
ar
X

iv
:2

30
5.

12
97

5v
2

 [
cs

.L
O

]
 1

1
D

ec
 2

02
3

Graphical Proof Theory I:
Sequent Calculi operating on

Undirected Graphs
Matteo Acclavio

Abstract
In this paper we explore the design of sequent calculi operating on graphs. For

this purpose, we introduce a set of logical connectives allowing us to extend the corre-

spondence between cographs and classical propositional formulas to any graph. We

then provide sequent calculi operating on these formulas, we prove cut-elimination

and that formula encoding the same graph are logically equivalent.

We show that these systems provide conservative extensions of multiplicative lin-

ear logic (with and without mix) and classical propositional logic. We conclude by

showing that one of these systems is equivalent to the graphical logic GS defined via

a system of context-free graph rewiring rules, therefore providing an alternative proof

of analyticity for this logic over graphs.

Contents

1 Introduction 2
1.1 Main contributions . 3
1.2 Outline of the paper . 3

2 From Formulas To Graphs 4
2.1 Graphs and Modular Decomposition . 4
2.2 Classical Propositional Formulas and Cographs . 6
2.3 Modular Decomposition of Graphs . 6
2.4 Graphs as Formulas . 8

3 Sequent calculi over operating on graphs-as-formulas 9
3.1 Properties of the systems MGL and MGL◦ . 10
3.2 Soundness of Logical Equivalence in MGL◦ . 14

4 Soundness and Completeness of MGL◦ with respect to GS 14

5 Classical Logic Beyond Cographs 17

6 Conclusion and Future Works 18
6.1 Future Works . 19

A Deep Inference and the Open Deduction Formalism 23
A.1 Equivalent Definitions of GS . 23

B On Rules Introducing a Connective at a Time 24

1

http://arxiv.org/abs/2305.12975v2

b d

a c

b d

a c

Figure 1: In both graphs, vertices represent processes. In the graph on the left, the direct edges represent
the causality relation, while the undirected edges the non-causality between processes. In the graph on
the right, the edge relation represent the existence of a condition between processes to access to a same
resource.

1 Introduction
In theoretical computer science, formulas are used to describe complex abstract objects by means of ele-
mentary operators. In particular, the proof theory of propositional logic typically considers formulas built
from a very limited palette of binary and unary operators, respectively called connectives and modalities. In
general, such a restriction does not imply a limit in the expressiveness of the language. However, as soon as
proof theory is used to define paradigms as “formulas-as-types” or “formulas-as-processes” for concurrent
programs this limitation leads to a payout in term of efficiency: as soon as complex interactions need to
be represented, ad-hoc encodings are required. This leaves the proof systems to deal with the hard task of
handling the syntactic bureaucracy required to handle these encodings. As a consequence, automated tools
relying on formula-based proof systems are either sub-optimal, because of the blow-up in computational
complexity due to the use of encodings, or sacrifice the quality of information, by reducing their scope on
simple configurations [28, 25]. This latter possibility may lead to information loss, potentially causing,
among others, security issues or imprecise results in AI for decision systems.

At the same time, graphs are often used in computer science practice from abstract definitions to prac-
tical implementation to describe systems with complex interactions: it is often the case that “a picture is
worth a thousand words”1. By means of example, consider two systems with four processes a, b, c and
d represented in Figure 1: in the first, we assume a dependency relation (e.g., causality) in a system with
where a depends from b, and c depends from both b and d; in the second, we assume the pairs of pro-
cesses a and b, b and c, and c and d race to access a shared resource. It is not by accident that both graphs
contain four vertices inducing a four-vertices undirected path. In fact, it is well known that graphs contain-
ing such a pattern (called P4) cannot be represented using binary operators on graphs [57, 21]. However,
such configurations can be observed in, e.g., producer-consumer buffers [26] or control access models with
non-transitive conflict relations such as in [45].

The use of graphs as representation of complex interactions is largely used in logic an theoretical com-
puter science because a same abstract object may admit multiple representations, and graphs could be able
to provide canonical representative. By means of example, consider semantics of programming languages
(see, e.g., label transition systems) or logics (see, e.g., Kripke semantics for modal logics [12]), or proof
systems capturing proof equivalence (e.g., proof nets [31] or combinatorial proofs [38, 38]). However,
logic, and in particular proof theory, has rarely considered graphs as the main language for expressing its
primitive terms: prior to [3, 4, 1] we cannot find proof systems conceived to handle graphs as terms of
an inference system defined with proof-theoretical purposes.2 In these works, the authors move from the
well-known correspondence between classical propositional formulas and cographs (graphs containing no
induced subgraph isomorphic to a P4) [41] to generalize proof theoretical methodologies for inference sys-
tems on formulas to graphs. In fact, we could say that inference systems operating on formulas can be
seen as inference systems operating on cographs, that is, on graphs with “less complex” structure where
no induced subgraph isomorphic to P4 occurs3. In these works, the authors consider only deep inference
[34, 8] formalism to design proof systems operating on graphs. Such unconventional choice with respect
to, e.g., sequent calculi or natural deduction, pays off in [1], where a proof system operating on graphs with
both symmetric and non-symmetric edges defines a conservative extension of the non-commutative logic
BV4, for which a cut-free sequent calculus cannot exist [55].

1To be more precise, we should instead say “a picture is worth an exponential number of words”. . .
2Another line of works [16, 58, 17, 23, 24] explored the extensions of the semantics of boolean logic from cographs enconding

formulas to graphs. However, in these works graphical logic is investigated from a semantical viewpoint rather than under the lens of

proof systems.
3Note that several NP-hard optimization problems on graphs become solvable in polynomial time if restricted to cographs [43].
4The logic BV is a NP-time decidable fragment of Pomset logic [53, 52]. This logic is sound and complete with respect to series-

2

LGK MGL◦

MGL

LK MLL◦

MLL

Figure 2: The lattice of the proof systems studied in this paper. The systems below the dotted line contain
formulas constructed only using conjunction and disjunction.

c
d

e
f

a b g h i

=

c d e f

a b g h i

=P4

(∣

∣

∣a ` b, c⊗ d, e⊗ f , g⊗(h⊗ i)
∣

∣

∣

)

Figure 3: A graph, its more compact modular representation, and one of its possible formula-like represen-
tation.

1.1 Main contributions

This paper aims at studying sequent calculi operating on graphs, by defining a language whose basic logical
operators allow us to have a linear encoding of graphs.

We first recall the notion of modular decomposition [29, 41] for undirected graphs5. We then use prime
graphs (graphs admitting only trivial modular decompositions) to define a class of logical operators we call
graphical connectives allowing us to extending the linear encoding of cographs by classical propositional
formulas to any graph.

We then define proof systems operating on these generalized formulas (see Figure 2) and we prove the
cut-elimination results and that they are conservative extensions of multiplicative linear logic, the multi-
plicative linear logic with mix and the propositional classical logic. For this purpose, we use the standard
analyticity argument, requiring us to reformulate of the standard subformula property to accommodate the
richer structure of non-binary connectives.

Moreover, we prove that one of these systems proves a class of formulas corresponding to the graphs
provable in the system GS from [3, 4], providing a more concise proof of analiticity and transitiveness of
implication for the logic GS using more standard techniques6.

1.2 Outline of the paper

In Section 2 we recall definitions and results in graph theory and the notion of modular decomposition. In
Section 3 we use these notions to extend the correspondence between classical propositional formulas and
cographs to any graph. We define linear sequent calculi and we prove their properties. In Section 4 we show
that one of these calculi is sound and complete with respect to the set of non-empty graphs provable in the
deep inference system GS studied in [3, 4]. In Section 5 we define a proof system which is a conservative
extension of classical logic. To conclude, we summarize in Section 6 some of the possible the research
directions opened by this work.

parallel order refinements: if φ and ψ are formulas encoding series-parallel orders, then the order encoded by φ is a refinement of the

order encoded by ψ iff ⊢BV φ⊸ ψ.
5Note that in this paper we only discuss graphical connectives designed on undirected graphs generalizing the well-known corre-

spondence between classical propositional formulas and cographs. However, the proposed methodology scales to more general graphs

such as the mixed graphs used in [1].
6The full proof of the admissibility of the rule simulating the cut in deep inference systems in the system GS, as well as the

proof that GS is a conservative extension of multiplicative linear logic with mix, are quite convoluted and takes several pages in the

Appendix of [4].

3

2 From Formulas To Graphs
In this section we recall standard results from the literature on graphs such as modular decomposition and
cographs. We then introduce the notion of graphical connectives allowing us to extend the correspondence
between cographs and classical propositional formulas to general graphs.

2.1 Graphs and Modular Decomposition

In this work are interested in using graphs to represent patterns of interactions by means of the binary rela-
tions (edges) between their components (vertices). For this reason we recall the definition of labeled graph
(the mathematical structure we use to encode these patterns) together with the definition of isomorphism
(the standard notion of identity on labeled graphs) and the rougher notion of similarity (equivalence up-to
labels over vertices).

Definition 1. A L-labeled graph (or simply graph) G = 〈VG, ℓG,
G
⌢〉 is given by a finite set of vertices

VG, a partial labeling function ℓG : VG → L associating a label ℓ(v) from a given set of labels L to each
vertex v ∈ VG (we may represent ℓG as a set of equations of the form ℓ(v) = ℓv and denote by ∅ the empty

function), and a non-reflexive symmetric edge relation
G
⌢ ⊂ VG × VG whose elements, called edges, may

be denoted vw instead of (v,w). The empty graph 〈∅,∅,∅〉 is denoted ∅.

A similarity between two graphs G and G′ is a bijection f : VG → VG′ such that x
G
⌢y iff f (x)

G′

⌢ f (y) for
any x, y ∈ VG. An isomorphism is a similarity f such that ℓ(v) = ℓ(f (v)) for any x, y ∈ VG. Two graphs G
and G′ are similar (denoted G ∼ G′) if there is an similarity between G and G′. A symmetry is a similarity
of a graph with itself. They are isomorphic (denoted G = G′) if there is a isomorphism between G and G′.
From now on, we consider two isomorphic graphs to be the same graph.

Two vertices v and w in G are connected if there is a sequence v = u0, . . . , un = w of vertices in G

(called path) such that ui−1
G
⌢ui for all i ∈ {1, . . . , n}. A connected component of G is a maximal set of

connected vertices in G. A graph G is a clique (resp. a stable set) iff
G

6⌢ = ∅ (resp.
G
⌢ = ∅).

Notation 2. When drawing a graph or an unlabeled graph we draw v w whenever v⌢w, we draw no edge

at all whenever v 6⌢w. We may represent a vertex of a graph by using its label instead of its name. For
example, the single-vertex graph G = 〈{v}, ℓG,∅〉may be represented either by a the vertex name v or by the
vertex label ℓ(v) (or • if ℓ(v) is not defined). Note that, since we are considering isomorphic graphs to be
the same, as soon as there is no ambiguity due to vertices represented by the same symbol, we can assume
that the representation of a graph to provide us one of the possible triple (set of vertices, label function, and
set of edges) defining it.

Example 3. Consider the following graphs:

F = 〈 {u1, u2, u3, u4} , {ℓ(u1) = a, ℓ(u2) = b, ℓ(u3) = c, ℓ(u4) = d} , {u1u2, u2u3, u3u4} 〉

G = 〈 {v1, v2, v3, v4} , {ℓ(v1) = b, ℓ(v2) = a, ℓ(v3) = c, ℓ(v4) = d} , {v1v2, v1v3, v3v4} 〉

H = 〈 {w1,w2,w3,w4} , {ℓ(w1) = a, ℓ(w2) = b, ℓ(w3) = c, ℓ(w4) = d} , {w1w2,w1w3,w3w4} 〉

They are all symmetric, that is F ∼ G ∼ H, but F = G , H as can easily be verified using their representa-
tions:

F = a b c d = G and H = b a c d

Observation. The problem of graph isomorphism is a standard NP-problem (to be more precise, its com-
plexity is quasi-polynomial [11]). That is, verify that a given bijection between the sets of vertices of two
graphs is an isomorphism can be checked in polynomial time, while there is no known polynomial time
algorithm to find such an isomorphism. For this reason, whenever we say that two graphs are the same,
either we assume they share the same set of vertices, therefore implicitly assuming the isomorphism f to
be defined by the identity function over the set of vertices, or we assume an isomorphism to be given. This
allows us to verify whether two graphs are the same in polynomial time.

In order to use proof theoretical methodologies on graphs, we need a suitable notion of subgraphs
to be used in the same way sub-formulas are used in proof systems, that is, to state properties of the
calculus or to define the behavior of rules. For this purpose, we use for a notion of module to identify
subgraph allowing us to decompose a graph using abstract syntax trees similar to the ones underlying

4

formulas [29, 41, 37, 46, 49, 27]. Intuitively, a module is a subset of vertices of a graph having the same
edge-relation with any vertex outside the subset. This generalize what we observe in formulas, where any
propositional atom of a subformula has the same relation (the one given by the least common ancestor node
in the formula tree) with a given propositional atom not in the subformula with a propositional atom .

Definition 4. Let G = 〈VG, ℓG, EG〉 be a graph and W ⊆ VG. The graph induced by W is the graph

G|W ≔ 〈W, ℓG|W ,
G
⌢ ∩ (W ×W) 〉 where ℓG|W (v) ≔ ℓG(v) for all v ∈ W.

A module of a graph G is a subset M of VG such that x⌢z iff y⌢z for any x, y ∈ M, z ∈ VG \ M. A
module M is trivial if M = ∅, M = VG, or M = {x} for some x ∈ VG. From now on, we identify a module
M of a graph G with the induced subgraph G|M .

Remark 5. A connected component of a graph G is a module of G.

Using modules we can optimize the way we represent graphs reducing the number of edges drawn
without losing information, relying on the fact that all vertices of a module has the same edge-relation with
any vertex outside the module.

Notation 6. In representing graphs we may border vertices of a same module by a closed line. An edges
connected to such a closed line denotes the existence of an edge to each vertex inside it. By means of
example, consider the following graph and its more compact modular representation.

a c
e

b d
=

a

b

c

d
e (1)

The notion of module is related to a notion of context, which can be intuitively formulated as a graph
with a special vertex playing the role of a hole in which we can plug in a module.

Definition 7. A context C[�] is a (non-empty) graph containing a single occurrence of a special vertex �
(such that ℓ(�) is undefined). It is trivial if C[�] = �. If C[�] is a context and G a graph, we define C[G] as
the graph obtained by replacing � by G. Formally,

C[G] ≔ 〈
(

VC[�] \ {�}
)

⊎VG , ℓC∪ℓG ,

{

vw | v,w ∈ VC[�] \ {�}, v
C[�]
⌢ w

}

∪

{

vw | v ∈ VC[�] \ {�},w ∈ VG, v
C[�]
⌢ �

}

〉
Remark 8. A set of vertices M is a module of a graph G iff there is a context C[�] such that G = C[M].

We generalize this idea of replacing a vertex of a graph with a module by defining the operations of
composition-via a graph, where all vertices of a graph are replaced in a “modular way” by modules.

Definition 9. Let G be a graph with VG = {v1, . . . , vn} and let H1, . . . ,Hn be graphs. We define the com-
position of H1, . . . ,Hn via G as the graph GLH1, . . . ,HnM obtained by replacing each vertex vi of G with a
module Hi for all i ∈ {1, . . . , n}. Formally,

GLH1, . . . ,HnM = 〈
n
⊎

i=1

VHi
,

n
⋃

i=1

ℓHi
,

n
⋃

i=1

Hi
⌢

∪
{

(x, y) x ∈ VHi
, y ∈ VH j

, vi
G
⌢v j

}

〉 (2)

The subgraphs H1, . . . ,Hn are called factors of GLH1, . . . ,HnM and, by definition, are (possibly not maximal)
modules of GLH1, . . . ,HnM.

Remark 10. The information about the labels of the graph G used to define the composition-via operation
is lost. Moreover, if G is a graph with VG = {v1, . . . , vn} and σ a permutation over the set {1, . . . , n} such
that the map fσ : VG → VG mapping vi in fσ(vi) = vσ(i) for all i ∈ {1, . . . , n} is an similarity between G and
G, then GLH1, . . . ,HnM = G′LH1, . . . ,HnM.

In order to establish a connection between graphs and formulas, from now on we only consider graphs
whose set of labels belong to the set L =

{

a, a⊥ | a ∈ A
}

where A is a fixed set of propositional variables.
We then define the dual of a graphs.

5

Definition 11. Let G = 〈VG, ℓG, EG〉 be a graph. We define the edge relation
G

6⌢ ≔

{

(v,w) | v , w and vw <
G
⌢

}

and we define the dual graph of G as the graph G⊥ ≔ 〈VG,
G

6⌢, ℓG⊥〉 with ℓG⊥ (v) = (ℓG(v))⊥ (assuming
a⊥⊥ = a for all a ∈ A).

Remark 12. By definition, each module of a graph corresponds to a module of its dual graph. It follows
that a connected component of G⊥ is a module of G.

Notation 13. If G is the representation of a graph G, then we may represent the graph G⊥ by bordering the

representation of G with a closed line with the negation symbol on the upper-right corner, that is, G
⊥

.

2.2 Classical Propositional Formulas and Cographs

The set of classical (propositional) formulas is generated from a set of propositional variableA using the
negation (·)⊥, the disjunction ∨ and the conjunction ∧ using the following grammar:

φ, ψ ≔ a | φ ∨ ψ | φ ∧ ψ | φ⊥ with a ∈ A. (3)

We denote by ≡ the equivalence relation over formulas generated by the following laws:

Equivalence laws

{

φ ∨ ψ ≡ ψ ∨ φ φ ∨ (ψ ∨ χ) ≡ (φ ∨ ψ) ∨ χ
φ ∧ ψ ≡ ψ ∧ φ φ ∧ (ψ ∧ χ) ≡ (φ ∧ ψ) ∧ χ

De-Morgan laws
{

(φ⊥)⊥ ≡ φ (φ ∧ ψ)⊥ ≡ φ⊥ ∨ ψ⊥
(4)

We define a map from literals to single-vertex graphs, which extends to formulas via the composition-via
the unlabeled two-vertices stable set S2 and two-vertices clique K2.

Definition 14. Let φ be a classical formula, then
[[

φ
]]

is the graph inductively defined as follows:

[[a]] = a
[[

φ⊥
]]

=
[[

φ
]]⊥ [[

φ ∨ ψ
]]

= S2

(∣

∣

∣

[[

φ
]]

,
[[

ψ
]]

∣

∣

∣

)

[[

φ ∧ ψ
]]

= K2

(∣

∣

∣

[[

φ
]]

,
[[

ψ
]]

∣

∣

∣

)

where S2 and K2 are respectively a stable set and a clique with 2 vertices, and where we denote by a the
single-vertex graph, whose vertex is labeled by a.

We can easily observe that the map [[·]] well-behaves with respect to the equivalence over formulas ≡,
that is, equivalent formulas are mapped to the symmetric graphs.

Proposition 15. Let φ and ψ be classical formulas. Then φ ≡ ψ iff
[[

φ
]]

=
[[

ψ
]]

.

We finally recall the definition of cographs, and the theorem establishing the relation between cographs
and classical formulas, i.e., providing an alternative definition of cographs as graphs generated by single-
vertex graphs using the composition-via a two-vertices no-edge graph and a two-vertices one-edge graph.

Definition 16. A cograph is a graph G such that there are no four vertices v1, v2, v3, v4 in G such that the
induced subgraph G|{v1,v2,v3,v4} is similar to the graph 〈{a, b, c, d},∅, {ab, bc, cd}〉 = a b c d .

Theorem 17 ([29]). A graph G is a cograph iff there is a formula φ such that G ∼
[[

φ
]]

.

2.3 Modular Decomposition of Graphs

We recall the notion of prime graph, allowing us to provide canonical representatives of graphs via modular
decomposition. (see e.g., [29, 41, 37, 46, 49, 27]).

Definition 18. A graph G is prime if |VG | > 1 and all its modules are trivial.

We recall the following standard result from the literature.

Theorem 19 ([41]). Let G be a graph with at least two vertices. Then there are non-empty modules
M1, . . . , Mn of G and a prime graph P such that G = PLM1, . . . , MnM.

6

This result implies the possibility of describing graphs using single-vertex graphs and the operation of
composition-via prime graphs. More precisely, we can define the notion of modular decomposition of a
graph composition-via prime graphs to provide a more canonical representation.

Definition 20. Let G be a non-empty graph. A modular decomposition of G is a way to write G using
single-vertex graphs and the operation of composition-via prime graphs:

• if G is a graph with a single vertex x labeled by a, then G = a (i.e., G = 〈{x}, ℓ(x) = a,∅〉);

• if H1, . . . ,Hn are maximal modules of G such that VG =
⊎n

i=1 VHi
, then there is a unique prime graph

P such that G = PLH1, . . . ,HnM.

Remark 21. There are various reasons why modular decomposition is not unique.
The first is due to the possible presence of cliques and stable sets. By means of example, consider a

clique with three vertices u, v and w can be represented as (u⊗ v)⊗w or u⊗(v⊗w).
We already observed the second reason in Remark 10, since graph symmetries allow us to represent the

same graph by different decompositions, as shown in top-most modular decomposition below on the left.

PLu, v,w, tM = u v w t = PLt,w, v, uM
PLu, v,w, tM = u v w t = P′Lu,w, v, tM

where P = a b c d and P′ = a c b d .

Finally, two symmetric prime graphs could provide distinct modular decompositions of the same graph, as
shown above with symmetric prime graphs P and P′.

The first problem could be addressed by considering in the modular decomposition not only prime
graphs, but also cliques and stable sets, that is, including n-ary versions of the operations ` and ⊗. We
show later in this paper that this problem is irrelevant due to the associativity of ` and ⊗. The second
problem cannot be addressed without enforcing a cumbersome order over graphs taking into account vertex
labels and factor positions. However, we can address the latter source of ambiguity by introducing the
notion of base of graphical connectives, allowing us to provide a single canonical prime graph for each
class of symmetric prime graphs.

Definition 22. A graphical connective C = 〈VC,
C
⌢〉 (with arity n = |VC|) is given by a finite list of vertices

VC = 〈v1, . . . , vn〉 and a non-reflexive symmetric edge relation
C
⌢ over the set of vertices occurring in

VC. We denote by GC the graph corresponding to C, that is, the graph GC = 〈{v | v in VC},∅,
C
⌢〉. The

composition-via a graphical connective is defined as the composition-via the graph GC .
A graphical connective is prime if GC is a prime graph. A set P of prime graphical connectives is a base

if for each prime graph P there is a unique connective C ∈ P such that P ∼ GC .
Given an n-ary connective C, we define the following sets of permutations over the set {1, . . . , n}:

the group7 of symmetries of C : S(C) ≔
{

σ | CLa1, . . . , anM = CLaσ(1), . . . , aσ(n)M
}

the set of dualizing symmetries of C : S⊥(C) ≔

{

σ | (CLa1, . . . , anM)
⊥
= CLa⊥

σ(1)
, . . . , a⊥

σ(n)
M
} (5)

for some single-vertex graphs a1, . . . , an.

Notation 23. We define the following graphical connectives (with n > 1):

`Lv1, v2M≔〈〈v1, v2〉,∅〉 = v1 v2

⊗Lv1, v2M≔〈〈v1, v2〉, {v1v2}〉 = v1 v2

PnLv1, . . . , vnM≔〈〈v1, . . . , vn〉, {vivi+1 | i ∈ {1, . . . , n − 1}}〉 = v1 v2 · · · vn−1 vn

BullLv1, . . . , v5M≔〈〈v1, . . . , v5〉, {(v1v2, v2v3, v3v4, v5v2, v5v3)}〉 =
v1 v2 v3 v4

v5

(6)

Example 24. Consider the following graph G and its dual G⊥:

G =

c
d

e
f

a b g h i

and G⊥ =

d⊥
c⊥

e⊥
f⊥

a⊥

b⊥

i⊥

h⊥

g⊥

7

We can write them as

G = P4

(∣

∣

∣a ` b, c⊗d, e⊗ f , g⊗(h⊗ i)
∣

∣

∣

)

= a b c d e f g h i

G⊥=P⊥
4

(∣

∣

∣a⊥ ⊗ b⊥, c⊥ ` d⊥, e⊥ ` f⊥, g⊥ ` (h⊥ ` i⊥)
∣

∣

∣

)

=

=P4

(∣

∣

∣c⊥ ` d⊥, a⊥ ⊗ b⊥, g⊥ ` (h⊥ ` i⊥), e⊥ ` f⊥
∣

∣

∣

)

= e⊥ f⊥ a⊥ b⊥ g⊥ h⊥ i⊥ c⊥ d⊥

We can reformulate the standard result on modular decomposition as follows.

Theorem 25. Let G be a non-empty graph and P a base. Then then there is a unique way (up to symme-
tries of graphical connectives and associativity of ` and ⊗) to write G using single-vertex graphs and the
graphical connectives in P.

Corollary 26. Two graphs are isomorphic iff they admit a same modular decomposition.

2.4 Graphs as Formulas

In order to represent graphs as formulas, we define new connectives beyond conjunction and disjunction to
represent graphical connectives in a base P. From now on, we assume bases P containing the graphical
connectives in Equation (6) to be fixed.

Definition 27. The set of formulas is generated by the set of propositional atoms A, a unit ◦, using the
following syntax:

φ1, . . . , φn ≔ ◦ | a | a
⊥ | κPLφ1, . . . , φnP

M with a ∈ A and P ∈ P (7)

We simply denote ` (resp. ⊗) the binary connective κ` (resp. κ⊗) and we write φ` ψ instead of κ`Lφ, ψM
(resp. φ⊗ψ instead of κ⊗Lφ, ψM). The arity of the connective κP is the arity nP of P.

A literal is a formula of the form a or a⊥ for an atom a ∈ A. The set of literals is denoted L. A
κ-formula is a formula with main connective κ, that is, a formula of the form κLφ1, . . . , φnM. A formula
is unit-free if it contains no occurrences of ◦ and vacuous if it contains no atoms. A formula is pure if
non-vacuous and such that its vacuous subformulas are ◦. A MLL-formula is a formula containing only
occurrences of ` and ⊗ connectives.

A context formula (or simply context) ζ[�] is a formula containing an hole � taking the place of an
atom. Given a context ζ[�], the formula ζ[φ] is defined by simply replacing the atom � with the formula φ.
For example, if ζ[�] = ψ` (�⊗χ), then ζ[φ] = ψ` (φ⊗χ).

For each φ formula (or context), the graph
[[

φ
]]

is defined as follows:

[[�]] = � [[◦]] = ∅ [[a]] = a
[[

φ⊥
]]

=
[[

φ
]]⊥ [[

κPLφ1, . . . , φnM
]]

= P
(∣

∣

∣

[[

φ1

]]

, . . . ,
[[

φn

]]

∣

∣

∣

)

(8)

Notation 28. We could consider a formula φ over the set of occurrences of literals {x1, . . . , xn} as a synthetic
connective. That is, we may denote by φLψ1, . . . , ψnM the formula obtained by replacing each literal xi with a
corresponding ψi for all i ∈ {1, . . . , n}. The set of symmetries of φ (denotedS(φ)) is the set of permutations
σ over {1, . . . , n} such that

[[

φLx1, . . . , xnM
]]

=
[[

φLxσ(1), . . . , xσ(n)M
]]

.

Definition 29. The equivalence relation ≡ over formulas is generated by the following equations:

Equivalence laws

κPLφ1, . . . , φ|P|M ≡ κPLφσ(1), . . . , φσ(|VP |)M for each σ ∈ S(P)
φ⊗(ψ⊗ χ) ≡ (φ⊗ψ)⊗ χ

φ` (ψ` χ) ≡ (φ` ψ) ` χ

De-Morgan laws

◦⊥ ≡ ◦ φ⊥⊥ ≡ φ

only if S⊥(P) = ∅ :
(

κPLφ1, . . . φnP
M
)⊥
≡ κP⊥Lφ

⊥
σ(1)

, . . . , φ⊥
σ(nP)

M

only if S⊥(Q) , ∅ :
(

κPLφ1, . . . φnP
M
)⊥
≡ κPLφ⊥

ρ(1)
, . . . , φ⊥

ρ(nP)
M for each ρ ∈ S⊥(P)

for each P ∈ P (with arity nP).
The (linear) negation over formulas is defined by letting

◦⊥ = ◦ φ⊥⊥ = φ
(

κPLφ1, . . . , φnM
)⊥
= κQLφ⊥σP(1), . . . , φ

⊥
σP(n)M

8

where Q is the unique graphical connective in P such that
[[

κP

(∣

∣

∣a1, . . . , an

∣

∣

∣

)]]

= Q
(∣

∣

∣a⊥σ(1)
, . . . , a⊥σn

∣

∣

∣

)

for any

single-vertex graphs a⊥
1
, . . . , a⊥n (with vertex labeled by a⊥

1
, . . . , a⊥n respectively) and a permutationσP over

the set {1, . . . , n}. 8

The linear implication φ⊸ ψ is defined as φ⊥ ` ψ, while the logical equivalence φ� ψ is defined as
(φ⊸ ψ)⊗(ψ⊸ φ).

Remark 30. As explained in [4] (Section 9), the graphical connectives we discuss in this paper are mul-
tiplicative connectives (in the sense of [22, 33]) but they are not the same as the connectives-as-partitions
discussed in these works. In fact, there is a unique 4-ary graphical connectives P4 with symmetry group
{id, (1, 4)(2, 3)}, while, as shown in [48, 5], there is a unique pair of dual 4-ary multiplicative connectives-
as-partitions G4 and G⊥

4
with a strictly larger symmetry group.

The following result is consequence of Theorem 19.

Proposition 31. Let φ and ψ be formulas. If φ ≡ ψ, then
[[

φ
]]

=
[[

ψ
]]

. Moreover, if φ and ψ are unit-free,
then φ ≡ ψ iff

[[

φ
]]

=
[[

ψ
]]

.

Note that the the stronger result does not hold in presence of units. For an example consider any two
distinct vacuous formulas.

3 Sequent calculi over operating on graphs-as-formulas
We assume the reader to be familiar with the definition of sequent calculus derivations as trees of sequents
(see, e.g., [56]) but we recall here some definitions.

Definition 32. We define a sequent is a set of occurrences of formulas. A sequent system S is a set of
sequent rules as the ones in Figure 4. In a sequent rule ρ, we say that a formula is active if it occurs in
one of its premises (the sequents above the horizontal line) but not in its conclusion (the sequent below the
horizontal line), and principal if it occurs in its conclusion but in none of its premises.

A proof of a sequent Γ is a derivation with no open premises, denoted
π S

Γ
. We denote by

Γ
′

π′ S

Γ

an (open)

derivation of Γ from Γ′, that is, is a proof tree having exactly one open premise Γ′.
A rule is admissible in S if there is a derivation of the conclusion of the rule whenever all premises

of the rule are derivable. A rule is derivable in S, if there is a derivation in S from the premises to the
conclusion of the rule.

Notation 33. In this paper we use the same notation to denote a sequent system S and the set of formulas
admitting a proof in S.

Definition 34. We define the following sequent systems using the rules in Figure 4.

Multiplicative Graphical Logic : MGL = {ax,`,⊗, d-P | P ∈ P}
Multiplicative Graphical Logic with mix : MGL◦ = MGL ∪

{

mix,wd⊗, unitorκ
} (9)

Observation (Rules Exegesis). The rules axiom (ax), par (`), tensor (⊗), cut (cut), and mix (mix) are the
standard as in multiplicative linear logic with mix. Note that ax is restricted to atomic formulas.

The dual connectives rule (d-κ) handles a pair of dual connectives at the same time.9 To get an intuition
of this rule, consider the right-conjunction rule (∧R) used in two-sided sequent calculi for classical logic
shown below on the left. The interpretation of this rule is that if the left premise and the right premise
are derivable, then the conclusion is. Note that, even if the rule does not introduce a conjunction on the
lefthand-side of the ⊢, the interpretation of the conclusion sequent is the same of the interpretation of the

8Note that the permutation σP may be not unique. This is not a problem if we consider formulas up-to the equivalence relation ≡.

Otherwise, in order to properly define the linear negation, we should fix a permutation σP for each graphical connective P ∈ P in such

a way either σP is an involution (in case GP ∼ (GP)⊥), or σPσQ is the identity (in case GP / (GP)⊥ ∼ GQ for a Q ∈ P \ {P}).
9Rules handling multiple operators at the same time are not a novelty in structural proof theory: in focused proof systems (see,

e.g.[9, 51, 50]) rules can handle multiple connectives of a same formula, while in modal logic and linear logic (see, e.g., [32, 12, 14, 44])

is quite standard to have rules handling modalities occurring in different formulas of a same sequent.

9

ax
⊢ a, a⊥

⊢ Γ, φ, ψ
`

⊢ Γ, φ` ψ

⊢ Γ, φ ⊢ ψ,∆
⊗
⊢ Γ, φ⊗ψ,∆

⊢ Γ1, φσ(1), ψτ(1) · · · ⊢ Γn, φσ(n), ψτ(n)
d-κ

σ ∈ S(κ)

τ ∈ S(κ⊥)⊢ Γ1, . . . , Γn, κLφ1, . . . , φnM, κ
⊥Lψ1, . . . ψnM

⊢ Γ1 ⊢ Γ2
mix
⊢ Γ1, Γ2

⊢ Γ, φk ⊢ ∆, κLφ1, . . . , φk−1, ◦, φk+1, . . . , φnM
wd⊗

⊢ Γ,∆, κLφ1, . . . , φnM

⊢ Γ, χLφσ(1), . . . , φσ(n)M
unitorκ †

⊢ Γ, κLφ1, . . . , φk, ◦, φk+1, . . . , φnM

† ≔ σ ∈ S(χ) and
[[

κLφ1, . . . , φk, ◦, φk+1, . . . , φnM
]]

=
[[

χLφσ(1), . . . , φσ(n)M
]]

, ∅

Figure 4: Linear sequent calculus rules for MGL and MGL◦.

AX φ pure
⊢ φ, φ⊥

⊢ Γ1, φ ⊢ Γ2, φ
⊥

cut
⊢ Γ1, Γ2

⊢ Γ, κLφ, ψ1, . . . , ψnM
wd`

⊢ Γ, κL◦, ψ1, . . . , ψnM, φ

⊢ Γ, φ ⊢ ∆, ψ
deep

[[

ζ[◦]
]]

=
[[

ψ
]]

⊢ Γ,∆, ζ[φ]

⊢ Γ1, φσ(1), ψτ(1) · · · ⊢ Γn, φσ(n), ψτ(n)
d-χ

σ ∈ S(χ)

τ ∈ S(χ⊥)⊢ Γ1, . . . , Γn, χLφ1, . . . , φnM, χ
⊥Lψ1, . . . ψnM

Figure 5: Admissible rules in MGL◦.

sequent in which φ1 and φ2 are in conjunction because the standard interpretation of a two-sides sequent

Γ ⊢ ∆ is defined as
(

∧

φ∈Γ φ
⊥
)

∨
(

∨

ψ∈∆ ψ
)

.

Γ1, φ1 ⊢ ψ1,∆1 “and” Γ2, φ2 ⊢ ψ2,∆2
∧R

Γ1, Γ2, φ1, φ2 ⊢ ψ1 ∧ ψ2,∆1,∆2

P4

(∣

∣

∣

∣

Γ1, φ1 ⊢ ψ1,∆1 , Γ2, φ2 ⊢ ψ2,∆2 , Γ3, φ3 ⊢ ψ3,∆3 , Γ4, φ4 ⊢ ψ4,∆4

∣

∣

∣

∣

)

Γ1, Γ2, Γ3, Γ4, κP4
Lφ1, φ2, φ3, φ4M ⊢ κP4

Lψ1, ψ2, ψ3, ψ4M,∆1,∆2,∆3,∆4

In a two-sided setting the rule d-κ could have been reformulated by introducing the same connective in both
sides. Intuitively, such a rule would internalize in the logic a “meta” relation between the premises of the
rule, as intuitively shown above on the right for the connective P4.

The names of the rules unitor (unitorκ) and weak-distributivity (wd⊗) are inspired by the literature of
monoidal categories [47] and weakly distributive categories [54, 20, 19]. The rule unitorκ internalize the
fact that the unit ◦ is the neutral element for all connectives (its side condition prevents the creation of
non-pure formulas). Under the assumption of the existence of a ◦ which is the unit of both ⊗ and `,
the rule wd⊗ generalizes the weak-distribution law (shown below on the left) of the ⊗ over the ` to the
weak-distributivity of ⊗ over any connective (see below on the top-right)

φ⊗(ψ` χ) −→ (φ⊗ψ) ` χ
χ⊗ κLφ1, . . . , φk, ψ, φk+1, . . . , φnM −→ κLφ1, . . . , φk, ψ⊗χ, φk+1, . . . , φnM
κLφ1, . . . , φk, ψ` χ, φk+1, . . . , φnM −→ κLφ1, . . . , φk, ψ, φk+1, . . . , φnM ` χ

(10)

Note that an additional law is required to formalize the weak-distributivity law of all connectives over `
(see above on the bottom-right). This law corresponds to the rule wd` in Figure 5.

Notation 35. Unless strictly needed for sake of clarity, we omit to the permutations over the indices of the
subformulas in rules.

3.1 Properties of the systems MGL and MGL◦

We start by observing that these systems are initial coherent [10, 50], that is, we can derive the implication
φ ⊸ φ for any formula φ only using atomic axioms. To prove this result we observe that the generalized
version of d-κ (that is, the rule d-χ) is derivable by induction on the structure of χ using the rule d-κ.

10

ax
⊢ a, a⊥ ⊢ a, Γ

cut
⊢ a, Γ

 ⊢ a⊥, Γ

⊢ Γ, φ ⊢ ∆, ψ
⊗
⊢ Γ,∆, φ⊗ψ

⊢ Σ, φ⊥ ` ψ⊥
`

⊢ Σ, φ⊥ ` ψ⊥
cut

⊢ Γ,∆,Σ

 ⊢ Γ, φ

⊢ ∆, ψ ⊢ Σ, φ⊥, ψ⊥
cut

⊢ ∆,Σ, φ⊥
cut

⊢ Γ,∆,Σ

⊢ Γ1, φ1, ψ1 · · · ⊢ Γn, φn, ψn
d-κ
⊢ Γ1, . . . , Γn, κLφ1, . . . , φnM, κ

⊥Lψ1, . . . , ψnM

⊢ ∆1, ψ
⊥
1
, χ1 · · · ⊢ ∆n, ψ

⊥
n , χn

d-κ
⊢ ∆1, . . . ,∆n, κLψ

⊥
1
, . . . , ψ⊥n M, κ⊥Lχ1, . . . , χnM

cut
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n, κLφ1, . . . , φnM, κ

⊥Lχ1, . . . , χnM

⊢ Γ1, φ1, ψ1 ⊢ ∆1, ψ
⊥
1
, χ1

cut
⊢ Γ1,∆1, φ1, χ1 · · ·

⊢ Γn, φn, ψn ⊢ ∆n, ψ
⊥
n , χn

cut
⊢ Γn, φn, χn

d-κ
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n, κ

⊥Lψ1, . . . , ψnM, κLχ1, . . . , χnM

Figure 6: Cut-elimination steps for MGL.

Therefore, we can prove that the generalized non-atomic axiom rule (AX) is derivable, and that both MGL
and MGL◦ are initial coherent

Lemma 36. Let χ be a pure formula. Then rule d-χ is derivable.

Proof. By induction on the structure of χ:

• if φ = a is a literal, then AX is an instance of ax;

• if φ = κψ1, . . . , ψk, ◦, ψk+1, . . . , ψn, then apply twice unitorκ to the sequent ⊢ φ, φ⊥ to obtain the
sequent of pure formulas ⊢ κχψ1, . . . , ψn, κχ⊥ψ

⊥
1
, . . . , ψ⊥n . We conclude by inductive hypothesis;

• if φ = κLψ1, . . . , ψnM and ψi , ◦ for all i ∈ {1, . . . , n}, then apply the rule d-κ to obtain sequents
of pure formulas the form ψi, ψ

⊥
i

for all i ∈ {1, . . . , |κ|}. We conclude by inductive hypothesis.

�

Corollary 37. The rule AX is derivable in MGL and in MGL◦.

Theorem 38. The systems MGL and MGL◦ are initial coherent (with respect to pure formulas).

We then prove the admissibility of cut via cut-elimination by providing a cut-elimination procedure.

Theorem 39 (Cut-elimination). Let X ∈ {MGL,MGL◦}. The rule cut is admissible in X.

Proof. We define the size of a formula as sum of the number of ◦, connectives and twice the number
of literals in it. The size of a derivation is the sum of the sizes of the active formulas in all cut-rules.
The result follows by the fact that each cut-elimination step from Figures 6 and 7 reduces the size of
a derivation.

Note that in order to ensure that both active formulas of a cut are principal with respect to the rule
immediately above it we also need to consider the commutative cut-elimination steps from Figure 8.
The treatment of these rule, as well as the definition of a size taking into account them, is not covered
in the detail here because it is standard in the literature (see, e.g., [56]). �

Corollary 40. Let X ∈ {MGL,MGL◦}. If ⊢X φ⊸ ψ and ⊢X ψ⊸ χ, then ⊢X φ⊸ χ.

The admissibility of cut implies analyticity of MGL via the standard sub-formula property, that is, all
(occurrences of) formulas occurring in the premises of a rule are subformulas of the ones in the conclusion.

Corollary 41 (Analyticity of MGL). Let Γ be a sequent. If ⊢MGL Γ then there is a proof of Γ in MGL only
containing occurrences of sub-formulas of formulas Γ.

11

⊢ Γ, χLφ2, . . . , φnM
unitorκ

⊢ Γ, κPL◦, φ2, . . . , φnM

⊢ ∆, χ⊥Lφ⊥
2
, . . . , φ⊥n M

unitorκ
⊢ ∆, κP⊥L◦, φ

⊥
2
, . . . , φ⊥n M

cut
⊢ Γ,∆

⊢ Γ, χLφ2, . . . , φnM ⊢ ∆, χ⊥Lφ⊥
2
, . . . , φ⊥n M

cut
⊢ Γ,∆

⊢ Γ1, φ1 ⊢ Γ2, κPL◦, φ2, . . . , φnM
wd⊗

⊢ Γ1, Γ2, κPLφ1, . . . , φnM

⊢ ∆1, φ
⊥
1
⊢ ∆2, κP⊥L◦, φ

⊥
2
, . . . , φ⊥n M

wd⊗
⊢ ∆, κP⊥Lφ

⊥
1
, . . . , φ⊥n M

cut
⊢ Γ1, Γ2,∆1,∆2

⊢ Γ1, φ1 ⊢ ∆1, φ
⊥
1

cut
⊢ Γ1,∆1

⊢, Γ2, κPL◦, φ2, . . . φnM ⊢ ∆2, κP⊥L◦, φ
⊥
2
, . . . φ⊥n M

cut
⊢ Γ2,∆2

mix
⊢ Γ1, Γ2,∆1,∆2

⊢ Γ1, φ1, ψ1 · · · ⊢ Γn, φn, ψn
d-κ
⊢ Γ1, . . . , Γn, κPLφ1, . . . , φnM, κP⊥Lψ1, . . . , ψnM

⊢ ∆, ψ⊥
1
⊢ Σ, κPL◦, ψ⊥

2
, . . . , ψ⊥n M

wd⊗
⊢ ∆,Σ, κPLψ⊥

1
, . . . , ψ⊥n M

cut
⊢ Γ1, . . . , Γn,∆,Σ, κPLφ1, . . . , φnM

⊢ Γ1, φ1, ψ1 ⊢ ∆, ψ⊥
1

cut
⊢ Γ1,∆, φ1

⊢ Γ2, φ2, ψ2 · · · ⊢ Γn, φn, ψn
d-χ
⊢ Γ2, . . . , Γn, κχLφ1, . . . , φnM, κ

⊥
χ Lψ1, . . . , ψnM

2×unitorκ
⊢ Γ2, . . . , Γn, κPL◦, φ1, . . . , φnM, κP⊥L◦, ψ1, . . . , ψnM ⊢ Σ, κPL◦, ψ⊥

2
, . . . , ψ⊥n M

cut
⊢ Γ2, . . . , Γn,Σ, κPL◦, φ2, . . . , φnM

wd⊗
⊢ Γ1, . . . , Γn,∆,Σ, κPLφ1, . . . , φnM

Figure 7: Additional cut-elimination steps in GML◦.

However, the same result does not hold for MGL◦ because of the rule unitorκ . In fact, the presence
of more-than-binary connectives and their units (in this case, a unique unit ◦) implies, as observed in the
previous works on graphical logic [3, 4, 1], the possibility of having sub-connectives, that is, connectives
with smaller arity behaving as if certain entries of the connective are fixed to be units.

Definition 42. Let P and P′ be prime graphs. If PL◦, . . . , ◦, vi1 , ◦, . . . , ◦, vik , ◦, . . . , ◦M ∼ P′Lv1, . . . , vnM for
single-vertex graphs v1, . . . , vn and for some i1, . . . , ik ∈ {1, . . . , n} such that ii < · · · < ik, then we may write
κP|i1 ,...,ik

= κQ′ and we say that the connective κP′ is a sub-connective of if κP.

A quasi-subformula of a formula φ = κPLψ1, . . . , ψnM is a formula of the form κP′ |i1 ,...,ik
Lψ′

i1
, . . . , ψ′

ik
M with

ψ′
i j

a quasi-subformula of ψi j
for all i j ∈ {i1, . . . , ik}.

Corollary 43 (Analyticity of MGL◦). Let Γ be a sequent. If ⊢MGL◦ Γ then there is a proof of Γ in MGL◦ only
containing occurrences of quasi-subformula of formulas in Γ.

Corollary 44 (Conservativity). The logic MGL is a conservative extension of MLL. The logic MGL◦ is a
conservative extension of MLL◦.

Proof. For MGL it is consequence of the subformula property. For MGL◦ it suffices to remark that `
and ⊗ have no sub-connectives, therefore quasi-subformula are simply sub-formulas. �

For both MGL and MGL◦ we have the following result which takes the name of splitting in the deep
inference literature (see, e.g, [7, 35, 36]). This result states that is always possible, during proof search, to
apply a rule removing a connective after having applied certain rules in the context.10

10Note that in the linear logic literature, “splitting” is only used to refer to the special case in which a ⊗ is removed, without requiring

the application of rules to the context.

12

⊢ Γ1,∆
′, φ

ρ
⊢ Γ1,∆, φ ⊢ φ⊥, Γ2

cut
⊢ Γ1, Γ2,∆

⊢ Γ1,∆
′, φ ⊢ φ⊥, Γ2

cut
⊢ Γ1, Γ2,∆

ρ
⊢ Γ1, Γ2,∆

′

⊢ Γ1,∆
′
1
· · · ⊢ Γn,∆

′
n, φ

ρ
⊢ Γ1, . . . , Γn,∆, φ ⊢ φ⊥, Γn+1

cut
⊢ Γ1, . . . , Γn+1,∆

 ⊢ Γ1,∆
′
1
· · · ⊢ Γn−1,∆

′
n−1

⊢ Γn,∆
′
n, φ ⊢ Γn+1, φ

⊥

cut
⊢ Γn, Γn+1,∆

′
n

ρ
⊢ Γ1, . . . , Γn+1,∆

⊢ Γ, χLφ1, . . . , φi−1, φi+1, . . . , φ j−1, φ j+1, . . . , φnM
unitorκ

⊢ Γ, κPLφ1, . . . , φi−1, ◦, φi+1, . . . , φ j−1, φ j+1, . . . , φnM
unitorκ

⊢ ΓκPLφ1, . . . , φi−1, ◦, φi+1, . . . , φ j−1, ◦, φ j+1, . . . , φnM

⊢ Γ, χLφ1, . . . , φi−1, φi+1, . . . , φ j−1, φ j+1, . . . , φnM
unitorκ

⊢ Γ, κP′Lφ1, . . . , φi−1, φi+1, . . . , φ j−1, ◦, φ j+1, . . . , φnM
unitorκ

⊢ Γ, κPLφ1, . . . , φi−1, ◦, φi+1, . . . , φ j−1, ◦, φ j+1, . . . , φnM

Figure 8: Commutative cut-elimination steps.

Lemma 45 (Splitting). Let Γ, κLφ1, . . . , φnM be a sequent and let X ∈ {MGL,MGL◦}. If ⊢X Γ, κLφ1, . . . , φnM,
then there is a derivation of the following shape

π1

⊢ Γ′, χLφ1, . . . , φk−1, φk+1, φnM
unitorκ

⊢ Γ′, κLφ1, . . . , φk−1, ◦, φk+1, φnM
π0

⊢ Γ, κLφ1, . . . , φk−1, ◦, φk+1, φnM

or

π1

⊢ ∆1, φ1 · · ·
πn

⊢ ∆n, φn
ρ
⊢ Γ′, κLφ1, . . . , φnM

π0

⊢ Γ, κLφ1, . . . , φnM

with ρ ∈ {`,⊗, d-κ}

Proof. By case analysis of the last rule occurring in a proof π of Γ, κLφ1, . . . , φnM:

• the last rule cannot be a ax since κLφ1, . . . , φnM contains at least one connective;

• if the last rule is a ` or a unitorκ , then either this is the desired rule, or we conclude by inductive
hypothesis on its premise;

• if the last rule is a mix, then we conclude by inductive hypothesis on the premise containing
the formula κLφ1, . . . , φnM;

• if the last rule is in {⊗, d-κ,wd⊗, unitorκ } then either this is the desired rule or one of the (prov-
able) premises of this rule is of the shape Γ′, κLφ1, . . . , φnM, allowing us to conclude by inductive
hypothesis. �

We conclude this section proving the admissibility of the rule wd` which we use to simplify proofs in
the next section.

Lemma 46. The rule wd` is admissible in MGL◦.

Proof. In Figure 9 we providde a procedure to remove (top-down) all occurrences of wd`. Similar
to cut-elimination, we use the commutative steps from Figure 8 to ensure that the active formula of
the wd` we want to remove is principal with respect to the rule immediately above it. �

Lemma 47. The rule deep is admissible in MGL◦.

Proof. Since ζ[◦] , ◦, then w.l.o.g., ζ[�] = κLζ′[�], ψ′
1
, . . . , ψ′nM. If ζ′[�] = �, then w.l.o.g., ψ =

χLψ′
1
, . . . , ψ′nM and we conclude since we have

⊢ Γ, φ

⊢ ∆, χLψ′
1
, . . . , ψ′nM

unitorκ
⊢ ∆, κL◦, ψ′

1
, . . . , ψ′nM

wd`

⊢ Γ,∆, κLφ, ψ′
1
, . . . , ψ′nM

Otherwise we conclude by inductive hypothesis on the size of ζ[�] since by Lemma 45 we can define

13

π1

⊢ Γ, φ, ψ
`

⊢ Γ, φ` ψ
wd`

⊢ Γ, φ, ◦` ψ

π1

⊢ Γ, φ, ψ
unitorκ

⊢ Γ, φ, ◦` ψ

π1

⊢ Γ, φ
π2

⊢ ∆, ψ
⊗
⊢ Γ,∆, φ⊗ψ

wd⊗
⊢ Γ,∆, φ, ◦⊗ψ

π1

⊢ Γ, φ
π2

⊢ ∆, ψ
mix
⊢ Γ,∆, φ, ψ

unitorκ
⊢ Γ,∆, φ, ◦⊗ψ

π1

⊢ Γ1, φ, ψ1

π2

⊢ Γ2, φ2, ψ2 · · ·
πn

⊢ Γn, φn, ψn
d-κ

⊢ Γ1, . . . , Γn, κ
⊥Lψ1, . . . , ψnM, κLφ, φ2, . . . , φnM

wd`

⊢ Γ1, . . . , Γn, κ
⊥Lψ1, . . . , ψnM, κL◦, φ2, . . . , φnM, φ

 π1

⊢ Γ1, φ, ψ1

π2

⊢ Γ2, ψ2, χ2 · · ·
πn

⊢ Γn, ψn, χn
d-χ
⊢ Γ2, . . . , Γn, χ

⊥Lψ2, . . . , ψnM, χLφ2, . . . , φnM
2×unitorκ

⊢ Γ2, . . . , Γn, κ
⊥L◦, ψ1, . . . , ψnM, κL◦, φ2, . . . , φnM

wd⊗
⊢ Γ1, . . . , Γn, κ

⊥Lψ1, . . . , ψnM, κL◦, φ2, . . . , φnM, φ

π1

⊢ Γ1, ψk

π2

⊢ Γ2, κLφ, ψ2, . . . , ψk−1, ◦, ψk+1, . . . , ψnM
wd⊗

⊢ Γ1, Γ2, κLφ, ψ2, . . . , ψnM
wd`

⊢ Γ1, Γ2, κL◦, ψ2, . . . , ψnM, φ

π1

⊢ Γ1, ψ
′

π2

⊢ Γ2, κLφ, ψ2, . . . , ψk−1, ◦, ψk+1, . . . , ψnM
wd`

⊢ Γ2, κL◦, ψ2, . . . , ψk−1, ◦, ψk+1, . . . , ψnM, φ
wd⊗

⊢ Γ, κL◦, ψ2, . . . , ψk, ψ
′, ψk+1, . . . , ψnM, φ

π1

⊢ Γ, χLφ, ψ2, . . . , ψn−1M
unitorκ

⊢ Γ, κLφ, ψ2, . . . , ψn−1, ◦M
wd`

⊢ Γ, κL◦, ψ2, . . . , ψn−1, ◦M, φ

π′
1

IH

⊢ Γ, χL◦, ψ2, . . . , ψn−1M, φ
unitorκ

⊢ Γ, κL◦, ψ2, . . . , ψn−1, ◦M, φ

Figure 9: Steps to eliminate wd` rules.

a derivation of the form

IH

⊢ Γ′,∆′, χLζ[φ], ψ1, . . . , ψnM
unitorκ

⊢ Γ′,∆′, κLζ[φ], ψ1, . . . , ψk−1, ◦, ψk+1 . . . ψnM
π0

⊢ Γ,∆, κLζ[φ], ψ1, . . . , ψk−1, ◦, ψk+1 . . . ψnM

or

IH

⊢ Γ′,∆0, ζ[φ]
π1

⊢ ∆1, ψ
′
1
· · ·

πn

⊢ ∆n, ψ
′
n

ρ
⊢ Γ′,∆′, κLζ[φ], ψ′

1
, . . . , ψ′nM

π0

⊢ Γ,∆, κLζ[φ], ψ′
1
, . . . , ψ′nM

with ρ ∈ {`,⊗, d-κ}. �

3.2 Soundness of Logical Equivalence in MGL◦

In this sub-section we prove that if two formulas φ and ψ interpreted by a same graph (i.e.,
[[

φ
]]

=
[[

φ
]]

) iff
they are logically equivalent (i.e., φ� ψ). For this purpose, we show that all equivalence and De Morgan
laws from Definition 29 can be reformulated as logical equivalence which are derivable in MGL.

Lemma 48. The following implications are provable in MGL whenever they are unit-free:

for all σ ∈ S(P) : κPLφ1, . . . , φnM⊸κPLφσ(1), . . . , φσ(n)M κPLφσ(1), . . . , φσ(n)M⊸κPLφ1, . . . , φnM
for all τ ∈ S⊥(P) : κPLφ1, . . . , φnM⊸κP⊥Lφρ(1), . . . , φρ(n)M κP⊥Lφρ(1), . . . , φρ(n)M⊸κPLφ1, . . . , φnM

((φ` ψ) ` χ)⊸(φ` (ψ` χ)) (φ` (ψ` χ))⊸((φ` ψ) ` χ)
((φ⊗ψ)⊗χ)⊸(φ⊗(ψ⊗χ)) (φ⊗(ψ⊗χ))⊸((φ⊗ψ)⊗χ)

Proof. The implications in the first two lines are derivable using an instance of ` followed by a d-κ
and some AX-rules. The remaining implications are derivable applying four `-rules followed by
three ⊗-rules and AX-rules. �

We conclude that MGL is sound and complete with respect to graph isomorphism for non-empty graphs.

Theorem 49. Let φ and ψ unit-free formulas. Then
[[

φ
]]

=
[[

ψ
]]

iff ⊢MGL φ� ψ.

Proof. By Corollary 40, Proposition 31 and Lemma 48. �

4 Soundness and Completeness of MGL◦ with respect to GS
In this section we prove that set of graphs which are derivable in the graphical logic GS from [3, 4] is the
same set of graph corresponding to formulas which are provable in MGL◦.

In Figure 10 we recall the definition of the rules of the deep inference system11 GS = {ai↓, s`, s⊗, p↓}.

11The definition of deep inference systems operating on graphs can be found in [4] or in Appendix A.

14

∅
ai↓

a⊥ ` a

(M1 ` N1)⊗ · · · ⊗ (Mn ` M′n)
p↓

P⊥LM1, . . . , MnM ` PLM′
1
, . . . , M′nM

PLM1, . . . , Mi−1, Mi ` N, Mi+1, . . .MnM
s`

Mi ` PLM1, . . . , Mi−1,N, Mi+1, . . . , MnM

Mi ⊗ PLM1, . . . , Mi−1,N, Mi+1, . . . , MnM
s⊗

PLM1, . . . , Mi−1, Mi ⊗N, Mi+1, . . . , MnM

Figure 10: Inference rules for the system GS, where P is a prime graph and Mi , ∅ , M′
i

for all i ∈
{1, . . . , n}.

Remark 50. At the syntactical level, the system GS operates on graphs by manipulating their modular
decompositions trees. Therefore, for any graph occurring in a derivation in GS we assume a unique formula
[[G]]−1 to be given. Note that in GS the authors allow themselves to consider modular decomposition trees
in which leaves may be empty graphs, corrisponding to formulas with unit.

Remark 51. The set of rules we consider here is a slightly different formulation of with respect to [3] and
[4]: we consider a p-rules with a stronger side condition (all factors to be non-empty) which is balanced by
the presence of s⊗ in the system. The proof that the formulation we consider in this paper is equivalent to
the ones in the literature is provided in Appendix A.1.

We can easily prove that each sequent provable in MGL◦ is interpreted by [[·]] as a graph which is
admitting a proof in GS.

Lemma 52. Let Γ be a sequent. If ⊢MGL◦ Γ, then ⊢GS [[Γ]].

Proof. We define a derivation [[π]] of [[Γ]] in GS by induction by induction on the last rule r in a
derivation π of Γ in MGL◦ according to Figure 11. �

To prove the converse, we use the admissibility of wd` to prove that every time there is a rule in GS
with premise H and conclusion G, then there are formulas φ and ψ such that

[[

φ
]]

and
[[

ψ
]]

, and such that
ψ⊸ φ.

Lemma 53. Let r ∈ {s`, s⊗, p↓}. If
H

r
G

, then there are formulas φ and ψ with
[[

φ
]]

= G and
[[

ψ
]]

= H such

that ⊢MGL◦ ψ
⊥, φ.

Proof. We first discuss the case if C[�] = �:

• if r = s`, then φ = µi ` κLµ1, . . . , µi−1, ◦ ` ν, µi+1, . . . µnM and ψ = κLµ1, . . . , µi−1, µi `

ν, µi+1, . . . µnM for some formulas µ1, . . . , µn, ν such that
[[

µi

]]

= Mi for all i ∈ {1, . . . , n} and
[[ν]] = N. We conclude by Corollary 37 and lemma 46 since we have the following derivation

AX
⊢ ψ⊥, κLµ1, . . . , µi−1, µi ` ν, µi+1, . . . , µnM

wd`

⊢ ψ⊥, µi, κLµ1, . . . , µi−1, ◦` ν, µi+1, . . . , µnM
`

⊢ ψ⊥, φ

• if r = s⊗ then φ = κLµ1, . . . , µi−1, µi ⊗ ν, µi+1, . . . µnM and ψ =

µi ⊗ κLµ1, . . . , µi−1, ◦⊗ ν, µi+1, . . . µnM for some formulas µ1, . . . , µn, ν such that
[[

µi

]]

= Mi for
all i ∈ {1, . . . , n} and [[ν]] = N. We conclude by Corollary 37 and lemma 46 since we have the
following derivation

AX
⊢ κ⊥Lµ⊥

1
, . . . , µ⊥

i−1
, µ⊥

i
` ν⊥, µ⊥

i+1
, . . . µ⊥n M, φ

cxt-`
⊢ µ⊥

i
, κ⊥Lµ⊥

1
, . . . , µ⊥

i−1
, ◦` ν⊥, µ⊥

i+1
, . . . µ⊥n M, φ

`

⊢ ψ⊥, φ

15

ax
⊢ a, a⊥

∅
ai↓

a ` a⊥

.........................
[[

a, a⊥
]]

π1

⊢ ∆, φ, ψ
`

⊢ ∆, φ` ψ

[[π1]] IH
[[

∆, φ, ψ
]]

........................
[[

∆, φ` ψ
]]

π1

⊢ ∆1, φ
πn

⊢ ∆2, ψ
⊗
⊢ ∆1,∆2, φ⊗ψ

[[π1]] IH
[[

∆1, φ
]]

..........................
[[∆1]] `

[[

φ
]]

⊗

[[π2]] IH
[[

∆2, ψ
]]

...........................
[[∆2]] `

[[

ψ
]]

p↓
[[∆1]] ` [[∆2]] ` (φ⊗ψ)

...
[[

∆1,∆2, φ⊗ψ
]]

π1

⊢ ∆1, φ1, ψ1 . . .
πn

⊢ ∆n, φn, ψn
d-κ
⊢ ∆1, . . . ,∆n, κPLφ1, . . . , φnM, κP⊥Lψ1, . . . , ψnM

Dπ1
IH

[[

∆1, φ1, ψ1

]]

..
[[∆1]] ` (

[[

φ1

]]

`
[[

ψ1

]]

)

⊗ · · · ⊗

Dπn IH
[[

∆n, φn, ψn

]]

..
[[∆1]] ` (

[[

φn

]]

`
[[

ψn

]]

)

p↓

`nL[[∆1]] , . . . , [[∆n]]M `
(
[[

φ1

]]

`
[[

ψ1

]]

)⊗ · · · ⊗(
[[

φn

]]

`
[[

ψn

]]

)
p↓

PL
[[

φ1

]]

, . . . ,
[[

φn

]]

M ` P⊥L
[[

ψ1

]]

, . . . ,
[[

ψn

]]

M
...

[[

∆1, . . . ,∆n, κPLφ1, . . . , φnM, κP⊥Lψ1, . . . , ψnM
]]

π1

⊢ ∆1

π2

⊢ ∆2
mix
⊢ ∆1,∆2

∅

[[π1]] IH

[[∆1]]
`

∅

[[π1]] IH

[[∆2]]
..

[[∆1,∆2]]

⊢ Γ, χLφσ(1), . . . , φσ(n)M
unitorκ

⊢ Γ, κLφ1, . . . , φk, ◦, φk+1, . . . , φnM

[[

⊢ Γ, χLφσ(1), . . . , φσ(n)M
]]

...
[[

Γ, κLφ1, . . . , φk, ◦, φk+1, . . . , φnM
]]

π1

⊢ ∆1, φ1

π2

⊢ ∆n, χLφ2, . . . , φnM
wd⊗

⊢ ∆1,∆2, κPLφ1, . . . , φnM

Dπ1
IH

[[

∆1, φ1

]]

............................
[[∆1]] `

[[

φ1

]]

⊗

Dπ2
IH

[[

∆2, χLφ2, . . . , φnM
]]

...
[[∆1]] `

[[

χLφ2, . . . , φnM
]]

p↓

([[∆1]] ` [[∆2]]) `

[[

φ1

]]

⊗
[[

χLφ2, . . . , φnM
]]

..
[[

φ1

]]

⊗
[[

χ
]]

L
[[

φ2

]]

, . . . ,
[[

φn

]]

M
s⊗

PL
[[

φ1

]]

, . . . ,
[[

φn

]]

M

...
[[

∆1,∆2, κPLφ1, . . . , φnM
]]

Figure 11: Rules to translate derivations in MGL◦ into derivations in GS.

• if r = p↓ then φ = κP⊥Lµ1, . . . , µnM ` κPLν1, . . . , νnM and ψ⊥ = (µ⊥
1
⊗ ν⊥

1
) ` · · · ` (µ⊥n ⊗ ν

⊥
n)

for some formulas µ1, . . . , µn, ν1, . . . , νn such that
[[

µi

]]

= Mi , ∅ and [[νi]] = Ni , ∅ for all
i ∈ {1, . . . , n}. We conclude since we have the following derivation

AX
⊢ µ1, µ

⊥
1

AX
⊢ ν1, ν

⊥
1

⊗
⊢ µ⊥

1
⊗ ν⊥

1
, µ1, ν1 · · ·

AX
⊢ µn, µ

⊥
n

AX
⊢ νn, ν

⊥
n

⊗
⊢ µ⊥n ⊗ ν

⊥
n , µn, νn

d-κ
⊢ (µ⊥

1
⊗ ν⊥

1
), . . . , (µ⊥n ⊗ ν

⊥
n), φ

`

(µ⊥
1
⊗ ν⊥

1
) ` · · ·` (µ⊥n ⊗ ν

⊥
n), φ

If C[�] = κPLC′[�], M1, . . . , MnM , �, then we assume w.l.o.g., there is a context formula ζ[�] =
κPLζ′[�], µ1, . . . , µnM such that

[[

ζ[�]
]]

= C[�] and
[[

ζ′[�]
]]

= C′[�] . We conclude since, by inductive
hypothesis on the structure of C[�], there is a derivation of the following form:

IH

⊢ (ζ′[ψ′])⊥ , ζ′[φ′]
AX
⊢ µ⊥

1
, µ1 · · ·

AX
⊢ µ⊥n , µn

d-κ

⊢ κP⊥

(∣

∣

∣(ζ′[ψ′])⊥ , µ⊥
1
, . . . , µ⊥n

∣

∣

∣

)

, κP

(∣

∣

∣ζ′[φ′], µ1, . . . , µn

∣

∣

∣

)

.

�

16

⊢ Γ
w
⊢ Γ, φ

⊢ Γ, φ, φ
c
⊢ Γ, φ

ψ
w↓
ψ` φ

φ` φ
c↓

φ

a ` a
ac↓

a

PLφ1, . . . , φnM ` PLψ1, . . . , ψnM
m ` , P prime

PLφ1 ` ψ1, . . . , φn ` ψnM

Figure 12: Structural rules for sequent calculi, and the corresponding rules in deep inference together with
the atomic contraction and the generalized medial rule.

We are now able to prove the main result of this section, that is, establishing a correspondence between
graphs provable in GS and graphs which are interpretation via [[·]] of formulas provable in MGL◦.

Theorem 54. Let G , ∅ be a graph and φ a pure formula such that
[[

φ
]]

= G. Then ⊢GS G iff ⊢MGL◦ φ.

Proof. By Lemma 52, if ⊢MGL◦ φ, then by there is a proof of
[[

φ
]]

in MGL◦.
To prove the converse, letD be a proof of G , ∅ in GS. We define a proof πD of φ by induction

on the number n of rules inD.

• We cannot have n = 0 since we are assuming G , ∅.

• If n = 1, then G = a ` a⊥ and πD =
ax
⊢ a, a⊥

`

⊢ a ` a⊥
.

• If n > 1, then D =

D′

H
r

G

then by inductive hypothesis we have a proof πD′ of a formula ψ

such that
[[

ψ
]]

= H. If r ∈ {s`, s⊗, p↓}, then by Lemma 53 we have a derivation with cut as the
one below on the left of a formula φ such that

[[

φ
]]

= G. We then conclude by Theorem 39.

IH

ψ
Lemma 53

⊢ ψ⊥, φ
cut

⊢ φ

Theorem 39

∗ MGL◦

φ

ax
⊢ a, a⊥

`

⊢ a ` a⊥
πD′ IH

ψ
deep

⊢ ζ[a ` a⊥]
=

⊢ φ

Otherwise r = ai↓, then it must have been applied deep inside a context C[�] =
[[

ζ[�]
]]

, �

such that C[∅] = H =
[[

ψ
]]

. Therefore φ = ζ[a ` a⊥]. We conclude by applying Lemma 47 to
the derivation above on the right. �

5 Classical Logic Beyond Cographs
We conclude this paper by providing an extension of MGL with standard contraction and weakening struc-
tural rules, showing that it provides a conservative extension of propositional classical logic. We then show
decomposition results allowing us to factorize any proof into a linear proof (i.e., a proof in PML) and a
resource management proof (i.e., a derivation only using weakening and contraction rules).

Definition 55. We define the following sequent system:

Classical Graphical Logic : LGK = MGL ∪ {w, c} (11)

For LGK we can prove the admissibility of the cut-rule via cut-elimination.

Theorem 56 (Cut-elimination). The rule cut is admissible in LGK.

Proof. Consider the cut-elimination steps from Figure 6 and Figure 13 and the definition of weight
from the proof of Theorem 39. A proof of weak normalization of the cut-elimination procedure can
be given using the same measure used in the proof of Theorem 39 a by restraining the application of
the cut-elimination steps only to top-most cut-rules in the derivation. �

aFor the sake of determining if a cut-formula is principal, in a contraction rule (c) we assume both occurrences of φ in the premise

to be active and the occurrence of φ in the conclusion to be principal.

17

⊢ Γ
w
⊢ Γ, φ ⊢ φ⊥,∆

cut
⊢ Γ,∆

⊢ Γ
w
⊢ Γ,∆

⊢ Γ, φ, φ
c
⊢ Γ, φ ⊢ φ⊥,∆

cut
⊢ Γ,∆

⊢ Γ, φ, φ ⊢ φ⊥,∆
cut

⊢ Γ,∆, φ ⊢ φ⊥,∆
cut

⊢ Γ,∆,∆
c
⊢ Γ,∆

Figure 13: The cut-elimination steps for the structural rules.

We consider the deep inference rules in Figure 12, that is, rules which can be applied on subformulas
in a sequent. Using the deep inference version of the structural rules (weakening and contraction) and
the generalized medial rule proposed in [17] we can define a inference system where structural rules can
pushed down in a derivation obtaining a decomposition result extending the one in [13, 15] for classical
logic.

Lemma 57. The contraction rule c↓ is derivable using atomic contraction (ac↓) and medial rule (m).

Proof. By induction on the contracted formula φ. If φ = a is an atom, then c↓ is an instance of ac↓.
Otherwise, φ = κLψ1, . . . , ψnM and we conclude since we can apply inductive hypothesis to replace
each application of c↓ with a derivation of the following form

κLψ1, . . . , ψnM ` κLψ1, . . . , ψnM
c↓

κ
(∣

∣

∣ψ1, . . . , ψn

∣

∣

∣

)

κLψ1, . . . , ψnM ` κLψ1, . . . , ψnM
m

κ

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1 ` ψ1

IH {m,ac↓}

ψ1

, . . . ,

ψn ` ψn

IH {m,ac↓}

ψn

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

�

Theorem 58 (Decomposition). Let Γ be a sequent. If ⊢LGK Γ, then:

1. there is a sequent Γ′ such that ⊢MGL Γ
′⊢{w↓,c↓} Γ

2. there are sequent Γ′, ∆′, and ∆ such that ⊢MGL Γ
′⊢{m} ∆

′⊢{ac↓} ∆⊢{w↓} Γ

Proof. The proof of Item 1 is immediate by applying rule permutations. For a reference, see [6].
Item 2 is consequence of the previous point since by Lemma 57 we can replace all instances of c↓-
rules with derivations containing only m and ac↓, and conclude by applying rule permutations to
move all ac-rules below the instances of m-rules, and w↓ to the bottom of a derivation. �

To conclude this section, we recall that classical graphical logic, is not the same logic of the boolean
graphical logic (denoted GBL) defined in [17] (an inference systems on graphs by extending the semantics
of read-once boolean relations from cographs to general graphs). In fact, even if both are conservative
extensions of classical logic, the following graph from [4] which is expected to be provable in GBL, but is
not provable in GS (and there is no formula φ provable in LGK such that

[[

φ
]]

is the given graph).

b c⊥

a b⊥

c a⊥

6 Conclusion and Future Works
providing the logical foundations to define

In this paper we have provided foundations for the design of proof systems operating on graph by defin-
ing graphical connectives, a class of logical operators generalizing the classical conjunction and disjunction,
and whose semantics is solely defined by their interpretation as prime graphs.

We studied two sub-structural sequent calculi operating on formulas defined via graphical connectives
(MGL and MGL◦), proving that cut-elimination holds in these systems and that they are conservative exten-
sions of the multiplicative linear logic and the multiplicative linear logic with mix respectively. For these

18

b⊥ a⊥ a b
` ⊗

b⊥ ` a⊥ a⊗ b

ax

ax

b⊥ a⊥ a b
o` o⊗

r` r⊗

c⊥ a⊥ d⊥ b⊥

oP⊥
4

rP⊥
4

a b c d

oP4

rP4

Figure 14: On the left: the same proof net in the original Girard’s syntax and Retoré’s one. On the right:
an RB-proof net of κP4

La, b, c, dM⊸ κP4
La, b, c, dM containing the chorded æ-cycle a ·b ·b⊥ ·d⊥ ·d · c · c⊥ ·a⊥.

calculi, we proved that they capture graph isomorphisms as provable logical equivalences12. We were able
to prove that the class of graphs representing provable formulas in MGL◦ coincides with the class of non-
empty graphs provable in the proof system GS from [3, 2]. As a consequence, the proofs of cut-elimination
in MGL serves as simplified version of the proof of transitivity of implication in GS.

We concluded by providing a conservative extension of both classical propositional logic and MGL, and
proving the existence of a decomposition result allowing us to have canonical forms for proofs in which all
structural rules can be relegated at the bottom of a derivation.

6.1 Future Works

Categorical Semantics. The systems MGL and MGL◦ define conservative extensions of MLL and MLL◦

respectively. We expect to be able to define categorical models by extending (unit-free) star-autonomous
and IsoMix [19, 20] categories respectively with additional (n-ary) monoidal products whose symmetries
would be dictated by the symmetry group of the corresponding prime graph.
Digraphs, Games and Event Structures. In this work we started our investigation from the correspon-
dence between classical propositional formulas and cographs. A similar approach could be developped for
directed graphs by extending the encoding of intuitionistic propositional formulas used in defining Hyland-
Ong arenas [40]. We foresee interesting connections with concurrent games and event structures [59]. In
particular, graphs generalizing the connectives from additive linear logic [18] could allow us to express
non-transitive conflict relations.
Proof nets and proof equivalence. We plan designing proof nets [30, 22, 31] for MGL and MGL◦. For
this purpose, we consider extending the Retoré’s handsome proof net syntax emplying two-colored graphs
(see the left of Figure 14) where the graph induced over the vertices corresponding to the inputs of the `-
and ⊗-gates of those proof nets are isomorphic to the corresponding prime graphs. Therefore, we could
generalize them to represent P gates for any prime connective (see the right of Figure 14 where a P4- and a
P⊥

4
-gate occur). For these proof structure the standard acyclicity condition, usually employed to guarantee

correctness, is doomed to fail as shown in the right-hand side of Figure 14, where a correct proof-net of the
sequent P4La, b, c, dM ⊸ P4La, b, c, dM contains a cylce. We foresee the possibility of using results on the
primeval decomposition of graphs [42] to isolate those cycles witnessing unsoundness.

Such a result would open to the possibility of defining combinatorial proofs [39, 38] for LGK relying
on the decomposition result (Theorem 58).

12Note that the sequent calculus is only capable of checking if two graphs sharing the same set of vertices are isomorphic (problem

with polynomial complexity), but not to find an correspondence between vertices of two graphs which is an isomorphism (a well-

known NP problem)

19

References
[1] Matteo Acclavio, Ross Horne, Sjouke Mauw, and Lutz Straßburger. A Graphical Proof Theory of

Logical Time. In Amy P. Felty, editor, 7th International Conference on Formal Structures for Compu-
tation and Deduction (FSCD 2022), volume 228 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 22:1–22:25, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

[2] Matteo Acclavio, Ross Horne, and Lutz Straßburger. An Analytic Propositional Proof System On
Graphs. This is an extended version of a paper published at LICS 2020 [AHS20]., December 2020.

[3] Matteo Acclavio, Ross Horne, and Lutz Straßburger. Logic beyond formulas: A proof system on
graphs. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’20, page 38–52, New York, NY, USA, 2020. Association for Computing Machinery.

[4] Matteo Acclavio, Ross Horne, and Lutz Straßburger. An Analytic Propositional Proof System on
Graphs. Logical Methods in Computer Science, Volume 18, Issue 4, October 2022.

[5] Matteo Acclavio and Roberto Maieli. Generalized connectives for multiplicative linear logic. In
Maribel Fernández and Anca Muscholl, editors, 28th EACSL Annual Conference on Computer Sci-
ence Logic (CSL 2020), volume 152 of LIPIcs, pages 6:1–6:16, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[6] Matteo Acclavio and Lutz Straßburger. From syntactic proofs to combinatorial proofs. In Didier
Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated Reasoning - 9th International
Joint Conference, IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, volume 10900, pages 481–497. Springer, 2018.

[7] Andrea Aler Tubella and Alessio Guglielmi. Subatomic proof systems: Splittable systems. ACM
Trans. Comput. Logic, 19(1), January 2018.

[8] Andrea Aler Tubella and Lutz Straßburger. Introduction to Deep Inference. Lecture, August 2019.

[9] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and
Computation, 2(3):297–347, 1992.

[10] Arnon Avron and Iddo Lev. Canonical propositional Gentzen-type systems. In Rajeev Goré, Alexan-
der Leitsch, and Tobias Nipkow, editors, Automated Reasoning, pages 529–544, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

[11] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings of
the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, page 684–697, New
York, NY, USA, 2016. Association for Computing Machinery.

[12] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal logic: graph. Darst, volume 53.
Cambridge University Press, 2001.

[13] Kai Brünnler. Locality for classical logic. Notre Dame Journal of Formal Logic, 47(4):557–580, 2006.

[14] Kai Brünnler and Lutz Straßburger. Modular sequent systems for modal logic. In Martin Giese
and Arild Waaler, editors, Automated Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX’09, volume 5607 of Lecture Notes in Computer Science, pages 152–166. Springer, 2009.

[15] Paola Bruscoli and Lutz Straßburger. On the length of medial-switch-mix derivations. In Juliette
Kennedy and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information, and Computation -
24th International Workshop, WoLLIC 2017, London, UK, July 18-21, 2017, Proceedings, volume
10388 of Lecture Notes in Computer Science, pages 68–79. Springer, 2017.

[16] Cameron Calk. A graph theoretical extension of boolean logic. Bachelor’s thesis, 2016.

[17] Cameron Calk, Anupam Das, and Tim Waring. Beyond formulas-as-cographs: an extension of
boolean logic to arbitrary graphs, 2020.

[18] J.R.B. Cockett and C.A. Pastro. A language for multiplicative-additive linear logic. Electronic Notes
in Theoretical Computer Science, 122:23–65, 2005. Proceedings of the 10th Conference on Category
Theory in Computer Science (CTCS 2004).

[19] J.R.B. Cockett and R.A.G. Seely. Proof theory for full intuitionistic linear logic, bilinear logic, and
mix categories. Theory and Applications of Categories, 3(5):85–131, 1997.

20

[20] J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. J. of Pure and Applied Algebra,
114:133–173, 1997.

[21] D.G. Corneil, H. Lerchs, and L.Stewart Burlingham. Complement reducible graphs. Discrete Applied
Mathematics, 3(3):163–174, 1981.

[22] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for Mathematical logic,
28(3):181–203, 1989.

[23] Anupam Das. Complexity of evaluation and entailment in boolean graph logic. preprint, 2019.

[24] Anupam Das and Alex A. Rice. New minimal linear inferences in boolean logic independent of switch
and medial. In Naoki Kobayashi, editor, 6th International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference),
volume 195 of LIPIcs, pages 14:1–14:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[25] Pierre-Malo Deniélou and Nobuko Yoshida. Buffered communication analysis in distributed mul-
tiparty sessions. In Paul Gastin and François Laroussinie, editors, CONCUR 2010 - Concurrency
Theory, pages 343–357, Berlin, Heidelberg, 2010. Springer.

[26] Edsger W. Dijkstra. Information streams sharing a finite buffer. Information Processing Letters,
1(5):179–180, 1972.

[27] A. Ehrenfeucht, T. Harju, and G Rozenberg. The Theory of 2-Structures A Framework for Decompo-
sition and Transformation of Graphs. World Scientific, 1999.

[28] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting BPEL web services. In Proceedings
of the 13th international conference on World Wide Web, pages 621–630. ACM, 2004.

[29] Tibor Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungarica,
18(1–2):25–66, 1967.

[30] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[31] Jean-Yves Girard. Proof-nets : the parallel syntax for proof-theory. In Aldo Ursini and Paolo Agliano,
editors, Logic and Algebra. Marcel Dekker, New York, 1996.

[32] Jean-Yves Girard. Light linear logic. Information and Computation, 143:175–204, 1998.

[33] Jean-Yves Girard. On the meaning of logical rules II: multiplicatives and additives. NATO ASI Series
F: Computer and Systems Sciences, 175:183–212, 2000.

[34] Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus which reduces syntac-
tic bureaucracy. In Christopher Lynch, editor, Proceedings of the 21st International Conference on
Rewriting Techniques and Applications, volume 6 of LIPIcs, pages 135–150, Dagstuhl, Germany,
2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[35] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the calculus of structures.
In Laurent Fribourg, editor, Computer Science Logic, pages 54–68, Berlin, Heidelberg, 2001. Springer.

[36] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL. In Matthias Baaz
and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning, pages
231–246, Berlin, Heidelberg, 2002. Springer.

[37] Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decomposition.
Computer Science Review, 4(1):41–59, 2010.

[38] Dominic Hughes. Proofs Without Syntax. Annals of Mathematics, 164(3):1065–1076, 2006.

[39] Dominic Hughes. Towards Hilbert’s 24th problem: Combinatorial proof invariants: (preliminary
version). Electr. Notes Theor. Comput. Sci., 165:37–63, 2006.

[40] J. Martin E. Hyland and Chih-Hao Luke Ong. On full abstraction for PCF: I. Models, observables
and the full abstraction problem, II. Dialogue games and innocent strategies, III. A fully abstract and
universal game model. Information and Computation, 163:285–408, 2000.

[41] Lee O James, Ralph G Stanton, and Donald D Cowan. Graph decomposition for undirected graphs. In
Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory, and Computing
(Florida Atlantic Univ., Boca Raton, Fla., 1972), pages 281–290, 1972.

[42] Beverly Jamison and Stephan Olariu. P-components and the homogeneous decomposition of graphs.
SIAM Journal on Discrete Mathematics, 8(3):448–463, 1995.

21

[43] David S Johnson. The np-completeness column: an ongoing guide. Journal of Algorithms, 6(3):434–
451, 1985.

[44] Björn Lellmann and Elaine Pimentel. Modularisation of sequent calculi for normal and non-normal
modalities. ACM Trans. Comput. Logic, 20(2), feb 2019.

[45] T.Y. Lin. Chinese wall security policy-an aggressive model. In [1989 Proceedings] Fifth Annual
Computer Security Applications Conference, pages 282–289, 1989.

[46] László Lovász and Michael D Plummer. Matching theory, volume 367. American Mathematical Soc.,
2009.

[47] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in
Mathematics. Springer, 1971.

[48] Roberto Maieli. Non decomposable connectives of linear logic. Annals of Pure and Applied Logic,
170(11):102709, 2019.

[49] Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient transi-
tive orientation of comparability graphs. In Proceedings of the Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’94, pages 536–545, USA, 1994. Society for Industrial and Applied
Mathematics.

[50] Dale Miller and Elaine Pimentel. A formal framework for specifying sequent calculus proof systems.
Theoretical Computer Science, 474:98–116, 2013.

[51] Dale Miller and Alexis Saurin. From proofs to focused proofs: a modular proof of focalization in
linear logic. In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, volume
4646 of LNCS, pages 405–419. Springer-Verlag, 2007.

[52] Lê Thành Dũng Nguyên and Lutz Straßburger. A System of Interaction and Structure III: The Com-
plexity of BV and Pomset Logic. working paper or preprint, 2022.

[53] Lê Thành Dũng Nguyên and Lutz Straßburger. BV and Pomset Logic are not the same. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic (CSL
2022), volume 216 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:17,
Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[54] R.A.G. Seely. Linear logic, *-autonomous categories and cofree coalgebras. Contemporary Mathe-
matics, 92, 1989.

[55] Alwen Fernanto Tiu. A system of interaction and structure II: The need for deep inference. Logical
Methods in Computer Science, 2(2):1–24, 2006.

[56] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge University Press,
second edition, 2000.

[57] Jacobo Valdes, Robert E Tarjan, and Eugene L Lawler. The recognition of series parallel digraphs.
In Proceedings of the eleventh annual ACM symposium on Theory of computing, pages 1–12. ACM,
1979.

[58] Timothy Waring. A graph theoretic extension of boolean logic. Master’s thesis, 2019.

[59] Glynn Winskel, Silvain Rideau, Pierre Clairambault, and Simon Castellan. Games and strategies as
event structures. Logical Methods in Computer Science, 13, 2017.

22

A Deep Inference and the Open Deduction Formalism
Open deduction [34] is a proof formalism based on deep inference [8]. It has originally been defined for
formulas, but it is abstract enough such that it can equally well be used for graphs, as already done in [2].

Definition 59. An inference system S is a set of inference rules (as for example shown in Figure 4). A

derivationD in S with premise G and conclusion H is denoted
G

D S

H
and is defined inductively as follows:

• Every graph G is a (trivial) derivation with premise G and conclusion G (also denoted G).

• An instance of a rule
G

r
H

in S is a derivation with premise G and conclusion H.

• IfD1 is a derivation with premise G1 and conclusion H1, andD2 is a derivation with premise G2 and
conclusion H2, and H1 = G2, then the composition ofD1 and D2 is a derivationD2 ; D1 denoted as
below.

G1

D1 S

H1
..............

G2

D2 S

H2

or

G1

D1 S

H1
..............

G2

D2 S

H2

or

G1

D1 S

H1..............

G2

D2 S

H2

or

G1

D1 S

G2

D2 S

H2

or

G1

D1 S

H1

D2 S

H2

Note that even if the symmetry between G2 and H1 is not written, we always assume it is part of the
derivation and explicitly given.

• If G is a graph with n vertices andD1, . . . ,Dn are derivations with premise Gi and conclusion Hi for
each i ∈ {1, . . . , n}, then GLD1, . . . ,DnM is a derivation with premise GLG1, . . . ,GnM and conclusion
GLH1, . . . ,HnM denoted as below on the left.

G

∣

∣

∣

∣

∣

∣

∣

∣

∣

G1

D1 S

H1

, . . . ,

Gn

Dn S

Hn

∣

∣

∣

∣

∣

∣

∣

∣

∣

G1

D1

H1

⋆

G1

D1

H1

If G = ⋆ ∈ {`,⊗} we may write the derivations as above on the right.

Therefore, C

G

D S

H

≔

C[G]
C[D] S

C[H]
is well-defined for any context C[�] and any derivation

G

D S

H
.

A proof in S is a derivation in S whose premise is ∅.
A graph G is provable in S (denoted ⊢S G) iff there is a proof in S with conclusion G.

A.1 Equivalent Definitions of GS

We here show that the formulation of the system GS provided in this paper is equivalent to one provided in
[3, 4]. In particular, in the previous these papers the rule s⊗ was not included in the system. However, as
shown in [4] this rule plays a crucial role in the proof that GS is a conservative extension of MLL◦ and in [1]
it is shown that this rule cannot be admissible in the proof systems operating on mixed graphs. Moreover,
we here give a weaker side condition on the p-rule with respect to the rules below:

p↓ in [4] p↓ in [3]

(M1 ` N1)⊗ · · · ⊗(Mn ` Nn)
p1↓ ⋆

P⊥LM1, . . . , MnM ` PLN1, . . . ,NnM

(M1 ` N1)⊗ · · · ⊗(Mn ` Nn)
p2↓ †

P⊥LM1, . . . , MnM ` PLN1, . . . ,NnM

⋆ ≔ P < {`,⊗} prime Mi , ∅ for all i ∈ {1, . . . , n} † ≔ P < {`,⊗} prime Mi ` Ni , ∅ for all i ∈ {1, . . . , n}

(12)

In order to prove the equivalence between our system and the ones in [3, 4] we recall the following
lemma allowing us to prove that in GS we can derive any graph of the shape G ⊸ G.

23

Lemma 60. Let M1, . . . , Mn,N1, . . . ,Nn and G be graphs such that |VG | = n. Then there is a derivation

(M1 ` N1)⊗ · · · ⊗(Mn ` Nn)
{s⊗ ,p↓}

G⊥LM1, . . . , MnM ` GLN1, . . . ,NnM

Proof. By induction on the modular decomposition of G. �

Thanks to this lemma, we can therefore prove the admissibility of the weaker

Proposition 61. The following version of p↓ with weaker side conditions is admissible in GS

(M1 ` N1)⊗ · · · ⊗(Mn ` Nn)
p1↓ P prime, Mi , ∅ for all i ∈ {1, . . . , n}

P⊥LM1, . . . , MnM ` PLN1, . . . ,NnM

Proof. Note that we may have Ni = ∅ for some i ∈ {1, . . . , n}. Thus, if Ni , ∅ for all i ∈ {1, . . . , n},
then p1↓ is an occurrence of p↓. Otherwise, w.l.o.g., N1 = ∅, thus we have a derivation

M1 ⊗

(M2 ` N2)⊗ · · · ⊗(Mn ` Nn)
Lemma 60

H⊥LM2, . . . , MnM ` HLN2, . . . ,NnM
..

M1 ⊗P⊥L∅, M2, . . . , MnM
s⊗

P⊥LM1, M2, . . . , MnM
` PL∅,N2, . . . ,NnM

�

Theorem 62. Let G be a graph. Then

⊢GS G ⇔ ⊢{ai↓,s`,s⊗,p1↓}G ⇔ ⊢{ai↓,s`,p1↓}G ⇔ ⊢{ai↓,s`,p2↓}G

Proof. The first equivalence follows from Proposition 61. The other has been proved in [4]. �

B On Rules Introducing a Connective at a Time
A rule introducing only one connective (different from ` and ⊗) at a time inevitably leads to the same
problem observed in the literature of generalized multiplicative connectives [22, 33, 48, 5], where initial
coherence (i.e. the possibility of having only atomic axioms in a cut-free system, [10]) is ruled out because
of the so-called packaging problem.

However, in this appendix we discuss the results about the system extending multiplicative linear logic
with the rule s-κ, that is, the system.

MLLs-κ
≔ {ax,`,⊗,mix, s-κP | P ∈ P} where

⊢ Γ1, φ1 · · · ⊢ Γn, φn
s-κP

⊢ Γ1, . . . , Γn, κPLφ1, . . . , φnM

We first observe that in the system does not satisfy anymore initial coherence; e.g., the formula κP4
La, b, c, dM⊸

κP4
La, b, c, dM is not provable anymore. However, the system still satisfies cut-elimination. The proof cut-

elimination is straightforward by considering the following additional cut-elimination steps.

⊢ Γ1, φ1 · · · ⊢ Γn, φn
s-κ

⊢ Γ1, . . . , Γn, κPLφ1, . . . , φnM

⊢ ∆1, φ
⊥
1

· · · ⊢ ∆n, φ
⊥
n

s-κ
⊢ ∆1, . . . ,∆n, κP⊥Lφ

⊥
1
, . . . , φ⊥n M

cut
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n

⊢ Γ1, φ1 ⊢ ∆1, φ
⊥
1

cut
⊢ Γ1,∆1 · · ·

⊢ Γn, φ
⊥
n ⊢ ∆n, φ

⊥
n

cut
⊢ Γn,∆n

mix
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n

⊢ Γ1, φ1, ψ1 · · · ⊢ Γn, φn, ψn
d-κ
⊢ Γ1, . . . , Γn, κP⊥Lψ1, . . . , ψnM, κPLφ1, . . . , φnM

⊢ ∆1, φ
⊥
1

· · · ⊢ ∆n, φ
⊥
n

s-κ
⊢ ∆1, . . . ,∆n, κP⊥Lφ

⊥
1
, . . . , φ⊥n M

cut
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n, κP⊥Lψ1, . . . , ψnM

⊢ Γ1, φ1, ψ1 ⊢ ∆1, φ
⊥
1

cut
⊢ Γ1,∆1, ψ1 · · ·

⊢ Γn, φ
⊥
n , ψn ⊢ ∆n, φ

⊥
n

cut
⊢ Γn,∆n, ψn

s-κ
⊢ Γ1, . . . , Γn,∆1, . . . ,∆n, κ

⊥Lψ1, . . . , ψnM

Note that s-κ is derivable in MGL◦.

Lemma 63. The rule s-κ is derivable in MGL◦.

24

Proof. If κ = `, then s-κ is derivable using ` and mix. If κ = ⊗, then s-κ = ⊗. Otherwise, we
conclude by induction on the arity of κ since we have a derivation

⊢ Γ1, φ1

D′ IH

⊢ Γ2, . . . , Γn, ζLφ1, . . . , φnM
unitorκ

⊢ Γ2, . . . , Γn, κL◦, φ2, . . . , φnM
wd⊗

⊢ Γ1, . . . , Γn, κLφ1, . . . , φnM

whereD′ contains instances of s-κ introducing connectives whose arities are strictly smaller then the
arity of κ. �

25

	Introduction
	Main contributions
	Outline of the paper

	From Formulas To Graphs
	Graphs and Modular Decomposition
	Classical Propositional Formulas and Cographs
	Modular Decomposition of Graphs
	Graphs as Formulas

	Sequent calculi over operating on graphs-as-formulas
	Properties of the systems MGL and MGL
	Soundness of Logical Equivalence in MGL

	Soundness and Completeness of MGL with respect to GS
	Classical Logic Beyond Cographs
	Conclusion and Future Works
	Future Works

	Deep Inference and the Open Deduction Formalism
	Equivalent Definitions of GS

	On Rules Introducing a Connective at a Time

