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Handsome proof nets were introduced by Retoré as a syntax for multiplicative linear logic. These
proof nets are defined by means of cographs (graphs representing formulas) equipped with a perfect
matching satisfying simple topological conditions. Hughes’ combinatorial proofs – a proof system
for classical logic able to capture proof equivalence – are defined as specific graph homomorphisms
from a cographic proof net to a cograph.

Using the tools developed to formalize combinatorial proofs for modal logic, in this paper we
extend Retoré’s handsome proof nets to multiplicative linear logic with units and exponentials. This
provides a sound and complete proof system, which captures a large portion of proof equivalence.

1 Introduction

One of the novelties introduced by linear logic [9] was the syntax of the proof nets. Proof nets are a
graphical syntax [18, 19] for linear logic proofs, and capture proof equivalence for the multiplicative
fragment of linear logic (denoted MLL). This means that if two MLL derivations are equivalent modulo
rules permutations the two derivation can be encoded by the same proof net. The permutation considered
are those switching the order of independent rules. Moreover, proof nets are a proof system (in the sense
of [6]) for MLL since it is possible to check if a graph represents a correct derivation in polynomial time
with respect to the size of the graph. This test can be conducted by means of a topological criterion, often
refereed to as correctness criterion [7, 11, 27].

Several extensions of this syntax have been proposed to cover multiplicative linear logic with units
(MLLu) or with exponentials (MELL), but none of them can be considered to be fully satisfactory. In
presence of units, the correctness criterion requires to add additional edges, called jumps, to a proof
net in order to associate each unit K to an axiom or an unit 1 [15]. The same problem occurs in the
exponential fragment due to the presence the weakening rule. The presence of the promotion rule in the
exponential fragment poses an additional difficulty. Since the rule is context-sensitive, then the syntax
requires the introduction of the so called boxes to delimit graph portions [25, 21, 22, 2, 1].
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ā b̄ ba b̄ b

?
dd̄ O�

�

� a ā b̄ b b̄ b
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? ! ? ? ! ?

c a ā b̄ b b̄ b
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? ! ? ? ! ?

Figure 1: A proof net with jumps and its equivalent handsome proof net.
The quest for a satisfactory syntax extending proof nets for MLL has come to an end after [14], in

which it is shown that it is not possible to have at the same time a syntax capturing the whole MLLu proof
equivalence and a polynomial correctness criterion, unless P� NP. The same problem arises in MELL.
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2 Exponentially Handsome Proof Nets
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Figure 2: The Sequent calculus rules, the cut-rule and the deep inference rules for dereliction and dig-
ging, ?-contraction and ?-weakening

X MLL MLLu MELL

Xseq tax,O,�u tax,O,�,1,Ku tax,O,�, !p,der?,w?,c?,1,Ku
X j Xseq tax j,1 j,O,�u tax j,1 j,K

j,wj,O,�,s!p,der?,dig?,c?u
XLL tax,O,�u tax j,1 j,O,�u tax j,1 j,O,�,s!pu
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Ó
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Figure 3: Rules systems for MLL, MLLu and MELL

In this paper we present a syntax for MLLu and MELL by means of combinatorial proofs [16, 17,
28]. For this purpose, in Section 2 we prove a decomposition theorem for MELL using deep inference
rules [12, 13, 5]. Thanks to this result, we are able to construct proofs with a linear part and a resource
management part. In absence of units or exponentials, the linear part can be represented by Retoré’s
“handsome” proof nets [27]. These proof nets are cographs (graphs representing formulas) equipped with
a perfect matching (representing axiom links). In Section 3 we define relation webs, which generalize
cographs, to encode formulas with modalities. In Section 4 we extend Retoré’s proof nets to relation webs
with matching, called RGB-cographs, which encode the linear part of a MELL proof, i.e., axioms rules,
(soft) promotions and logic connectives. In Section 5 we define the MELL fibrations which take care
of representing the resource management part of our proofs, which is the part of the proof containing
weakenings, contractions, derelictions and diggings. In Section 6 we define combinatorial proofs as
MELL fibrations from an RGB-cograph to a relation web. Finally, in Section 7, we define handsome
proof nets for MELL as compositions of combinatorial proofs by means of cut.

2 Sequent Calculus and Calculus of Structures

We define formulas in negation normal form generated from a countable set of propositional variables
A � ta,b, . . .u and their duals ¯A � tā, b̄, . . .u by the following grammar:

A,B ::� a | ā | AOB | A�B | !A | ?A | K | 1 | �

Linear negation �̄ is defined on formulas through the De Morgan laws: A � A, A�B � AOB, !A � ?Ā,
1̄ � K, �̄ � �. A sequent Γ � A1, . . . ,An is a non-empty multiset of formulas. The meaning of � will be
explained later in this section. Untill then, it can be interpreted as a placeholder.

In this paper we consider the consider the multiplicative linear logic and its extensions with units and
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Figure 4: The proof equivalence � in MELL is defined by all ρ,ρ 1,τ P tO,K,w?,c?,der?u.

exponentials1 denoted respectively by MLL, MLLu and MELL [9]. We define the sequent calculus rules
in Figure 2 and a (cut-free) sequent system Xseq for each X P tMLL,MLLu,MELLu in the first three lines

of Figure 3. We say that a formula F is provable in X (denoted by
X

F) if there is a derivation of F in
the system Xseq.

In MELL, the rules permutations in Figure 4 generate the equivalence relation� between derivations.
This notion of proof equivalence is needed to prove the cut-elimination theorem for MELL [9]. However,
as shown in [14], the rule permutation in Figure 4 with τ � K makes the complexity of checking proof
equivalence in MLLu non-polynomial. The same argument applies to MELL for τ �w?. As consequence,
we cannot design a syntax S for MELL satisfying the two following desiderata:

• correctedness in S can be checked in polynomial time, i.e., we can check in polynomial time if
an object expressed in the syntax S represents a correct proof in MELL;

• S captures proof equivalence, that is, if JπK and Jπ 1K are the encodings in S of two derivations π

and π 1 in MELLseq and π � π 1, then JπK� Jπ 1K.

The complexity of checking proof equivalence depends on the fact that each w? andK can be assigned
to an instance of ax or a 1 by permuting them upwards in a derivation (this assignation is called a jump).
Since � allows to change such assignations, the equivalence check has to test all possible jumps, and the
number of jumps is exponential with respect to the number of K- and w?-instances.

Since we cannot aspire to capture the whole proof equivalence �, in order to have a polynomial
correctedness criterion complexity in our syntax, we define the fixed-jump equivalence (denoted by �J)
by fixing in a derivation π a jump for eachK- and w?-instance2. To keep track of jumps, we introduce the
rules ax j and 1 j, where ax j � taxn

j | n P Nu and 1 j � t1n
j | n P Nu, together with Kj and wj. These rules

allow to assign to each ax (or 1) a bunch of jump placeholders denoted by �, by using the rule ax j. Each
placeholder is further used by a single K- and w?-rule instance application. We define sequent calculi
X j for each X P tMLL,MLLu,MELLu in Figure 3. In MELLj we replace the promotion rule !p with the
soft promotion rule [20] s!p together with the digging rule dig?. Soft promotion allows to group the !
introduced by a promotion with all the ? of its context formula.

Proposition 1. If F is a fomula, then
X

F ðñ
X j

F

Proof. By rules permutations, we can move each occurrence ρ of a w?- or a K-rule up in the derivation
until it reaches the assigned occurrence σρ of an ax j- or a 1 j-rule. Then we replace σρ with an occurrence
of the same rule σρ with an additional � in the conclusion, and ρ with an occurrence of ρ j applied to this

1In this paper, where not otherwise specified, we consider multiplicative linear logic with exponential including units.
2By mean of example, consider the derivations of Γ � K,a,b, ā � b̄ in MLLu. It admits only two possible jumps (one for

each ax). All the possible derivations of Γ are �-equivalent. However, only derivation with the same jump are �J-equivalent.
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Figure 5: On the left: how to transform a K to a Kj. On the right: how to replace !p with s!p and dig?
and vice versa.

fresh � (an example is shown in Figure 5). Moreover, every !p can be replaced by a s!p followed by a
finite number of dig? and vice versa by MELL cut-elimination theorem [9] (see Figure 5).

We call an instance of a c? rule jump-erasing if (at least) one of the two contracted formulas has been
introduced by a weakening rule.
Remark 2. If π is a derivation in MELLj, then there is a derivation π 1 in MELLj such that π � π 1 and π 1

contains no jump-erasing contractions. Thus, every derivation in MELL is �J-equivalent to a derivation
in MELL containing no jump-erasing contractions.

The deep inference [12, 13, 5] rules for the systems in Figure 3 are defined in Figure 2. We denote by
Γt u a context, which is a sequent or a formula with an “hole” in place of an atom. The use of deep rules
allow us to prove the following decomposition theorem by pushing all w?, c?, dig? and der? inferences to

the bottom of a derivation. We write F 1
X

F if there is a derivation form F 1 to F using only rules in X .

Theorem 3. If F is a formula, then
MELL

F iff there is a formula F 1 such that
MELLLL

F 1
MELLÓ

F.

Proof. By Proposition 1, we consider a derivation
MELLj

F and we replace each occurrence of Kj, wj,
dig?, der? and w? by an occurrence of its deep version KÓ, wÓ

? , digÓ? , derÓ? or cÓ? and then to push these
inferences to the bottom of the derivation. The converse is proven similarly.

3 Relation Webs

A directed graph G � xVG ,
G
ñy is a set VG of vertices equipped with a binary edge relation G

ñ �VG �VG .
An undirected graph G � xVG ,

G
"y is a graph whose edge relation G

" � VG �VG is irreflexive and
symmetric. A mixed graph is a triple G � xVG ,

G
",

G
ñy where xVG ,

G
"y is an undirected graph and

xVG ,
G
ñy is a directed graph, such that G

"X
G
ñ �H. If V 1 �VG , the subgraph induced by V 1 is the graph

G |V 1 � xV 1,
G
"XpV 1�V 1q,

G
ñXpV 1�V 1qy. We omit the index/superscript G when it is clear from the

context. When drawing a graph we use v w for v"w, and v w for vñw, and we use either v w or
draw no edge at all otherwise.

Definition 4. A relation web is a mixed graph G � xVG ,
G
",

G
ñy such that:

• G
ñ is transitive and irreflexive;

• G is Z-free and 3-color triangle-free, i.e., G does not contain an induced subgraph shape:

Z-freeness:
u v

y z

u v

y z
3-color triangle-freeness:

w

u v

w

u v
(1)
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A cograph is a Z-free undirect graph.

Let G and H be two disjoint mixed graphs. We define the following operations:

G OH � xVG YVH ,
G
"Y

H
" ,

G
ñY

H
ñy

G CH � xVG YVH ,
G
"Y

H
" ,

G
ñY

H
ñYtpu,vq | u PVG ,v PVH uy

G �H � xVG YVH ,
G
"Y

H
"Ytpu,vq,pv,uq | u PVG ,v PVH u ,

G
ñY

H
ñy

(2)

Theorem 5 ([?]). A mixed graph is a relation web if and only if it can be constructed from single vertices
using the three operations O, C and � defined in (2).

A relation web is labeled if all its vertices carry a label selected from a label set L . We write
lpvq for the label of v. For each formula F we define the labeled relation web JFK where the label set
L � A Y ¯A Yt!,?,1,K,�u. We use the notations 
a, 
ā, !, ?, 1, K and � for the graph consisting of a
single vertex that is labeled with a, ā, !, ?, 1, K and � respectively.

JaK � 
a

JāK � 
ā

JA�BK � JAK�JBK
JAOBK � JAKOJBK

J!AK � !C JAK
J?AK � ?C JAK

J1K � 1

JKK � K
J�K � � (3)

For a sequent Γ� A1, . . . ,An we define JΓK� JA1, . . . ,AnK� JA1KO � � �OJAnK.

Definition 6. A relation web G is modalic if for any vertices u, v, w with uñw and vñw we have uñv
or vñu or u� v, i.e., G does not contain the two configurations below.

Forbidden configurations for modalic relation webs:
w

u v

w

u v
(4)

A labeled modalic relation web G is properly labeled if its label set is L �A Y ¯A Yt!,?,1,K,�u, such
that whenever there are v,w with vñw then lpvq P t!,?u.

By adapting the proofs in [4], we have the following results:

Theorem 7. A relation web is the translation of a formula iff it is modalic and properly labeled.

Proposition 8. For two formulas F and F 1, we have JFK � JF 1K iff F and F 1 are equivalent modulo
associativity of and commutativity of � and O.

4 RGB-cographs

Definition 9. An RGB-cograph is a tuple G � xVG ,
G
",

G
ñ,

G
Oy where G JK � xVG ,

G
",

G
ñy is a modalic

relation web, VG is the disjoint union of five sets V 

G ZV 1

G ZV �
G ZV !

G ZV ?
G , and

G
O is an equivalence

relation over VG , called the linking, such that

• if v PV 

G YV 1

G YV �
G then there is no w PVG such that vñw;

• if vOw then v,w PV 

G YV �

G or v,w PV 1
G YV �

G or v,w PV !
G YV ?

G ;

• if v PV 

G then there is exactly another w PV 


G with vOw and v � w;

• if v PV �
G then there is a u PV 


G YV 1
G such that wOv;

• if v PV 1
G then w PV �

G for all wOv;

• if v PV !
G YV ?

G then there is a unique w PV !
G such that wOv;
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The vertices in V 

G , V 1

G , V �
G , and V !

G YV ?
G are respecitely called atomic, unit, jump, and modalic

vertices. An RB-cograph is an RGB-cograph G with VG �V 

G .

The first condition in the definition says that if a vertex has an outgoing ñ-edge then it has to
be modalic. The other conditions can be interpreted as follows: modalic vertices are grouped in sets
containing a unique vertex in V !

G , representing instances of the s!p-rule in the sequent calculus and box
borders in the proof net syntax, while the jumps vertices are associated to either a pair of atomic vertices
or a unit vertex3.

In drawing an RGB-cograph we use bold (blue) edges v w when v � w and vOw. Moreover, we
allow us to omit to represent edges which can be deduced by O transitivity. For example, we draw
u v w omitting the edge u w.
Definition 10. An æ-path in an RGB-cograph G is an elementary path x0,x1, . . . ,xn in the graph xV,"Y
ñYOy whose edges are alternating in O and inñY". A chord in an æ-path is an edge xi"x j or
xiñx j for i, j P t0, . . . ,nu and i�2 ¤ j. A chordless æ-path is an æ-path without chord. An æ-cycle is
an æ-path such that x0 � xn. An RGB-cograph G is æ-connected if any two vertices are connected by a
chordless æ-path, and G is æ-acyclic if it contains no chordless æ-cycle.
Definition 11. Let consider the following condition for an RGB-cograph G :

1. VG �H and G is æ-connected and æ-acyclic;

2. for every vertex v PV !YV ? there is a vertex w PV 
YV 1YV � with vñw;

3. if w G
ñv and vOv1, then there is w1Ow such that w1 G

ñv1; and
We say that an RGB-cograph G is MELL-correct if it satisfies conditions 1, 2 and 3. It is is MLL-

correct (MLLu-correct) if it satisfies conditions 1 and V�V 
 (respectively V�V 
YV �).
Theorem 12. Let G be a RGB-cograph with G JK � JFK and X P tMLL,MLLu,MELLu. Then

G is the translation of a XLL proof of F ðñ G is X-correct

Proof. The result for for X � MLL is given in [27]. In fact, a MLL-correct RGB-cograph is an æ-
connected æ-acyclic RB-cograph. In this proof, each O-class ta, āu is associated to an ax-rule with
conclusion a, ā. This result can be extended for X�MLLu by observing that each O-classes corresponds
to an application of 1 j-rule or ax j-rule. The result for X�MELL immediately follows from the one for
K-correct RGB-cograph in [4] by applying the same argument for MLLu in order to accommodate 1 j-
and ax j-rules. The full proof can be found in Appendix A

5 Skew fibrations

Definition 13. Let G and H be mixed graphs. A skew fibration f : G Ñ H is a function from VG to
VH that preserves " and ñ (that is if vRG w then f pvqRH f pwq for R P t",ñu), and f has the skew
lifting property, i.e.,

if v PVG , w PVH , R P t",ñu and wRH f pvq , then uRG v and w
H
�" f puq and w

H
�ñ f puq for a u PVG .

(5)
A skew fibration f : G ÑH is modalic if whenever u G

!v and f puqH
ñ f pvq, then there is a w PVG such

that w G
ñv and f puq � f pwq, or u G

ñw and f pvq � f pwq. A skew fibration is a linear fibration if modalic
and it satisfies the following additional conditions:

3For readers familiar with proof nets syntax, pV !YV ?q-classes encodes boxes borders, V !-vertices their principal ports, and
jumps vertices are the placeholder for jumps and atomic vertices represent propositional variables.
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1. if lpvq � � then lp f pvqq P tK,?u;

2. if
�
� f�1pvq

�
�� 0 then there is a unique w PVG such that lpwq � �, lp f pwqq � ? and f pwqH

ñv;

3. if | f�1pvq| � n ¡ 1 and lpvq � ?, then
�
� f�1pwq

�
�¥ n for all w such that vñw, otherwise f�1pvq �

tv1, . . . ,vnu with n ¡ 1 and there are tw1, . . . ,wnu such that wi � w j, lpwiq � ? and f pwiqñ f pviq
for all i, j P t1, . . . ,nu.

The additional conditions for linear fibration have the following interpretation: 1 associates to each
jump a K or the ? of a formula ?A introduced by a w?; in fact, condition 2 assures for every vertex v in
H which has no pre-image, belongs to a subformula ?A which has been introduced by a w?. Condition
3 assures that if a vertex is image of multiple vertices, then there is a formula ?A such that this vertex is
either the one corresponding to the ? or is a vertex of JAK. These conditions allow us to restrict on the
formulas on the form ?A the well-known correspondence between contractions-weakening derivations
and skew fibrations [16, 28, 4, 3, 24].

Proposition 14. If Γ and Γ1 are sequents, then f : JΓ1KÑ JΓK is a linear weak fibration iff Γ1
w?,c?,�

Γ.

In order to capture also der? and dig? rules application, we recall the following definition from [4].

Definition 15. We say that two vertices v and w in a relation web G are clones if for all u with u� v and
u � w we have uRv iff uRw for all R P t",ñ,ð,!u. If v � w then they are trivially clones. A ?-map
is a mapping f : G ÑH where G and H are modalic and properly labeled relation webs, such that the
following conditions are fulfilled:

• if v � w and f pvq � f pwq, then v and w are clones in G , v G
ñw and lp f pvqq � lp f pwqq � ?;

• if f pvq � f pwq then vRG w implies f pvqRH f pwq for any R P t",ñ,ð,!u;

• if v PVH is not in the image of f then lpvq � ? and there is a w PVH with vñw.

Analogously to the result in [4] for t4Ó, tÓu-maps, we have the following

Proposition 16. Let Γ and Γ1 be sequents. Then Γ1
derÓ? ,dig

Ó
?

Γ iff f : JΓ1KÑ JΓK is a ?-map.

We conclude this section we define a MELL-fibration f : G ÑH as the composition f � f 2 � f 1 a
linear week fibration f 1 and a ?-map f 2. As consequence of Propositions 14 and 16 we have the following

Theorem 17. Let Γ and Γ1 be sequents, then Γ1
cÓ? ,w

Ó
? ,der

Ó
? ,dig

Ó
?

Γ iff f : JΓ1KÑ JΓK for an MELL-fibration f .

6 Combinatorial Proofs

Definition 18. A map f : G Ñ F from an RGB-cograph G to a modalic and properly labeled relation
web F is allegiant if the following conditions are satisfied:

• if v,w PV 

G and v

G
Ow then f pvq and f pwq are labeled by dual atoms in A ;

• if v PV 1
G then lp f pvqq � 1; if v PV !

G then lp f pvqq � !; if v PV ?
G then lp f pvqq � ?.

Definition 19. For X P tMLL,MLLu,MELLu, an X-combinatorial proof of a sequent Γ is an MELL-
fibration f : G Ñ JΓK from an X-correct RGB-cograph G to the relation web of Γ.

Theorem 20. If F is a formula and X P tMLL,MLLu,MELLu, then

X
F ðñ there is a X-combinatorial proof f : G Ñ JFK



8 Exponentially Handsome Proof Nets

Proof. By Proposition 1 and Theorem 3, if
X

F then there is a formula F 1 such that
MELLLL

F 1
MELLÓ

F .
We conclude by Theorems 12 and 17.

Proposition 21. If π and π 1 are two derivation in MELLj, then π �J π 1 iff they are represented by the
same MELL-combinatorial proof.

Proof. After Remark 2, we assume π and π 1 to be jump-erasing free. Since Theorem 3 makes use only
of rules preserving �J, the rules in MELLLL permute with rules in MELLÓ. The RGB-cograph captures
rules permutations in MELLLL, and the skew fibration captures permutations in MELLÓ.

To check if an RGB-cograph is X-correct and if a graph homomorphism is a MELL-fibration requires
polynomial time in the size of the graphs. This gives us the following results.
Theorem 22. MELL-combinatorial proofs are a sound and complete proof system for MELL.

7 Handsome Proof Nets for MELL

The construction defined in the previous sections can be interpreted as an extension of both Retoré’s [27]
and Hughes’ [16] syntaxes. However, combinatorial proofs represent cut-free proofs as unfolded Retoré’s
proof nets [26] do. We extend the combinatorial proof syntax to handsome proof nets in order to represent
proofs with cuts. Our construction differs from [29], where the syntax of the absence of modalities
allows more flexible representation of combinatorial proofs. In Appendix B, we give a normalization
procedure to associate a combinatorial proof to any handsome proof net. Each step of this normalization
procedure corresponds to a cut-elimination step in the sequent calculus MELLj. The termination of
the normalization follows MELL cut-elimination theorem [9]. Moreover, every cut-elimination step is
deterministic because of fixed jump, hence the procedure is locally confluent.
Definition 23. An (exponentially) handsome proof net (or HPN for short) f is defined as follows:

• f : G Γ1 Ñ JΓK is a MELL-combinatorial proof;

• f : G Γ1,A1 Ñ JΓ,AK and f : G ∆1,Ā1 Ñ J∆, ĀK are two HPN, then f 1 �
C
cut f 2 � f : G Γ1,∆1 Ñ JΓ,∆K is

an HPN.
In drawing such objects, we use bold (blue) edges v w in order to connect each vertex x P JCK with

lpxq � a with the corresponding vertex x̄ P JCK with label ā. For a graphical example refer to Figure 1.

8 Conclusions

In this paper we extend Retoré’s cographic syntax for multiplicative proof nets [27] in order to include
units and exponentials, using the results in [4] on combinatorial proofs for modal logic.

Aware of the limits designing a syntax with a polynomial correcness criterion [14], we restrain the
notion of proof equicalence captured by the syntax. Our system allows rules permutations in Figure
4, provided that jump assignations are not changed. As a consequence, this proof equivalence can be
checked in polynomial time. This notion of proof equivalence matches the one of “nouvelle syntaxe”
proof net [25] with jumps, where w? and c? form a monad and their gates can be freely move inside and
outside boxes.

The syntax presented in this paper is a coherence semantics for the system MELLj in the sense of
[23], where we use of relation web instead of graphs. Hence, it can be further employed to explore the
geometry of interaction [10] of MELL, similarly to what done for MLL in [8] using the original Retoré’s
syntax.
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A Proof ot Theorem 12
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Figure 6: Translating MELLLL sequent proofs into RGB-cographs

Theorem 24. Let G be a RGB-cograph with G JK � JFK and X P tMLL,MLLu,MELLu. Then

G is the translation of a XLL proof of F ðñ G is X-correct

Proof. X�MLL: in [27] is given a procedure associating to each MLL-correct RGB-cograph (i.e. a
æ-connected æ-acyclic RB-cograph) a derivation in MLL. In particular, an O-class ta, āu is asso-
ciated to an ax-rule with conclusion a, ā;

X�MLLu: For the left-to-right direction, observe that any vertex graph with a single O-class is MLLu-
correct. Furthermore, all rules in Figure 6 corresponds to rules in MLLLLu and preserve Condition 1.
To prove the right-to-left direction, we can use the sequentialization result for MLL on RB-cographs
[27]. It suffices to extend this result by taking into account the cases when a O-class is of the form
t1,�, . . . ,�u or ta, ā,�, . . . ,�u, and associate to it a 1 j-rule or respectively ax j-rule.

X�MELL: The result follows the proof of K-correct RGB-cograph in [4] together with the argument
of the previous point. The left-to-right direction, is similar to the one the previous case: all con-
structions given in Figure 6 corresponding to MELL rules preserve Conditions 1, 2 and 3.
For the right-to-left direction, we use again the MLL sequentialization result for RB-cographs [27]
as extended in the previous case.
For this we will define for an RGB-cograph G an RB-cograph BpG q that is æ-connected and æ-
acyclic if and only if G is. To ease the notation, we give each vertex a unique label, such that

-vertices that are linked are labeled by the atoms in the equivalence class, and !- and ?-vertices
are labeled by natural numbers, and we identify vertices with their labels. Now, BpG q is obtained
as follows. We define a vertex set V� � tv1, v̄1 | v P V !

G ZV ?
G u and let VBpG q � V 


G ZV �
G ZV�, i.e.,

we take the atomic vertices of G , and each modalic vertex is replaced by a dual pair of atomic

vertices, that are linked by
BpG q
O , and on vertices in V 


G YV �
G , the relation

BpG q
O is the same as in

G
O.

In order to define
BpG q
" , we need an auxiliary relation:

x
G
""y ðñ x G

"y and there is no v PV !
G ZV ?

G with x G
"v G
ñy or y G

"v G
ñx

Now, we let x
BpG q
" y iff one of the following cases holds:
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– x,y PV 

G and x

G
""y;

– x PV 

G and y � w1 for some w PV !

G ZV ?
G with x

G
""w;

– x � v1 and y� w1 for some v,w PV !
G ZV ?

G with v
G
""w;

– x � v̄1 for some v PV !
G ZV ?

G and y PV 

G YV �

G with v G
ñy;

– x � v̄1 and y � w1 for some v,w PV !
G ZV ?

G with v G
ñw;

– x � v̄1 for some v PV !
G ZV ?

G and y PV 

G YV �

G and there is a u PV !
G ZV ?

G with v
G
Ou G
ñy;

– x � v̄1 and y � w1 for some v,w PV !
G ZV ?

G and there is a u PV !
G ZV ?

G with v
G
Ou G
ñw;

The intuition behind this construction can be explained using Theorem 5. Following [12], we use
the term BV-formula for an expression built from the atoms and � using the binary operations O,
�, and C, and it has been shown in [12] that the BV-formulas, modulo associativity and com-
mutativity of O and �, and associativity of C, are in one-to-one correspondence with the relation
webs, via (2) and Proposition 8. We write fmpG q for a corresponding formula expression for G ,

and we write BpfmpG qq for fmpBpG qq. Now let v1, . . . ,vn PV !
G ZV ?

G form an
G
O-equivalence class.

This means that fmpG q is of shape Ftv1 CB1u � � �tvn CBnu for some n-ary context Ft u � � �t u
(because G is modalic). We can reformulate the translation above as follows:

BpFtv1 CB1u � � �tvn CBnuq � pv̄11� � � �� v̄1n�BpB1O � � �OBnqqOBpFtv11u � � �tv
1
nuq (6)

We use (6) to construct BpG q from G inductively on
�
�V !

G ZV ?
G

�
� and show that BpG q is an RB-

cograph iff G is an RGB-cograph, and that BpG q is æ-connected and æ-acyclic iff G is.

For this, observe that, a priori, moving a Bi out from the context could create or destroy æ-paths.
However, we only claim that æ-connectedness and æ-acyclicity are preserved, i.e., if the original
RGB-cograph is correct, then so is the one constructed via 6, and vice versa. So, by way of
contradiction, assume the one in the right-hand side sequent of 6 contains a chordless æ-cycle.
This cycle cannot contain atoms from both v̄11� � � �� v̄1n� fmpB1O � � �OBnq and fmpFtv11u � � �tv

1
nuq

because they are connected by a O. Hence, the cycle cannot contain any v1i or v̄1i. This means that
the cycle is fully contained inside the context Ft u � � �t u or inside one of the Bi. Therefore the
cycle must already be present in the original RGB-cograph. Contradiction. Now pick any two
vertices x1 and y1 in the right-hand side sequent of 6. We show that there is a chordless æ-path
between them. Let x and y be the corresponding vertices in the original RGB-cograph (if x1 or y1

are one of the v1i or v̄1i, take the corresponding vi). By the assumption there is a chordless æ-path
between x and y. We can recover this path in the right-hand side sequent of 6. If the original path
passes through a vi, we can in the new graph pass through the new edge v1i v̄1i. The converse is
proved similarly.

Figure 7 shows two examples. We can now piggyback on Retoré’s proof [27] of sequentialization
for RB-cographs, in order to produce an MELLLL sequent proof for fmpG q. Since BpG q is æ-
connected and æ-acyclic RB-cograph, there is a splitting tensor in fmpBpG qq (we can remove root
O via the _-rule). If this splitting tensor is also present in fmpG q, we can directly apply the ^
rule and proceed by induction hypothesis. If it is not present in fmpG q then it must be of shape
v̄11� � � �� v̄1n�BpB1O � � �OBnq and be introduced by the translation (6). Since BpG q is æ-connected,
we can without loss of generality assume the the context consists only of v11, . . . ,v

1
n. Otherwise our

tensor would not be splitting. Hence, we have
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Figure 7: The RGB-cographs for F1 � d̄ O pd � !pb̄� cqO ēO pe� ?c̄qO ?pb� !paO āqqqO ? f and
F2 � bO pb̄� !aqO p?ā� cqO c̄, and the corresponding RB-cographs BpF1q and BpF2q.

ax �����
v11, v̄

1

1 � � �
ax �����

v1n, v̄
1
n� ������������������������������

v11, . . . ,v
1
n, v̄

1

1� � � �� v̄1n BpB1O � � �OBnq
� ������������������������������������������������������

v11, . . . ,v
1
n, v̄

1

1� � � �� v̄1n�BpB1O � � �OBnq

(7)

whose conclusion is Bppv1 CB1qO � � �O pvn CBnqq. Thus, we can apply the s!p-rule and we can
proceed by induction hypothesis.
Moreover, if V �

G �H, then accordingly with the previous translation fmpG q � Ftv1CA1u � � �tvnC
Anu and BpfmpG qq � Ftv1u � � �tvnu. Then derivation corresponding to BpG q has an axiom (with
jumps) with conclusions w, w̄,�1, . . . ,�n where tw, w̄,�1, . . . ,�nu is a O-equivalence class which
corresponds to the ax j with conclusion w, w̄,�1, . . . ,?�1.

B Handsome (Proof Nets) Normalization

We introduce the following notation:

• relation web restriction: if G is a relation web and X � VG , then we define the relation web
G |X � xX ,"XpX �Xq,ñXpX �Xqy.

• restricted fibration: if X �VG , and f : H Ñ G a skew fibration, then we define the skew fibration
f |X : H | f�1pXq Ñ G |X , that a skew fibration from the vertices in H which have an image in G |X
which behaves like f ;

• identity fibration: if Γ is a sequent, we define the identity MELL-fibration 1Γ : JΓKÑ JΓK;

• digging fibration: if Γ is a sequent, we define the MELL-fibration digp??Γq : J??ΓKÑ J?ΓK such
that digp??Γq|Γ � 1Γ;

• jump fibration: if � PV � and F P tK,?AuAPL , we define the MELL-fibration 0A : J�KÑ JFK;

• class merging: if G � xV,",ñ,Oy is an RGB-cograph, ρ1,ρ2 two O-equivalence classs of G
with x1 P ρ1 and x2 P ρ2 such that there is no y P V such that xi"y, xiñy or yñxi for i P t1,2u,

then we define the RGB-cograph G rρ
x,x1
O ρ 1s � xVztx1,x2u,",ñ,O1y where O1 is obtained by

merging the two classes ρ and ρ 1 and removing the vertices x1 and x2

O1 � pOYtpy1,y2q | y1 P ρ2,y2 P ρ2uqztpx,yq | x P tx1,x2uu
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• class elimination: if G � xV,",ñ,Oy is an RGB-cograph, ρ �V !
G YV ?

G is a O-equivalence class
of G , then we define the RGB-cograph pG zρq given by the relation web xV,",ñy|Vzρ and the
equivalence relation Oztpx,yq|x,y P ρu.

• jump replacing: if G � xV,",ñ,Oy is an RGB-cograph, x PV � and ρ is the unique equivalence
class containing x, we define G rG {�s � xV 1,",ñ,O1y with

– O1 � pOztxy P O | y PVuqYt�iy | xOy, i P t1, . . . ,nuu;
– V 1 �V 


G YV !
G YV ?

G YpV
�
G ztxuYt�1, . . . ,�nuq.

• RGB soft-promotion: if G � xV,",ñ,Oy is an RGB-cograph such that G JK � JA,B1, . . . ,BnK, we
define the RGB-cograph s!prG s!A with

– Vs!prG s!A �V 

G YpV

!
G YtxuqYpV

?
G Yty1, . . . ,ynuqYV �

G ;

– s!prG s!A
" �

G
";

– s!prG s!A
ñ �

G
ñYptxa | a PVJAKuYtyibi | bi PVJBiKuiPt1,...,nuq;

–
s!prG s!A
O �

G
OYtuv | u,v P tx,y1, . . . ,ynu,u� vu.

• class elimination if G is a RGB-cograph and ρ a O-equivalence class such that there are no x PVG

with x"y or xñy for any y P ρ , then we define the combinatorial proof

p f zρq : pG zρq Ñ G | f pVpG zρqq

• soft promotion if f � f : G A1,B1
1,...,B

1
n
Ñ JA,B1, . . . ,BnK is a MELL-combinatorial proof, then we

define the MELL-combinatorial proof

s!pr f s!A : s!prG s!A1 Ñ J!A,?B1, . . . ,wnBnK

such that s!pr f s!A|VJΓK � f .

Lemma 25 (Splitting). If f : G Γ1,A1�B1 Ñ JΓ,A�BK is a combinatorial proof, then there are Γ1
1,Γ

1
2

sequents such that Γ1
1 YΓ1

2 � Γ1, f 1 : G Γ1
1,A

1 Ñ JΓ1,AK and f 2 : G Γ1
2,B

1 Ñ JΓ,BK combinatorial proofs

such that G Γ1,A1�B1 � xGΓ1
1
,A 1�B1,GΓ1

2
|

G
OY

H
Oy and

f |A � f 1|A f |Γ1 � f 1|Γ1 f |B � f 2|B f |Γ2 � f 2|Γ2

Proof. It follows the similar result for RB-cographs. It suffices to remark that MELL-fibrations preserve
spitting sections.

Definition 26 (Normalization). If f 1 : G C1,Γ1 Ñ JC,ΓK and f 2 : G C̄1,∆1 Ñ JC̄,∆K are two MELL combina-
torial proofs, then we define a normalization step

f 1 �
C
cut f 2ù f : G Γ1,∆1 Ñ JΓ,∆K

associatin to the HPN f 1�
C
cut f 2 a MELL combinatorial proof. Each step is recursively defined as follows:

• if C P tK,au with a PA then f 1 and f 2 are bijective respectively on C and C̄. Let x1 PVG C1 ,Γ1
and

x̄2 PVG C̄1 ,∆1
be the vertices which image is respectively JCK and JC̄K and ρ1 and ρ2 the corresponding

O-classes containing x1 and x2. Then

f 1 �
C
cut f 2 � f : G rρ1

x1,x2
O ρ2s Ñ JΓ,∆K

where f |Γ � f 1|Γ and f |∆ � f 2|∆;
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• if C � A�B, by Lemma 25 there are two RGB-cographs G Γ1
1,A

1 and G Γ1
2,B

1 such that Γ1 � Γ1
1,Γ

1
2

and GΓ1,A�B � xGΓ1
1
,A �B,GΓ1

2
|

G
OY

H
Oy. If f A

1 � f 1|JΓ1,AK and f B
1 � f 1|JΓ2,BK and then

f 1 �
C
cut f 2 � f A

1 �
A
cut f 2 �

B
cut f B

1

• if C � !A, let us denote by ! and ? the vertices in J!AK and J?ĀK corresponding to the modality ! of
A and ? of Ā. We have the following cases:

– s!p vs ax j: if f�1
2 p?q � t�u with x belonging to the O-equivalence class ρ , and f 1 : G 1 Ñ

J!A,?B1, . . . ,?BnK, then

f 1 �
C
cut f 2 � f : G r�1, . . .�n{�s Ñ J∆,?B1, . . . ,?BnK

with f |∆ � f 2|∆ and f |?Bi � 0?Bi .
– s!p vs s!p: if f 1|C and f 2|C̄ are injective and ρx

1 ,ρ
x̄
2 are the corresponding O-equivalence

classes in G Γ1,C1 and G ∆1,C̄1 of each x P tx1, 9,xnu �VJCK and x̄ P tx̄1, . . . , x̄nu �VJC̄K , then

f 1 �
C
cut f 2 � G rρx1

1
x1,x̄1
O ρ

x̄1
2 s . . .rρ

xn
1

xn,x̄n
O ρ

x̄n
2 s

– s!p vs der?: if f�1
2 p?q � H and f�1

2 pxq � H for all x P VJ?ĀK such that ?ñx, and if ρ is the
O-equivalence class containing the !, then

f 1 �
C
cut f 2 � p f 2zρq �

A
cut f 2|VG zt?u

– s!p vs dig?: if | f�1p?q| � n¡ 1 and | f�1
2 pvq| � 1 for all v PVJ?ĀK, then

f 1 �
C
cut f 2 � f 1 �

C
cut ps!pr f 2s!!A � p1!!AOdigp??∆qqq

– s!p vs c?: if | f�1
2 p?q| � n¡ 1 and | f�1

2 pvq| � n for at least one v PVJ?ĀK, we define f 12 : G 2 Ñ

J∆K,?Ā1, . . .?Ān such that f 12|∆ � f 2|∆ and f 12|?Ā1,...?Ān
is injective on the vertices t?1, . . . , ?nu

encoding the (principal) modalities of ?Ā1, . . .?Ān. Then

f 1 �
C
cut f 2 � f 1 �

C
cut � � � �

C
cut p f 1looooooooomooooooooon

n copies

�C
cut f 12qq

Theorem 27. If f : G Γ1 Ñ JΓK is an HPN, then there is a well-defined MELL combinatorial proof
f̂ : G Γ1 Ñ JΓK such that f : G Γ1 Ñ JΓKù� f̂ : G Γ1 Ñ JΓK.

Proof. The proof follows the cut-elimination result for the proof system MELLj. This latter follows the
cut-elimination theorem for MELL [9] and Proposition 1.
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