸ κP⊥Lµ1, . . . , µnM ` κPLν1, . . . , νnM

If C[□] = κPLC′[□],M1, . . . ,MnM , □, then we assume w.l.o.g., there is a context
formula ζ[□] = κPLζ′[□], µ1, . . . , µnM such that

[[
ζ[□]
]]
= C[□] and

[[
ζ′[□]

]]
= C′[□] .

We conclude since, by inductive hypothesis on C[□], there is a derivation as follows:

IH

⊢ (ζ′[ψ′])⊥ , ζ′[ϕ′]
AX
⊢ µ⊥1 , µ1 · · ·

AX
⊢ µ⊥n , µn

d-κ
⊢ κP⊥

(∣∣∣(ζ′[ψ′])⊥ , µ⊥1 , . . . , µ⊥n ∣∣∣) , κP

(∣∣∣ζ′[ϕ′], µ1, . . . , µn
∣∣∣) .

We are now able to prove the main result of this section, that is, establishing a
correspondence between graphs provable in GS and graphs which are the image via [[·]]
of formulas provable in MGL◦.

Theorem 8. Let ϕ a pure formula and let G =
[[
ϕ
]]
, ∅. Then ⊢GS G iff ⊢MGL◦ ϕ.

4 The proof that the formulation we consider in this paper, where all factors Mi and Ni are
required to be non-empty is equivalent to the ones in the literature, where is either asked that
only all factors Mi (as in [5]) or Mi ` Ni (as in [4]) are non-empty, is provided in [2].

16 M. Acclavio

Proof. If there is a derivation π of Γ in MGL◦, then we define a derivation [[π]] of [[Γ]] in
GS by induction by induction on the last rule r in π. The translation translates a ax into
an instance of ai↓, a `, mix and uκ into no rule (using properties of the open deduction
formalism, and the fact premise and conclusion sequents correspond to the same graph),
⊗ and d-κ into an instance of p↓, and wd⊗ into an instance of p↓.

Conversely, if D is a proof of G , ∅ in GS, then we define a proof πD of ϕ by
induction on the number n of rules inD, where n , 0 because we are assuming G , ∅.

– If n = 1, then G = a ` a⊥ and πD =
ax
⊢ a, a⊥`
⊢ a ` a⊥

.

– If n > 1, then the derivation D is of the form D =
D′

H
r

G

and by inductive hy-

pothesis we have a proof πD′ of a formula ψ such that
[[
ψ
]]
= H. If r ∈ {s`, s⊗, p↓},

then by Lemma 5 we have a derivation with cut as the one below on the left of a
formula ϕ such that

[[
ϕ
]]
= G. Thus we conclude by Theorem 5.

IH

ψ
Lemma 5

⊢ ψ⊥, ϕ
cut

⊢ ϕ

Theorem 5
⇝∗

MGL◦

ϕ

ax
⊢ a, a⊥`
⊢ a ` a⊥

πD′ IH

ψ
deep

⊢ ζ[a ` a⊥]
=

⊢ ϕ

Otherwise r = ai↓, then it must have been applied deep inside a context C[□] =[[
ζ[□]
]]
, □ such that C[∅] = H =

[[
ψ
]]
. Therefore ϕ = ζ[a ` a⊥]. We conclude by

applying Lemma 4 to the derivation above on the right.

Remark 6. In a different line of work [17] the authors define the boolean graphical
logic (or GBL), as a graphical logic conservatively extending LK defined by maximal-
clique-preserving graph morphisms. As a consequence of Corollary 4 and theorem 8,
we conclude that KGL and GBL are not the same since the following counterexample
from [5] (for GS) is in GBL but not in KGL b c⊥

a b⊥
c a⊥

.

6 Conclusion and Future Works

In this paper we have provided foundations for the design of proof systems operating on
graphs by defining graphical connectives, a class of logical operators generalizing the
classical conjunction and disjunction, and whose semantics is solely defined by their
interpretation as prime graphs. We introduced cut-free sequent calculi operating on for-
mulas containing graphical connectives, where graph isomorphism can be captured by
logical equivalence. We also discussed the relationship of these systems with graphical
logics studied in the literature [4,5,17].

We illustrate below a number of future research directions originating from this
work different from the suggestions of the respective authors of using the graphical
logic GS to extend the works in [11,49,18], where the authors suggest the possibility

Sequent Systems on Undirected Graphs 17

b⊥ a⊥ a b
` ⊗

b⊥ ` a⊥ a⊗ b

ax

ax

b⊥ a⊥ a b
o` o⊗

r` r⊗

c⊥ a⊥ d⊥ b⊥

oP⊥4

rP⊥4

a b c d

oP4

rP4

Fig. 9. On the left: the same proof net in the original Girard’s syntax and Retoré’s one. On
the right: an RB-proof net of κP4La, b, c, dM ⊸ κP4La, b, c, dM containing the chorded æ-cycle
a · b · b⊥ · d⊥ · d · c · c⊥ · a⊥.

of extending their current results by generalizing their methods based on “classical”
formulas to graphs.
Categorical Semantics. Unit-free star-autonomous and IsoMix categories [19,20] pro-
vide categorical models of MLL and MLL◦ respectively. We conjecture that categorical
models for MGL and MGL◦ can be defined by enriching such structures with addi-
tional n-ary monoidal products and natural transformations, reflecting the symmetries
observed in the symmetry groups of prime graphs.
Digraphs, Games and Event Structures. In this work we have extended the corre-
spondence between classical propositional and cographs from [21] to the case of gen-
eral (undirected) graphs using graphical connectives, and the same idea can be found
in [3] where mixed graphs generalize relation webs used to encode BV-formulas [33].
Similarly, we foresee the definition of proof systems operating on directed graphs as
conservative extensions of intuitionistic propositional logic beyond arenas – directed
graphs used in Hyland-Ong game semantics [40] to encode propositional intuitionistic
formulas, which are characterized by the absence of induced subgraphs of a specific
shape. This would provide new insights on the proof theory connected to concurrent
games [1,58,64], and could be used to define automated tools operating on event struc-
tures [55].
Proof nets and automated proof search. We plan to design proof nets [29,22,30] for
MGL and MGL◦, as well as combinatorial proofs [39,38] for KGL. For this purpose,
we envisage extending Retoré’s handsome proof net syntax, where proof nets are rep-
resented by two-colored graphs (see the left of Figure 9). In Retoré’s syntax, the graph
induced by the vertices corresponding to the inputs of a `-gate (or a ⊗-gate) is similar
to the corresponding prime graph ` (resp. ⊗). Thus, gates for graphical connectives
could be easily defined by extending this correspondence (see the proof net on the right
of Figure 9). The standard correctness condition defined via acyclicity fails for these
proof nets, as shown in the right-hand side of Figure 9: the (correct) proof-net of the
sequent P4La, b, c, dM ⊸ P4La, b, c, dM contains a cycle. We foresee the possibility of
using results on the primeval decomposition of graphs [42,37] to isolate those cycles
witnessing unsoundness, as proposed in [52]. This may provide a methodology to de-
velop machine-learning guided automated theorem provers using the methods in [43].

Acknowledgments

The author thanks the anonymous reviewers for the feedback which helped improve the
final version of this manuscript.

18 M. Acclavio

References

1. Abramsky, S., Mellies, P.A.: Concurrent games and full completeness. In: Proceedings. 14th
Symposium on Logic in Computer Science (Cat. No. PR00158). pp. 431–442. IEEE (1999)

2. Acclavio, M.: Graphical proof theory I: Sequent systems on undirected graphs (2023)
3. Acclavio, M., Horne, R., Mauw, S., Straßburger, L.: A Graphical Proof Theory of Log-

ical Time. In: Felty, A.P. (ed.) 7th International Conference on Formal Structures for
Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 228, pp. 22:1–22:25. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.FSCD.2022.22,
https://drops.dagstuhl.de/opus/volltexte/2022/16303

4. Acclavio, M., Horne, R., Straßburger, L.: Logic beyond formulas: A proof system on graphs.
In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence. p. 38–52. LICS ’20, Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3373718.3394763, https://doi.org/10.1145/
3373718.3394763

5. Acclavio, M., Horne, R., Straßburger, L.: An Analytic Propositional Proof System on Graphs.
Logical Methods in Computer Science Volume 18, Issue 4 (Oct 2022). https://doi.org/
10.46298/lmcs-18(4:1)2022, https://lmcs.episciences.org/10186

6. Acclavio, M., Maieli, R.: Generalized connectives for multiplicative linear logic. In: Fernán-
dez, M., Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer Science Logic
(CSL 2020). LIPIcs, vol. 152, pp. 6:1–6:16. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.CSL.2020.6,
https://drops.dagstuhl.de/opus/volltexte/2020/11649

7. Acclavio, M., Straßburger, L.: From syntactic proofs to combinatorial proofs. In: Galmiche,
D., Schulz, S., Sebastiani, R. (eds.) Automated Reasoning - 9th International Joint Confer-
ence, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings. vol. 10900, pp. 481–497. Springer (2018)

8. Aler Tubella, A., Straßburger, L.: Introduction to Deep Inference (Aug 2019), https://
hal.inria.fr/hal-02390267, lecture

9. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation 2(3), 297–347 (1992)

10. Avron, A., Lev, I.: Canonical propositional Gentzen-type systems. In: Goré, R., Leitsch, A.,
Nipkow, T. (eds.) Automated Reasoning. pp. 529–544. Springer Berlin Heidelberg, Berlin,
Heidelberg (2001)

11. Bellandi, V., Frati, F., Siccardi, S., Zuccotti, F.: Management of uncertain data in event
graphs. In: Ciucci, D., Couso, I., Medina, J., Ślęzak, D., Petturiti, D., Bouchon-Meunier, B.,
Yager, R.R. (eds.) Information Processing and Management of Uncertainty in Knowledge-
Based Systems. pp. 568–580. Springer International Publishing, Cham (2022)

12. Blackburn, P., De Rijke, M., Venema, Y.: Modal logic: graph. Darst, vol. 53. Cambridge
University Press (2001)

13. Brünnler, K.: Locality for classical logic. Notre Dame Journal of Formal Logic 47(4), 557–
580 (2006), http://www.iam.unibe.ch/~kai/Papers/LocalityClassical.pdf

14. Brünnler, K., Straßburger, L.: Modular sequent systems for modal logic. In: Giese, M.,
Waaler, A. (eds.) Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX’09. Lecture Notes in Computer Science, vol. 5607, pp. 152–166. Springer
(2009)

15. Bruscoli, P., Straßburger, L.: On the length of medial-switch-mix derivations. In: Kennedy, J.,
de Queiroz, R.J.G.B. (eds.) Logic, Language, Information, and Computation - 24th Interna-
tional Workshop, WoLLIC 2017, London, UK, July 18-21, 2017, Proceedings. Lecture Notes

https://doi.org/10.4230/LIPIcs.FSCD.2022.22
https://doi.org/10.4230/LIPIcs.FSCD.2022.22
https://drops.dagstuhl.de/opus/volltexte/2022/16303
https://doi.org/10.1145/3373718.3394763
https://doi.org/10.1145/3373718.3394763
https://doi.org/10.1145/3373718.3394763
https://doi.org/10.1145/3373718.3394763
https://doi.org/10.46298/lmcs-18(4:1)2022
https://doi.org/10.46298/lmcs-18(4:1)2022
https://doi.org/10.46298/lmcs-18(4:1)2022
https://doi.org/10.46298/lmcs-18(4:1)2022
https://lmcs.episciences.org/10186
https://doi.org/10.4230/LIPIcs.CSL.2020.6
https://doi.org/10.4230/LIPIcs.CSL.2020.6
https://drops.dagstuhl.de/opus/volltexte/2020/11649
https://hal.inria.fr/hal-02390267
https://hal.inria.fr/hal-02390267
http://www.iam.unibe.ch/~kai/Papers/LocalityClassical.pdf

Sequent Systems on Undirected Graphs 19

in Computer Science, vol. 10388, pp. 68–79. Springer (2017). https://doi.org/10.
1007/978-3-662-55386-2_5, https://doi.org/10.1007/978-3-662-55386-2_5

16. Calk, C.: A graph theoretical extension of boolean logic (2016), http://www.anupamdas.
com/graph-bool.pdf, bachelor’s thesis

17. Calk, C., Das, A., Waring, T.: Beyond formulas-as-cographs: an extension of boolean logic
to arbitrary graphs (2020)

18. Chaudhuri, K., Donato, P., Massacci, L., Werner, B.: Certifying Proof-By-Linking (Sep
2022), https://inria.hal.science/hal-04317972, working paper or preprint

19. Cockett, J., Seely, R.: Proof theory for full intuitionistic linear logic, bilinear logic, and mix
categories. Theory and Applications of Categories 3(5), 85–131 (1997)

20. Cockett, J., Seely, R.: Weakly distributive categories. J. of Pure and Applied Algebra 114,
133–173 (1997)

21. Corneil, D., Lerchs, H., Burlingham, L.: Complement reducible graphs. Dis-
crete Applied Mathematics 3(3), 163–174 (1981). https://doi.org/https:
//doi.org/10.1016/0166-218X(81)90013-5, https://www.sciencedirect.
com/science/article/pii/0166218X81900135

22. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical logic
28(3), 181–203 (1989). https://doi.org/10.1007/BF01622878

23. Das, A.: Complexity of evaluation and entailment in boolean graph logic (2019), http:
//www.anupamdas.com/complexity-graph-bool-note.pdf, preprint

24. Das, A., Rice, A.A.: New minimal linear inferences in boolean logic independent of switch
and medial. In: Kobayashi, N. (ed.) 6th International Conference on Formal Structures for
Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Vir-
tual Conference). LIPIcs, vol. 195, pp. 14:1–14:19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021). https://doi.org/10.4230/LIPIcs.FSCD.2021.14, https://
doi.org/10.4230/LIPIcs.FSCD.2021.14

25. Deniélou, P.M., Yoshida, N.: Buffered communication analysis in distributed multiparty ses-
sions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010 - Concurrency Theory. pp. 343–
357. Springer, Berlin, Heidelberg (2010)

26. Ehrenfeucht, A., Harju, T., Rozenberg, G.: The Theory of 2-Structures A Framework for De-
composition and Transformation of Graphs. World Scientific (1999). https://doi.org/
10.1142/4197

27. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: Proceedings of the
13th international conference on World Wide Web. pp. 621–630. ACM (2004)

28. Gallai, T.: Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hun-
garica 18(1–2), 25–66 (1967)

29. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

30. Girard, J.Y.: Proof-nets : the parallel syntax for proof-theory. In: Ursini, A., Agliano, P. (eds.)
Logic and Algebra. Marcel Dekker, New York (1996)

31. Girard, J.Y.: Light linear logic. Information and Computation 143, 175–204 (1998)
32. Girard, J.Y.: On the meaning of logical rules II: multiplicatives and additives. NATO ASI

Series F: Computer and Systems Sciences 175, 183–212 (2000)
33. Guglielmi, A.: A system of interaction and structure. ACM Transactions on Computational

Logic 8(1), 1–64 (2007). https://doi.org/10.1145/1182613.1182614
34. Guglielmi, A., Gundersen, T., Parigot, M.: A proof calculus which reduces syntactic

bureaucracy. In: Lynch, C. (ed.) Proceedings of the 21st International Conference on
Rewriting Techniques and Applications. LIPIcs, vol. 6, pp. 135–150. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2010). https://doi.org/10.
4230/LIPIcs.RTA.2010.135, http://drops.dagstuhl.de/opus/volltexte/2010/
2649

https://doi.org/10.1007/978-3-662-55386-2_5
https://doi.org/10.1007/978-3-662-55386-2_5
https://doi.org/10.1007/978-3-662-55386-2_5
https://doi.org/10.1007/978-3-662-55386-2_5
https://doi.org/10.1007/978-3-662-55386-2_5
http://www.anupamdas.com/graph-bool.pdf
http://www.anupamdas.com/graph-bool.pdf
https://inria.hal.science/hal-04317972
https://doi.org/https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/https://doi.org/10.1016/0166-218X(81)90013-5
https://www.sciencedirect.com/science/article/pii/0166218X81900135
https://www.sciencedirect.com/science/article/pii/0166218X81900135
https://doi.org/10.1007/BF01622878
https://doi.org/10.1007/BF01622878
http://www.anupamdas.com/complexity-graph-bool-note.pdf
http://www.anupamdas.com/complexity-graph-bool-note.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2021.14
https://doi.org/10.4230/LIPIcs.FSCD.2021.14
https://doi.org/10.4230/LIPIcs.FSCD.2021.14
https://doi.org/10.4230/LIPIcs.FSCD.2021.14
https://doi.org/10.1142/4197
https://doi.org/10.1142/4197
https://doi.org/10.1142/4197
https://doi.org/10.1142/4197
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.1145/1182613.1182614
https://doi.org/10.4230/LIPIcs.RTA.2010.135
https://doi.org/10.4230/LIPIcs.RTA.2010.135
https://doi.org/10.4230/LIPIcs.RTA.2010.135
https://doi.org/10.4230/LIPIcs.RTA.2010.135
http://drops.dagstuhl.de/opus/volltexte/2010/2649
http://drops.dagstuhl.de/opus/volltexte/2010/2649

20 M. Acclavio

35. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decompo-
sition. Computer Science Review 4(1), 41–59 (2010). https://doi.org/https:
//doi.org/10.1016/j.cosrev.2010.01.001, https://www.sciencedirect.com/
science/article/pii/S157401371000002X

36. van Heerdt, G., Kappé, T., Rot, J., Silva, A.: Learning pomset automata. In: Kiefer, S., Tas-
son, C. (eds.) Foundations of Software Science and Computation Structures. pp. 510–530.
Springer International Publishing, Cham (2021)

37. Hougardy, S.: On the P4-structure of perfect graphs. Citeseer (1996)
38. Hughes, D.: Proofs Without Syntax. Annals of Mathematics 164(3), 1065–1076 (2006).
https://doi.org/10.4007/annals.2006.164.1065

39. Hughes, D.: Towards Hilbert’s 24th problem: Combinatorial proof invariants: (preliminary
version). Electr. Notes Theor. Comput. Sci. 165, 37–63 (2006)

40. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I. Models, observables and the
full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and
universal game model. Information and Computation 163, 285–408 (2000)

41. James, L.O., Stanton, R.G., Cowan, D.D.: Graph decomposition for undirected graphs. In:
Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory, and
Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972). pp. 281–290 (1972)

42. Jamison, B., Olariu, S.: P-components and the homogeneous decomposition of graphs. SIAM
Journal on Discrete Mathematics 8(3), 448–463 (1995)

43. Kogkalidis, K., Moortgat, M., Moot, R.: Neural proof nets. In: Fernández, R., Linzen, T.
(eds.) Proceedings of the 24th Conference on Computational Natural Language Learning. pp.
26–40. Association for Computational Linguistics, Online (Nov 2020). https://doi.org/
10.18653/v1/2020.conll-1.3, https://aclanthology.org/2020.conll-1.3

44. Lellmann, B., Pimentel, E.: Modularisation of sequent calculi for normal and non-normal
modalities. ACM Trans. Comput. Logic 20(2) (feb 2019). https://doi.org/10.1145/
3288757, https://doi.org/10.1145/3288757

45. Lovász, L., Plummer, M.D.: Matching theory, vol. 367. American Mathematical Soc. (2009)
46. Mac Lane, S.: Categories for the Working Mathematician. No. 5 in Graduate Texts in Math-

ematics, Springer (1971)
47. Maieli, R.: Non decomposable connectives of linear logic. Annals of Pure and

Applied Logic 170(11), 102709 (2019). https://doi.org/https://doi.org/10.
1016/j.apal.2019.05.006, http://www.sciencedirect.com/science/article/
pii/S0168007219300600

48. McConnell, R.M., Spinrad, J.P.: Linear-time modular decomposition and efficient transitive
orientation of comparability graphs. In: Proceedings of the Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. pp. 536–545. SODA ’94, Society for Industrial and Applied
Mathematics, USA (1994)

49. Mell, S., Bastani, O., Zdancewic, S.: Ideograph: A language for expressing and manipu-
lating structured data. In: Grabmayer, C. (ed.) Proceedings Twelfth International Workshop
on Computing with Terms and Graphs, TERMGRAPH@FSCD 2022, Technion, Haifa, Is-
rael, 1st August 2022. EPTCS, vol. 377, pp. 65–84 (2022). https://doi.org/10.4204/
EPTCS.377.4, https://doi.org/10.4204/EPTCS.377.4

50. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems.
Theoretical Computer Science 474, 98–116 (2013)

51. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focalization in lin-
ear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007: Computer Science Logic. LNCS,
vol. 4646, pp. 405–419. Springer-Verlag (2007)

52. Nguyên, L.T.D., Seiller, T.: Coherent interaction graphs: A non-deterministic geometry of
interaction for mll (2019)

https://doi.org/https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/https://doi.org/10.1016/j.cosrev.2010.01.001
https://www.sciencedirect.com/science/article/pii/S157401371000002X
https://www.sciencedirect.com/science/article/pii/S157401371000002X
https://doi.org/10.4007/annals.2006.164.1065
https://doi.org/10.4007/annals.2006.164.1065
https://doi.org/10.18653/v1/2020.conll-1.3
https://doi.org/10.18653/v1/2020.conll-1.3
https://doi.org/10.18653/v1/2020.conll-1.3
https://doi.org/10.18653/v1/2020.conll-1.3
https://aclanthology.org/2020.conll-1.3
https://doi.org/10.1145/3288757
https://doi.org/10.1145/3288757
https://doi.org/10.1145/3288757
https://doi.org/10.1145/3288757
https://doi.org/10.1145/3288757
https://doi.org/https://doi.org/10.1016/j.apal.2019.05.006
https://doi.org/https://doi.org/10.1016/j.apal.2019.05.006
https://doi.org/https://doi.org/10.1016/j.apal.2019.05.006
https://doi.org/https://doi.org/10.1016/j.apal.2019.05.006
http://www.sciencedirect.com/science/article/pii/S0168007219300600
http://www.sciencedirect.com/science/article/pii/S0168007219300600
https://doi.org/10.4204/EPTCS.377.4
https://doi.org/10.4204/EPTCS.377.4
https://doi.org/10.4204/EPTCS.377.4
https://doi.org/10.4204/EPTCS.377.4
https://doi.org/10.4204/EPTCS.377.4

Sequent Systems on Undirected Graphs 21

53. Nguyên, L.T.D., Straßburger, L.: A System of Interaction and Structure III: The Complexity
of BV and Pomset Logic (2022), https://hal.inria.fr/hal-03909547, working paper
or preprint

54. Nguyên, L.T.D., Straßburger, L.: BV and Pomset Logic are not the same. In:
Manea, F., Simpson, A. (eds.) 30th EACSL Annual Conference on Computer Sci-
ence Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 216, pp. 3:1–3:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2022). https://doi.org/10.4230/LIPIcs.CSL.2022.3, https://drops.
dagstuhl.de/opus/volltexte/2022/15723

55. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains, part i. Theo-
retical Computer Science 13(1), 85–108 (1981)

56. Pratt, V.: Modeling concurrency with partial orders. International journal of parallel pro-
gramming 15, 33–71 (1986)

57. Retoré, C.: Pomset logic: The other approach to noncommutativity in logic. Joachim Lam-
bek: The Interplay of Mathematics, Logic, and Linguistics pp. 299–345 (2021)

58. Rideau, S., Winskel, G.: Concurrent strategies. In: 2011 IEEE 26th Annual Symposium on
Logic in Computer Science. pp. 409–418. IEEE (2011)

59. Seely, R.: Linear logic, *-autonomous categories and cofree coalgebras. Contemporary
Mathematics 92 (1989)

60. Tiu, A.F.: A system of interaction and structure II: The need for deep inference. Log-
ical Methods in Computer Science 2(2), 1–24 (2006). https://doi.org/10.2168/
LMCS-2(2:4)2006

61. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, sec-
ond edn. (2000)

62. Valdes, J., Tarjan, R.E., Lawler, E.L.: The recognition of series parallel digraphs. In: Pro-
ceedings of the eleventh annual ACM symposium on Theory of computing. pp. 1–12. ACM
(1979)

63. Waring, T.: A graph theoretic extension of boolean logic (2019), http://anupamdas.com/
thesis_tim-waring.pdf, master’s thesis

64. Winskel, G., Rideau, S., Clairambault, P., Castellan, S.: Games and strategies as event struc-
tures. Logical Methods in Computer Science 13 (2017)

https://hal.inria.fr/hal-03909547
https://doi.org/10.4230/LIPIcs.CSL.2022.3
https://doi.org/10.4230/LIPIcs.CSL.2022.3
https://drops.dagstuhl.de/opus/volltexte/2022/15723
https://drops.dagstuhl.de/opus/volltexte/2022/15723
https://doi.org/10.2168/LMCS-2(2:4)2006
https://doi.org/10.2168/LMCS-2(2:4)2006
https://doi.org/10.2168/LMCS-2(2:4)2006
https://doi.org/10.2168/LMCS-2(2:4)2006
http://anupamdas.com/thesis_tim-waring.pdf
http://anupamdas.com/thesis_tim-waring.pdf

	Sequent Systems on Undirected Graphs

