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Abstract. Dialogical logic, originated in the work of Lorenzen and his student
Lorenz, is an approach to logic in which the validity of a certain formula is defined
as the existence of a winning strategy for a particular kind of turn-based two-
players games. This paper studies the relationship between winning strategies
for Lorenzen-style dialogical games and sequent calculus derivations. We define
three different classes of dialogical logic games for the implicational fragment
of intuitionistic logic, showing that winning strategies for such games naturally
correspond to classes of derivations defined by uniformly restraining the rules of
the sequent calculus.
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1 Introduction

Dialogical logic is an approach to the study of logical reasoning, introduced by Loren-
zen and his student Lorenz [21, 22], in which the validity of a formula is defined as
the existence of a winning strategy for a turn-based two-player game. These games are
articulated as argumentative dialogues in which the Proponent player P (she/her) aims
at showing that a given formula is valid, while the Opponent player O (he/him) aims at
finding possible fallacies disproving it. More precisely, each play starts with P assert-
ing a certain formula. O takes his turn and attacks the claim made by P according to
its logical form. The player P can, either, defend his previous claim or counter-attack.
The debate evolves following this pattern. The player P wins whenever she has the last
word, i.e., when O cannot attack anymore without violating the game’s rules.

Dialogical logic was initially conceived as a foundation for the meaning of the con-
nectives and quantifiers of intuitionistic logic, and it has gradually become detached
from its connection with intuitionism over the years, becoming a subject of research in
philosophical logic [28, 23, 10, 5], in the formal semantics of natural language [9, 8], in
proof theory [3, 17, 13, 25, 14, 29, 30] and inspiring a series of work in formal argumen-
tation theory and multi-agent systems [26, 27, 24, 6, 20]. In proof theory, the soundness
and completeness of a dialogical system is proved by establishing the equivalence be-
tween the existence of a winning strategy in specific games and the notion of validity in
a given logic. This result is typically attained by defining a procedure that reconstructs
a formal derivation from a winning strategy (and vice versa) in a sound and complete
system for a given logic [13, 12, 3]. In this paper, we study the correspondence between
certain classes of winning strategies for a given dialogic system and the structure of the
corresponding formal derivations in the sequent calculus. We study winning strategies



2 M. Acclavio and D. Catta

in which P moves are restricted according to O precedent moves (e.g., if O plays a
move A → B as a response to a move of P of a special kind, then the P has to immedi-
ately reply to this move). We prove that for each of the classes of winning strategies we
consider, we have a correspondence with a proof-search strategy in the sequent calcu-
lus GKi for the→-fragment of intuitionistic logic [33]. This latter result is obtained by
showing that it is possible to narrow the proof-search space in sequent calculus without
losing the soundness and completeness of the sequent system (as, e.g., in focusing [4])
and that there is a straightforward correspondence between such focused proofs and
winning strategies.

This work shows how interesting results on the combinatorics of proofs can be ob-
tained using dialogic logic, whose methods are not as well known as the ones from
more widely used proof systems such as analytic tableaux, sequent calculus and nat-
ural deduction. In fact, certain intuitive restrictions on the behavior of the players in
dialogical games allows us to express proof search strategies allowing us to reduce the
proof search space, without requiring convoluted definitions in sequent calculus. The
techniques developed in this work pave the way for further investigations on the use of
dialogical logic methods in designing proof systems with restricted research space.
Related Work. Various definitions of Lorenzen-style dialogue games have been pro-
posed over the years; the definitions that have a more direct relevance to our work
are those of Felscher’s E-dialogues [12] and Fermüller’s E-dialogues [13, 3]. In an E-
dialogue, each O move is either a challenge to the immediately preceding P move or
a defense from it. In Felscher’s E-dialogues there are no challenges directed toward
atomic formulas, and P cannot assert an atomic formula unless O has already asserted
it. On the contrary, in Fermüller’s E-dialogue atomic formulas can be attacked, but only
by O and both players can freely assert them without restrictions. In our definition, we
choose a hybrid approach in which P can assert an atomic proposition freely as long
as that assertion is a challenge against a previous O assertion, and in which P cannot
assert an atomic proposition as a defense to a previous attack unless that proposition
has already been asserted by O. The assertion of an atomic proposition can be attacked,
but only by O and only if that assertion is a challenge.

Herbelin noted the formal correspondence between winning strategies for dialogi-
cal games and sequent calculus focusing proofs in his doctoral dissertation [17]. In the
fifth chapter of the dissertation, Herbelin shows that winning strategies for E-dialogues
(defined by Felscher in [12]), are in bijective correspondence with proofs of the LGQ
sequent calculus. Herbelin’s technique to transform winning strategies into sequent cal-
culus proofs is very elegant and will be used by us (with slight modifications) to achieve
the same result.

Another work that, in spirit, is closer to ours is the one presented by Stitch in [30].
In this work, the author studies a multi-agents variant of dialogical logic games. Such
games are turn-based games in which a coalition of Proponents plays against an Op-
ponent: when it is their turn, each of the Proponent can make a different move. The
play is won by the Proponents if the Opponent cannot react to any of the Proponents’s
moves of the previous round. Stitch shows that Proponents winning strategies for such
games correspond to derivations in a multi-conclusion variant of the already cited LGQ
sequent calculus. Plays are formalized by Stitch as paths in a peculiar sequent calculus,
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and strategies as derivations of this sequent calculus. While there may be some similar-
ities between Stitch’s works and ours, it is essential to note the significant differences in
the details. We here consider “traditional” dialogical games played by two players, and
we obtain the correspondence with restricted sequent calculus proof by restricting the
way in which the Proponent can play in a game. Moreover, we show how to transform
winning strategies into derivations (and vice versa) directly without the need of defining
an ad-hoc sequent calculus formalism.
Outline of the paper. The paper is organized as follows: in Section 2 we state defini-
tions on dialogical logic, defining different classes of plays and strategies. In Section 3
we introduce different sequent calculi for intuitionistic logic, obtained by restricting the
rules of the sequent calculus GKi [33]. In Section 4 we show how to sequentialize win-
ning strategy, that is, how to define a sequent calculus derivation associated to a given
winning strategy, and we prove the correspondence between classes of winning strate-
gies and classes of GKi derivations. In Section 5 we show the converse. In Section 6 we
discuss the obtained results and future works.

2 Dialogical Logic

In this section we fix the notation and terminology, as well as the formal definitions on
dialogical logic we use in this paper.

2.1 Notation and terminology

We denote by |σ| the length of a countable3 sequence σ = σ1, σ2, . . . , by σ≤i the
prefix σ1, . . . , σi. The parity of an element σi in σ is the parity of i. It is even or odd
iff i is. Given two sequences σ and τ, we write σ ⊑ τ if σ = τ≤i for a given i ≤ |τ| and
we denote by σ · τ their concatenation.

A tree T = ⟨N ,E⟩ is a connected directed graph with a countable set of nodes N
containing a special node r ∈ N called root, and such that the set of edges E ⊂ N ×N
contains a unique edge ⟨x, y⟩ for every non-root node y ∈ N . If ⟨x, y⟩ ∈ E, we say that
x is the parent of y and that y is a child of x. A path (in T ) is a sequence of nodes
P = x1, x2 . . . such that x1 is the root of T and xi+1 is a child of xi for all i > 0.

A branch is a maximal path. Given two nodes x and y, x is an ancestor of y and y
is a descendant of x if there is a path containing x whose last element is y (note that
every node is an ancestor and a descendant of itself). The height |x| of a node x is the
length of the (unique) path from the root to x. Thus, the root has height 1, a child of the
root has height 2 and so on. The height of a tree is the maximal height of its nodes.

In this paper we consider formulas generated from a countable non-empty set of
atomic propositionsA = {a, b, c, . . .} and the implication connective→ (and the paren-
thesis symbols). In the following, we may write (A1 · · · An) → c as a shortcut for
A1 → (· · · → (An → c) · · ·). We consider the implication fragments of intuitionis-
tic logic IL→, defined as the smallest set of formulas containing each instance of the two

3 We use the adjective countable in the standard mathematical sense: a set is countable iff it is
in a one-to-one correspondence with a (finite or infinite) subset of the set of natural numbers.
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axioms A → (B → A) and A → (B → C) → ((A → B) → (A → C)) and closed for
modus ponens, that is: if A ∈ IL→ and A→ B ∈ IL→ then B ∈ IL→. We say that a formula
F is valild if and only if F ∈ IL→4.

2.2 Dialogical Games

A challenge is a pair ⟨?, s⟩ where s is either an occurrence of the symbol •, in which
case such a challenge is said atomic, or where s is formula F. A defense is a pair ⟨!, F⟩
where F is a formula. An assertion (of F) is a non-atomic challenge ⟨?, F⟩ or a defense
⟨!, F⟩. A move is an assertion or an atomic-challenge. An augmented sequence is a
pair ⟨σ, ϕ⟩ where σ is a non-empty sequence of moves, and ϕ is a function mapping any
σi with i > 1 to a σ j = ϕ(σi) with opposite parity and such that j < i. A move σi in
σ is called P-move (denoted σP

i ) if i is odd, and O-move (denoted σO
i ) if i is even. It

is a repetition if there is j < i such that i and j have opposite parity and σi and σ j are
assertions of the same formula.

Definition 1. Let ⟨σ, ϕ⟩ be an augmented sequence and i ≤ |σ|.

1. A challenge σi is justified whenever:
(a) eitherσi is an atomic-challenge and ϕ(σi) is an assertion of an atomic formula;
(b) or σi = ⟨?, A⟩ and ϕ(σi) is an assertion of a formula A→ B.

2. A defense is σi is justified whenever:
(a) either σi and ϕ(ϕ(σi)) are assertions of a same atomic formula a ∈ A and

ϕ(σi) is an atomic challenge;
(b) or σi is an assertion of a formula B, ϕ(σi) is a justified challenge of the form
⟨?, A⟩, and ϕ(ϕ(σi)) is an assertion of A→ B.

If σi is a justified move, we say ϕ(σi) justifies σi and that σi is justified by ϕ(σi). A
challenge σi is unanswered if there is no defense σk such that σk is justified by σi. A
justified challenge σi is a counterattack if ϕ(σi) is a challenge. A justified sequence is
an augmented sequence in which any move except the first one is justified.

Definition 2 (Play). A play for F is a justified sequence p = ⟨σ, ϕ⟩ starting with P
defending F, that is, σ1 = ⟨!, F⟩ and such that the following holds for any 1 < i ≤ |σ|:

1. each O-move is justified by the immediately preceding P-move, that is, ϕ(σ2k) =
σ2k−1 for any 2k ≤ |σ|;

2. each P-move (but the first) is justified by some preceding O-move. In particular, if
P states a defense, such defense is justified by the last unanswered challenge stated
by O, that is, if σ2k+1 = ⟨!, F⟩, then ϕ(σ2k+1) = σ2h is the unanswered challenge
with maximal 2h ≤ 2k;

3. if P state a defense and such a defense is an assertion of an atomic formula, then
there must be another preceding O assertion of the same atomic formula. That is,
if σ2k+1 = ⟨!, a⟩ with a ∈ A, then σ2k+1 is a repetition;

4 This definition of validity corresponds to the standard one i.e., valid in every Kripke model
whose accessibility relation is a preorder and whose labeling is monotone. See e.g. [15, 32]
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4. Only O can challenge assertions of atomic formulas and these assertions must be
challenges. That is, if σi = ⟨?, •⟩, then i must be even and ϕ(σi) is a challenge.

A play p = ⟨σ, ϕ⟩ is finite if σ is. and its length |p| is the length σ. A move m is legal for
p if ⟨σ · m, ϕ ∪ {⟨m, σi⟩}⟩ is a play for a i ≤ |σ|.

Definition 3 (Winning Condition). The player P wins a play p = ⟨σ, ϕ⟩ if σ is finite
and ends with a P-move ⟨!, a⟩ with a ∈ A. Otherwise, O wins.

We now define two particular types of plays: Lorenzen-Felscher plays, and Stubborn
plays. In Lorenzen-Felscher plays P can assert an atomic formula only if O has already
asserted it. In Stubborn plays once P starts challenging an assertion of a complex for-
mula B, she will stubbornly continue to challenge the subformulas of that formula until
O asserts an atomic formula.

Definition 4. Let p = ⟨σ, ϕ⟩ be a play.

1. p is a Lorenzen-Felscher play (or LF-play) if any P-assertion of an atomic formula
is a repetition. That is, if σ2k+1 ∈ {⟨!, a⟩, ⟨?, a⟩ | a ∈ A}, then there is h ≤ k such
that σ2h = ⟨⋆, a⟩ for ⋆ ∈ {?, !}

2. p is a Stubborn play (or ST-play) if the following hold:
(a) whenever O assert a complex formula A → B as a defense from a preceding

challenge, then P’s next move is a challenge of such a formula. That is, if
σ′ ·mO ⊑ σ and m = ⟨!, A→ B⟩, then σ′ ·mO · nP ⊑ σ for a n = ⟨?, A⟩ justified
by m.

(b) whenever O assert an atomic formula c as a defense from a preceding chal-
lenge, then P’s next move is a defense asserting c. That is, if σ′ · mO ⊑ σ and
m = ⟨!, c⟩, then σ = σ′ · mO · nP where n = ⟨!, c⟩.

Example 1. Consider the two following plays (both won by P). We represent a play
⟨σ, ϕ⟩ as a sequence of moves. We represent the function ϕ by drawing directed edges
from each move σi to the move ϕ(σi).

pP
1 = ⟨!, a→ b→ ((b→ c)→ (a→ c))⟩

pO
2 = ⟨?, a→ b⟩

pP
3 = ⟨!, (b→ c)→ (a→ c)⟩

pO
4 = ⟨?, b→ c⟩

pP
5 = ⟨!, a→ c⟩

pO
6 = ⟨?, a⟩

pP
7 = ⟨?, a⟩

pO
8 = ⟨!, b⟩

pP
9 = ⟨?, b⟩

pO
10 = ⟨!, c⟩

pP
11 = ⟨!, c⟩

pP
1 = ⟨!, a→ b→ ((b→ c)→ (a→ c))⟩

pO
2 = ⟨?, a→ b⟩

pP
3 = ⟨!, b→ c→ a→ c⟩

pO
4 = ⟨?, b→ c⟩

pP
5 = ⟨!, a→ c⟩

pO
6 = ⟨?, a⟩

pP
7 = ⟨?, b⟩

pO
8 = ⟨?, •⟩

pP
9 = ⟨?, a⟩

pO
10 = ⟨!, b⟩

pP
11 = ⟨!, b⟩

The play on the left is LF-play that is not a ST-play, while the one on the right is ST-
play that is not an LF-play. Remark that each atomic challenge ⟨?, •⟩ is an O-move, and
it is justified by a P-challenge asserting an atomic formula.



6 M. Acclavio and D. Catta

Definition 5. Let A be a formula. The game for A is a pair GA = ⟨RA, ϕA⟩ where
RA = ⟨NA,EA⟩ is a tree of moves and ϕ : NA → NA is a map such that:

1. for each path P of RA, the pair ⟨P, ϕA|P⟩ is a play for A;
2. for each node v of RA, all and only the children of v are legal move of the play in
GA ending with v.

A node v of G is a P-node (resp. O-node) if is its height is odd (resp. even).
A strategy for A is a pair S = ⟨T , ψ⟩ such that T is a subtree of RA (and ψ is defined

as the restriction of ϕA on the nodes in T ) in which every O-node has at most one child.
It is winning when T is finite and any of its branch is a play won by P. A Lorenzen-
Felscher strategy (resp. Stubborn strategy) is a strategy such that each branch of S is
is a LF-play (resp. a ST-play).

Example 2. Below we provide a representation of Lorenzen-Felscher winning strategy
(left) and of a winning Stubborn strategy (right) for the formula a → b → ((b → c) →
(a → c)) as tree of moves. As in Example 1 we represent the function ϕ by drawing
directed edges from each move σi to the move ϕ(σi). However, we here we omit the
edges with source an O-move because ϕ(σ2k+2) = σ2k+1 for all k ∈ N.

⟨!, a→ b→ ((b→ c)→ (a→ c))⟩

⟨?, a→ b⟩

⟨!, (b→ c)→ (a→ c)⟩

⟨?, b→ c⟩

⟨!, a→ c⟩

⟨?, a⟩

⟨?, a⟩

⟨?, •⟩ ⟨!, b⟩

⟨!, a⟩ ⟨?, b⟩

⟨?, •⟩ ⟨!, c⟩

⟨!, b⟩ ⟨!, c⟩

P

O

P

O

P

O

P

O

P

O

P

⟨!, a→ b→ ((b→ c)→ (a→ c))⟩

⟨?, a→ b⟩

⟨!, (b→ c)→ (a→ c)⟩

⟨?, b→ c⟩

⟨!, a→ c⟩

⟨?, a⟩

⟨?, b⟩

⟨?, •⟩ ⟨!, c⟩

⟨?, a⟩ ⟨!, c⟩

⟨?, •⟩ ⟨!, b⟩

⟨!, a⟩ ⟨!, b⟩

(1)

3 Sequent Calculus

In this section, we recall the definition of the sequent calculus GKi from [33] which
is sound and complete for the logic IL→. We then provide three classes of derivations
obtained by imposing restrictions on rules applications, and we show that they are still
sound and complete with respect to the same logic.

A sequent is an expression Γ ⊢ C where C is a formula and Γ is a finite (possibly
empty) multiset of formulas. A derivation D is a finite tree of sequents constructed
using the rules in Figure 1 in which each leaf is obtained by an Ax-rule and each non-
leaf sequent is obtained by→R-rule or a→L-rule. A sequent Γ ⊢ C is GKi-provable if
it admits a derivation in the sequent calculus GKi, whose root (or conclusion) is Γ ⊢ C.
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Ax
Γ, a ⊢ a

Γ, A→ B ⊢ A Γ, A→ B, B ⊢ C
→L

Γ, A→ B ⊢ C

Γ, A ⊢ B
→R

Γ ⊢ A→ B

Fig. 1. Rules for the sequent calculus GKi. In each rule we have underlined its principal formula
in the conclusion, and the active formulas in each premise.

Theorem 1. [33] The sequent calculus GKi is sound and complete for IL→, that is a
formula F is valid if and only if ⊢ F is provable in GKi.

We characterize derivations according to their shape.

Definition 6. Let D be a derivation of some sequent ∆ ⊢ F in GKi. We say that:

1. D is a strategic derivation (or S-derivation) when each left-hand side premise of
→L-rule of the form Γ ⊢ A→ B is the conclusion of a→R-rule;

2. D is a LF-derivation if the left-hand side premise of each →L-rule is always the
conclusion of a→R-rule or an Ax-rule;

3. D is a ST-derivation if is a S-derivation and the active formula of the right-hand
premise of each →L-rule in D is the principal formula of this premise. That is,
if Γ, A → B, B ⊢ C is the right-hand premise of a →L-rule, then either it is the
conclusion of a Ax if B = C is atomic, or it is the conclusion of a→L-rule. In both
cases B is the principal formula of Γ, A→ B, B ⊢ C

Remark 1. Every LF-derivation is a S-derivation by definition. If a sequent Γ ⊢ C
occurs in a S-derivation D as conclusion of a →L-rule and as left-hand premise of
(another) →L-rule with principal formula A → B, then A = C and A is an atomic
formula. Similarly, if a sequent Γ, A → B, B ⊢ C is the right-hand premise of→L-rule
in a ST-derivation, then C is atomic.

LF-derivations were introduced by Herbelin in the fifth chapter of his PhD thesis
(where they are called LGQ-derivations [17]). Similarly, ST-derivations are a variant
of derivations in the sequent calculus LJT, also introduced by Herbelin in [16]. The
only difference is that the sequent calculus LJT contains an explicit contraction rule
and operates over sequents of the form Γ; A ⊢ C or Γ; ∅ ⊢ C with Γ set of formula
occurences, and A and C formulas. The following lemma will prove useful later on.

Lemma 1 (Weakening admissibility). If a sequent Γ ⊢ C admits an ST-derivation,
then there is a ST-derivation D⋆ of the sequent Γ, ∆ ⊢ C for any finite multiset ∆. More-
over, D⋆ contains the same rules of D (with the same principal and active formulas).

Proof. It suffices to consider the derivation D⋆ obtained by adding ∆ to any leaf of D .

Since the sequent calculus GKi is a sound and complete with respect to IL→, we can
prove that the set of S-derivations and the set of LF-derivations are also sound and
complete with respect to IL→.

Theorem 2. Let Γ ⊢ C be a sequent. It is GKi-provable iff it admits a S-derivation iff it
admits a LF-derivation.

Proof. The fact that any GKi-provable sequents admits a LF-derivation has been proved
in [7]. We conclude since any LF-derivation is a S-derivation and any S-derivation is a
derivation in GKi.
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3.1 Games on Hyland-Ong Arenas

In order to prove that also the set of ST-derivations are sound and complete for IL→, we
establish a correspondence between winning innocent strategies for games on Hyland-
Ong Arenas [19] and ST-derivations. We then conclude by levering on the result of
soundness and (full-)completeness of these winning strategies with respect to IL→.

Note 1. Both games in dialogical logic and game on Hyland-Ong arenas formalize
proofs as winning strategies over games defined by a formula F. However, some termi-
nology in these two paradigms identify objects of different nature. For this reason, we
here list the main differences.

Dialogical Logic Games on Hyland-Ong arenas
a play σ1, σ2, . . . starts i = 1 odd a play τ0, τ1, . . . starts i = 0 even
a play starts with a P-move a play starts with a O-move
a move is a subformula of F plus a polarity a move corresponds to an atom in F

To facilitate distinguishing as much as possible the two formalisms, in games over
Hyland-Ong arenas we denote the proponent P by • the opponent O by ◦.

Definition 7. A sink of a directed acyclic graph G = ⟨V,→⟩ is a vertex v such that
⟨v,w⟩ < → for no w ∈ V. The arena of a formula F is the A-labeled directed acyclic

graph [[F]] = ⟨V[[F]],
[[F]]
→ , ℓ⟩ (where ⟨V[[F]],

[[F]]
→⟩ is a directed acyclic graph, and ℓ a la-

beling function associating to each v ∈ V[[F]] an atom ℓ(v) ∈ A ) defined as follows:

[[a]] = ⟨{v}, ∅, ℓ(v) = a⟩ and [[A→ B]] = ⟨V[[A]] ∪ V[[B]],
[[A]]
→ ∪

[[B]]
→ ∪ I, ℓ[[A]] ∪ ℓ[[B]]⟩

with I = {(s[[A]], s[[B]])} where s[[A]] and s[[B]] are the unique (by construction) sink of [[A]]
and [[B]] respectively. The arena of a sequent A1, . . . , An ⊢ B is defined as the arena
[[(A1 · · · An)→ B]].

Definition 8. Let F be a formula. A justified sequence for F is a pair ⟨τ, f ⟩ where
τ = τ0, . . . , τn is a non-empty sequence of moves (i.e., occurrences of vertices of [[F]]),
and f is a function mapping each τi with i > 0 in its justifier f (τi) = τ j for a j < i such
that i + j is odd (i.e. if i is even, then j is odd and vice versa).

The pointer of a move τi with i > 0 is the pair ⟨τi, f (τi)⟩; we identify f with the set
of pointers it defines. A move τi is a ◦-move (resp. •-move) if i is even (resp. i is odd).

A view is a justified sequence ⟨τ, f ⟩ such that:

– it is a play, that is, the initial move τ0 is the sink of [[F]];
– it is ◦-shortsighted, that is, f (τi) = τi−1 for each non-initial ◦-move τi;
– it is •-uniform, that is, ℓ(τi) = ℓ(τi−1) for each •-move τi.

Remark 2. By definition, it follows that each ◦-move (resp. •-move) is an occurrence of
a vertex v of [[F]] having even (resp. odd) distance d(v) from the sink s[[F]] of [[F]], where
the distance d(v) is defined as the number of vertices in a path from v to s[[F]] minus one.
The proof that each of such a path in an arena has the same length is provided in [31].
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The predecessor of a view is the result of deleting the final move (and its pointer);
the converse is the successor relation.

Definition 9. Let F be a formula. A winning innocent strategy (or WIS) Σ for F is a
finite, non-empty prefix-closed set of views for F such that:

1. The view containing a single occurrence of the sink of [[F]] belongs to Σ;
2. Σ is ◦-complete: if ⟨ρ · v, f ⟩ ∈ Σ with v a •-move, then every successor of ⟨ρ · v, f ⟩

is in Σ;
3. Σ is •-deterministic and •-total: if ⟨ρ · v, f ⟩ ∈ Σ and v is an ◦-move, then exactly

one successor of ⟨ρ · v, f ⟩ belongs to Σ.

Theorem 3. [19, 11] A formula F is valid iff there is a WIS for F.

Lemma 2. Let Γ ⊢ F be a sequent. For any WIS Σ for Γ ⊢ F there is a canonically
defined ST-derivation DΣ of Γ ⊢ F.

Proof. The proof is by induction on the pair ⟨|Σ |, |F|⟩ where |Σ | is the cardinality of Σ
and |F| is the height of F5.

1. if F = c is atomic, then Σ must contain the set of views {c◦, c◦ · c•} where the
justifier of c• is c◦. We have two cases
(a) either c◦ · c• is maximal in Σ, and by ◦-completeness we deduce that Γ = ∆, c.

In this case DΣ is a proof of ∆, c ⊢ c obtained by an Ax-rule.
(b) or c◦ · c• is not maximal in Σ. By ◦-completeness, we conclude that Γ =

∆, (A1 · · · An) → c for some ∆ and n ≥ 1. For each i ≤ n let ai be the root
of [[Ai]] and let Σi be the prefix-closed set of views containing each view of Σ
that starts with ai. We obtain that Σi is a WIS for Γ ⊢ Ai for any i and that
|Σi| < |Σ |. By induction hypothesis, for each i ≤ n there is a canonically defined
ST-derivation DΣi of Γ ⊢ Ai. By weakening admissibility (Lemma 1), we have
a derivation D⋆

Σi
of Γ⋆i ⊢ Ai with Γ⋆i = Γ, (Ai · · · An) → c, . . . , An → c for any

i ∈ {2, . . . , n}. We define DΣ as the following ST-derivation:

DΣ1

Γ ⊢ A1

D⋆
Σ2

Γ⋆2 ⊢ A2

D⋆
Σn

Γ⋆n ⊢ An
Ax
Γ, (A2 · · · An)→ c, . . . , An → c, c ⊢ c

Γ, (A2 · · · An)→ c, . . . , An → c ⊢ c
...

Γ, (A3 · · · An)→ c, (A2 · · · An)→ c ⊢ c

Γ, (A2 · · · An)→ c ⊢ c
→L

Γ ⊢ c

Notice that, in virtue on the restriction on the application of the→L-rule in ST-
derivation, this is the unique way to define DΣ from the derivations DΣ⋆1

, . . . ,DΣn .
5 The height of a formula is the height of its construction tree.
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2. If F = A → B then Σ is also a strategy for Γ, A ⊢ B. Since |B| < |A → B|, by
induction hypothesis there is a ST-derivation DΣ of Γ, A ⊢ B and we can conclude
by the application of a→R-rule.

Theorem 4. Let F be a formula. It is valid if and only if it admits a ST-derivation.

Proof. If F is valid, then by Theorem 1 there is GKi derivation of ⊢ F. By Theorem 3
there is a WIS Σ for ⊢ F, therefore a ST-derivation DΣ by Lemma 2. We conclude since
the converse trivially holds because every ST-derivation is a GKi-derivation.

4 From Dialogical Logic Strategies to Derivations

In this section, we show how to associate to any winning dialogical strategy for a for-
mula F a S-derivation of the sequent ⊢ F. We first show how we associate a sequent to
any O-move of a strategy.

Definition 10. Let F be any formula and S = ⟨T , ϕ⟩ be a strategy for F. Recall that
each path P of T is a sequence of moves. The O-tree of S is the tree TO defined as
follows:

1. the set of nodes of TO contains each O node of T , an additional node r and nothing
else;

2. a node v of TO is the parent of a node v′ iff either v = r and v′ = P2 is the second
move of a branch P in T , or there is a branch P in T such that v = P2k and
v′ = P2k+2.

We recursively define the function Seq. associating to any node v of TO a sequent
Seq(v) B Γv ⊢ Fv and it is defined as follows:

1. if |v| = 1, then v is the root r. Thus Γv = ∅ and Fv = F;
2. If |v| = k + 1, then there is a P-node t which is the parent of v in S and a node v′

which is the parent of v in TO, with associated sequent Seq(v′) = Γv′ ⊢ Fv′ .
(a) if v = ⟨?, •⟩, then t asserts an atomic formula b. We let Γv = Γv′ and Fv = b;
(b) if v = ⟨?, A⟩, then t asserts a formula A→ B. We let Γv = Γv′ , A and Fv = B;
(c) otherwise v = ⟨!, B⟩ and we let Γv = Γv′ , B and Fv = Fv′ .

The following proposition states that the formulas asserted by O in the play ending
with v are precisely those that are contained in Γv.

Proposition 1. Let S = ⟨T , ϕ⟩ be a strategy and let TO be its O-tree. For every node v
of TO and for every formula B we have that B ∈ Γv if and only if there is an ancestor v′

of v that asserts B.

Proof. If B ∈ Γv, we can prove that there is an ancestor v′ of v that asserts B by induction
on |v|. If v is the root of TO, then the proposition is vacuously true. Otherwise we
conclude by inductive hypothesis since either v is an assertion of B, and then Γv = Γv′ , B
where v′ is the parent of v, or v = ⟨?, •⟩, and then Γv = Γv′ where v′ is the parent of v.

The converse implication immediately follows by the definition of Seq.
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Given a winning strategy S = ⟨T , ϕ⟩ for F, we can show that each leaf of TO is
labeled by a sequent that is conclusion of an Ax-rule of the sequent calculus.

Proposition 2. Let S = ⟨T , ϕ⟩ be a winning strategy and m a leaf of T . If n is the
parent of m in T and m = ⟨!, a⟩ , then Γn is of the form ∆, a ⊢ a.

Proof. Since S is winning, then m is the last move of a play p that is won by P. Conse-
quently, by Condition 2 in the definition of play, m is a repetition. Thus the atom a has
already been asserted by O in the play. By the definition of Seq, we deduce that a ∈ Γn.

Moreover, m is justified by a O-challenge t. As a consequence, t is either justified
by an assertion of B→ a for some formula B, or by an assertion ⟨?, a⟩. By the definition
of Seq, we conclude the formula F t of the sequent associated by Seq to t is a. By the
Condition 2 in the definition of play, any O-move t1, . . . , tk that is after t is a defense
move. This implies, by definition of Seq, that F ti = F t for all i; therefore F t = Fn = a.

The two following technical propositions will be used in the proof of Lemma 3.

Proposition 3. Let S = ⟨T , ϕ⟩ be a winning strategy, TO be its O-tree and m a node
of TO. If m is the parent of a defense move m′ asserting B, then A → B ∈ Γm for some
formula A.

Proof. Let B be the unique branch of S containing both m and m′, and let t be P-move
that is the parent of m. By the definition of strategy, ⟨B, ϕ|B⟩ is a play. Consequently, m
is justified by t and t must be a challenge asserting some formula A. This means that the
O-move ϕ(t) is an assertion of A→ B. Since ϕ(t) is an ancestor of m, we conclude that
A→ B ∈ Γm.

Proposition 4. Let S = ⟨T , ϕ⟩ be a winning strategy, TO be its O-tree and m a node of
TO. If m is the parent of m′ and m′ is counterattack asserting A, then A → B ∈ Γm for
some formula B.

Proof. The proof is entirely similar to the one of the previous proposition.

Definition 11. Let S = ⟨T , ϕ⟩ be a winning strategy, and TO be its O-tree. We define
a function Φ associating a tree of sequent D v rooted in Γv ⊢ Fv to each node v of TO.
Such a function is defined by recursion on the number of descendants of v.

1. If the number of descendant of v is one, then v is a leaf of TO. We associate to v a
tree whose only node is Γv ⊢ Fv.

2. Suppose that D x is defined for all vertex of having at most n ≥ 1 descendants and
let v be a node with k + 1 descendants. Let t be the unique P-node of T such that v
is the parent of t in T :
(a) If t is a challenge asserting some formula A, then there are two cases:

– A is an atomic formula a, and v has (in TO) two children v1 = ⟨?, •⟩ and
v2 = ⟨!, B⟩. Then the tree of sequents D v is defined as follows:

Dv1

Γ, a→ B ⊢ a

Dv2

Γ, a→ B, B ⊢ C
→L

Γ, a→ B ⊢ C

where Γ, a → B ⊢ a and Γ, a → B, B ⊢ C are the sequents associated to v1
and v2 respectively.
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– A = A1 → A2 and v has two children v1 = ⟨?, A1⟩ and v2 = ⟨!, B⟩ (in TO)
for some formula B. The tree of sequents D v is

Dv1

Γ, (A1 → A2)→ B, A1 ⊢ A2
→R

Γ, (A1 → A2)→ B, ⊢ A1 → A2

Dv2

Γ, (A1 → A2)→ B, B ⊢ C
→L

Γ, (A1 → A2)→ B ⊢ C

where Γ, (A1 → A2) → B, A1 ⊢ A2 and Γ, (A1 → A2), B ⊢ C are the
sequents associated to v1 and v2 respectively.

(b) If t is a defense asserting A → B, then v has a unique child v1 = ⟨?, A⟩ in TO
and D v is defined as:

Dv1

Γ, A ⊢ B
→R

Γ ⊢ A→ B

Lemma 3. For every winning strategy S = ⟨T , ϕ⟩, for every node v of TO, the tree of
sequent D v is a S-derivation of Γv ⊢ Fv

Proof. The proof is by induction on the height of D v. If the height is 1, then the lemma
is immediately established in virtue of Proposition 2. The inductive cases follow by
induction hypothesis, by construction of D v and by Propositions 3 and 4.

Theorem 5. For any winning strategy S = ⟨T , ϕ⟩, the tree of sequent DS associated to
the root-node of TO is a S-derivation of ⊢ F, moreover:

1. if S is a Lorenzen-Felscher winning strategy, then DS is a LF-derivation;
2. if S is a Stubborn winning strategy, then DS is a ST-derivation.

Proof. The fact that DS is a S-derivation of ⊢ F follows immediately by Lemma 3. We
only give a proof of (2) because the proof of (1) is easier.

Consider a sequent in DS that is obtained by an application of a →L-rule and let
Γ, A → B, B ⊢ C be its right-hand premise. We must show that B is the principal
formula of this latter sequent. Remark that the sequent Γ, A→ B, B ⊢ C is associated to
a O move ⟨!, B⟩ inTO. There are two cases: if B = B→ B1, then sinceS is Stubborn, we
must have that child t of ⟨!, B⟩ is a challenge ⟨?, B1⟩. By the definition of the function
Φ, the sequents associated to the child v1 and v2 are of the form Γ, A → B, B ⊢ B1
and Γ, A → B, B, B2 ⊢ C, this means that B = B1 → B2 is the principal formula of
Γ, A→ B, B ⊢ C. The case in which B is an atomic formula is similar.

5 From Derivations to Dialogical Logic Strategies

In this section, we show how to transform any S-derivation of ⊢ F in a winning strategy
for F. To do so, we define a function that associates to any path P of D a play for F.

Definition 12. Let P = S 1, . . . , S n be a path in a S-derivation D of F. We associate
with P a sequence of moves σP by induction on |P|



Lorenzen-style strategies as proof-search strategies 13

– If |P| = 1 then σP = ⟨!, F⟩;
– if |P| = n and P = P′, S then we consider the following cases:

1. If S is the conclusion of an Ax-rule whose principal formula is a, then:
(a) if S is the premise of a→R-rule then the principal formula of this last rule

must be B→ a for some formula B. We define σP = σP
′

· ⟨?, B⟩ · ⟨!, a⟩;
(b) if S is the left-hand premise of→L-rule, then the principal formula of this

last rule must be a → B for some formula B; we define σP = σP
′

· ⟨?, •⟩ ·
⟨!, a⟩;

(c) if S is the right-hand premise of a →L-rule whose principal formula is
C → D, then we define σP = σP′ · ⟨!,D⟩ · ⟨!, a⟩;

2. If S is the conclusion of an→R-rule whose principal formula is A→ B then:
(a) if S is the left-hand premise of an→L-rule, then σP = σP

′

(b) if S is the right-hand premise of an →L-rule whose principal formula is
C → D, then σP = σP

′

· ⟨!,D⟩ · ⟨!, A→ B⟩;
(c) if S is the premise of an→R-rule then, the principal formula of such a rule

must be G → (A → B) for some formula G. We define σP = σP
′

· ⟨?,G⟩ ·
⟨!, A→ B⟩.

3. If S is the conclusion of an→L-rule whose principal formula is A→ B then:
(a) if S is the premise of a→R-rule whose principal formula is C → D, then

σP = σP
′

· ⟨?,C⟩ · ⟨?, A⟩
(b) If S is the left-hand premise of a→L-rule whose principal formula is C →

D, then C must be an atomic formula. We define σP = σP
′

· ⟨?, •⟩ · ⟨?, A⟩.
(c) If S is the right-hand premise of →L whose principal formula is C → D,

then we define σP = σP
′

· ⟨!,D⟩ · ⟨?, A⟩.

Proposition 5. Let D be ST-derivation of ⊢ F, P a path in D and Γ ⊢ C the last
sequent of this path. If B ∈ Γ, then there is an O-move in σP that asserts B.

Proof. By induction on the length of P.

By the above proposition, if P = S 1, . . . , S n is a path of D and if a formula occur-
rence A is the principal formula of a→L-rule in one of the S i, then there is a O-move
σPi that asserts A. For any formula occurrence A, we denote by mA the first move in σP

that asserts such formula occurrence A.

Definition 13. Let D be a S-derivation and let P be a path in D . We define a function
ϕP from σP to σP by the following cases:

1. ϕP(σPi ) = σPi−1 if σPi is an O move;
2. ϕP(σPi ) = mA if σPi is a P move and S n is the conclusion of a→L whose principal

formula occurrence is A;
3. ϕP(σPi ) = σPk if σPi is a P move and a defense, and σPk is the last unanswered O

challenge in σP
≤i−1.

Lemma 4. Let D be a S-derivation derivation of ⊢ F. If P is a path in D , then pP =
⟨σP, ϕP⟩ is a play for F. Moreover, if P is a branch of D , then ⟨σP, ϕP⟩ is won by P.
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Proof. Suppose that the proposition holds for any path whose length is at most k ≥ 1
and let P = P′, S by a path of length k + 1. We should check that σP

′

· mO · nP and ϕP

forms a play where m and n are the two moves associated to S . There are as many cases
as those detailed in the Definition 12 of σP. We only consider some of them. Let t be
the last move of σP

′

.

– If S is obtained by an→L-rule whose principal formula is A → B and S is the
left-hand premise of another →L-rule whose principal formula is C → D, then
m = ⟨?, •⟩, n = ⟨?, A⟩, ϕP(m) = t and ϕP(n) = mA→B. The move t is the P move
associated to the last element Σ ⊢ G of P′. This latter sequent is obtained by a→L.
Thus, by construction t is ⟨?,C⟩, and since C is atomic, and t is a justified move by
induction hypothesis, then m is justified. The move mA→B is an O-move that asserts
A → B, since n = ⟨?, A⟩ and mA→B is justified by hypothesis, then m is justified as
well.

– If S is obtained by an →R-rule whose principal formula is A → B and S is the
premise of another →R-rule whose principal formula is G → (A → B), then m =
⟨?,G⟩, n = ⟨!, A → B⟩, ϕP(m) = t and ϕP(n) = m. The move t is associated to the
last sequent Γ ⊢ G → (A → B) of P′. This latter sequent is obtained by a→R with
principal formula G → (A → C) thus t = ⟨!,G → (A → C)⟩ and since t is justified
by induction hypothesis, then also m is. The fact that n is justified is immediate.

– If S is obtained by an Ax-rule whose principal formula is a and S is the premise
of →R, then the principal formula of this rule must be B → a for some B. In this
case m = ⟨?, B⟩ and n = ⟨!, a⟩. Remark that t = ⟨B → a⟩, and since t is justified by
induction hypothesis, then also m is. By definition of ϕP, we have that ϕP(n) = m
and thus also m is justified. We should check that n = ⟨!, a⟩ is a repetition. This
easily follows by observing that S must be of the form ∆, a, B ⊢ a for some ∆ and
by applying Proposition 5.

The fact that pP is won by P whenever P is a branch, follows from the fact that the last
move of pP must be ⟨!, a⟩ for some atom a.

Lemma 5. Let D be a proof of ⊢ F and P a path in D . The following holds:

1. if D is a ST-derivation then ⟨σP, ϕP⟩ is a S-play;
2. if D is a LF-derivation then ⟨σP, ϕP⟩ is a LF-play.

Proof. Both statement are proven by induction on |P|. We only detail the interesting
case of (2), i.e., when P = P′, S and the last O-move of σP is a defense asserting either
a complex formula A → B or an atomic formula a. By the construction of σP, S can
only be a sequent Γ ⊢ G that is the right-hand premise of a→L with principal formula
C → (A → B) (resp C → a). As a consequence, G must be an atomic formula b,
and thus either Γ ⊢ b is obtained by another →L-rule or by an Ax-rule. In the former
case, since D is a ST-derivation, then A → B is the principal formula of Γ ⊢ b, and by
construction of σP its last move must be ⟨?, A⟩ and must be justified by ⟨!, A→ B⟩ and
we can conclude. In the latter case, since D is an ST-derivation, then b = a and Γ ⊢ G
is ∆, a ⊢ a for some multiset ∆. Thus, the last move of σP must be ⟨!, a⟩.

Let D be a S-derivation of ⊢ F. Let TD be the tree in which any branch is equal to a
σB for a branch B of D . Let ϕD be the union of all ϕB for a branch B of D .
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Theorem 6. If D is a S-derivation of ⊢ F, then SD = ⟨TD , ϕD⟩ is a winning strategy
for F. Moreover, if D is a LF-derivation then SD is a Lorenzen-Felscher strategy and
if D is a ST-derivation, then SD is a Stubborn strategy.

Proof. Each branch of SD is a play won by P in virtue of Lemma 4. The other con-
ditions in the definition of strategy follows easily by the construction of the sequences
composing SD . The fact that SD is a Lorenzen-Felscher (resp. Stubborn) strategy when
D is a LF-derivation (resp. ST-derivation) follows from Lemma 5.

Corollary 1. Strategies, Lorenzen-Felscher Strategies and Stubborn Strategies are sound
and complete for IL→.

We conclude by establishing that there is a bijective correspondence between the
classes of winning strategies and derivations that we have considered.

Theorem 7. The following statements hold:

1. The set of S-derivations is in one-to-one correspondence with the set of winning
strategies;

2. The set of LF-derivations is in one-to-one correspondence with the set of Lorenzen-
Felscher winning strategies

3. The set of ST-derivations is in one-to-one correspondence with the set of Stubborn
winning strategies.

Proof. The procedure we have used to transform winning strategies into derivations
(see Definition 11) and the one we have used to obtain the converse result (see Defini-
tions 12 and 13) are one the inverse of the other. Thus, the result follows.

6 Conclusion and Future Work

We have defined different classes of Lorenzen-style dialogical plays for intuitionistic
logic by restricting the way in which P can play during a game. We have shown that
winning strategies for such games naturally corresponds to particular GKi derivations
obtained by limiting the application of GKis-rules in proof search procedures.

The correspondence between Stubborn strategies and ST-derivation, as well as the
result we used to prove that the latter are sound and complete with respect to IL→

(Lemma 2), suggest the existence of a one-to-one correspondence between these strate-
gies and Hyland-Ong Winning Innocent Strategies. In future work, we want to study
this correspondence in order to use dialogical logic to define denotational semantics of
the simply typed lambda calculus [18], for which Hyland-Ong game semantics is a fully
abstract denotational semantics [19, 11]. Moreover, the results in [1, 2] would suggest a
way to define a dialogical system for the constructive modal logic CK.

The semantics of formal argumentation systems are often specified through the help
of concepts originated in dialogic logic (e.g. E-strategies see [24]). We think it would
be interesting to study a more abstract version of our stubborn strategies in the context
of formal argumentation.



16 M. Acclavio and D. Catta

Acknowledgments

The first author is supported by Villum Fonden, grant no. 50079. The second author is
supported by the PRIN project RIPER (No. 20203FFYLK)

References

1. Acclavio, M., Catta, D., Straßburger, L.: Game semantics for constructive modal logic. In:
Anupam, D., Sara, N. (eds.) Automated Reasoning with Analytic Tableaux and Related
Methods, 30th International Conference, TABLEAUX 2021, Birmingham, UK, September
6–9, 2021, Proceedings, Lecture Notes in Artificial Intelligence, vol. 12842, pp. 428–445.
Springer International Publishing (2021)

2. Acclavio, M., Catta, D., Straßburger, L.: Towards a Denotational Semantics for Proofs
in Constructive Modal Logic (Apr 2021), https://hal.archives-ouvertes.fr/hal-03201439,
preprint

3. Alama, J., Knoks, A., Uckelman, S.: Dialogues games for classical logic (short paper), pp.
82–86. Universiteit Bern (2011)

4. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation 2, 297–347 (1992)

5. Barrio, E., Clerbout, N., Rahman, S.: Introducing Consistency in a Dialogical Framework
for Paraconsistent Logic (online 2018). Logic Journal of IGPL / Logic Journal of the IGPL
28(5), 953–972, (2020), https://halshs.archives-ouvertes.fr/halshs-01689148

6. Booth, R., Gabbay, D.M., Kaci, S., Rienstra, T., van der Torre, L.W.N.: Abduction and
dialogical proof in argumentation and logic programming. In: Schaub, T., Friedrich,
G., O’Sullivan, B. (eds.) ECAI 2014 - 21st European Conference on Artificial Intelli-
gence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious Applications
of Intelligent Systems (PAIS 2014). Frontiers in Artificial Intelligence and Applications,
vol. 263, pp. 117–122. IOS Press (2014). https://doi.org/10.3233/978-1-61499-419-0-117,
https://doi.org/10.3233/978-1-61499-419-0-117

7. Catta, D.: From strategies to derivations and back An easy completeness proof for first or-
der intuitionistic dialogical logic (Mar 2022), https://hal.archives-ouvertes.fr/hal-03188862,
working paper or preprint
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