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Differential linear logic (DiLL) provides a fine analysis of resource consumption in cut-elimination.
We investigate the subsystem of DiLL without promotion in a deep inference formalism, where cuts
are at an atomic level. In our system every provable formula admits a derivation in normal form, via a
normalization procedure that commutes with the translation from sequent calculus to deep inference.

1 Introduction

Girard [13] introduced linear logic (LL) as a refinement of intuitionistic and classical logics, built around
cut-elimination. In LL, a pair of dual modalities (the exponentials ! and ?) give a logical status to the
operations of erasing and copying (sub-)proofs in the cut-elimination procedure. The idea is that linear
proofs (i.e. proofs without exponentials) use their hypotheses exactly once, whilst exponential proofs
may use their hypotheses at will. In particular, the promotion rule makes a (sub-)proof available to
be erased or copied an unbounded number of times, provided that its hypotheses are as well (it is a
contextual rule). Via Curry–Howard correspondence between programs and proofs, LL gives a logical
status to the operations of erasing and copying data in the evaluation process. Linear proofs correspond
to programs which call their arguments exactly once, exponential proofs to programs which call their
arguments at will. The study of LL contributed to unveil the logical nature of resource consumption.

The importance of being differential. A further tool for the analysis of resource consumption in cut-
elimination came from Ehrhard and Regnier’s work on differential λ -calculus [7] and differential linear
logic (DiLL, [9, 28]). Despite the fact that DiLL is inconsistent (every sequent ` Γ can be proved), it has a
cut-elimination theorem [28, 12] and internalizes notions from denotational models of LL into the syntax.
In particular, DiLL0 (the promotion-free fragment of DiLL, [9]) is a logic corresponding to the semantic
constructions defined by Ehrhard’s finiteness spaces [4]. Finiteness spaces interpret linear proofs as lin-
ear functions on certain topological vector spaces, on which one can define an operation of derivative.
Exponential proofs are interpreted as analytic functions, in the sense that they can be arbitrarily approx-
imated by the semantic equivalent of a Taylor expansion [4, 5], which becomes available thanks to the
presence of a derivative operator. In syntactic terms, these constructions take an interesting form: they
correspond to “symmetrizing” the exponential modalities, i.e. in DiLL0 the rules handling the dual expo-
nential modalities ! and ? are perfectly symmetrical, although the logic is not self-dual. Indeed, in LL,
only the promotion rule introduces the ! modality, creating inputs that can be called an unbounded num-
ber of times. In DiLL0 the rules handling the ! modality (!-dereliction !d, !-contraction !c, !-weakening
!w) are the duals of the usual rules dealing with the ? modality (?-dereliction ?d, ?-contraction ?c, ?-
weakening ?w). In particular, !-dereliction expresses in the syntax the semantic derivative: it releases
inputs of type !A that must be called exactly once, so that executing a program f on a “!-derelicted” input
x (i.e. performing cut-elimination on a proof f cut with a “!-derelicted” sub-proof x) amounts to compute
the best linear approximation of f on x. This imposes non-deterministic choices: if in an evaluation the
program f needs several copies of the input x (i.e. if the proof f uses several times the hypothesis !A),
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then there are different executions of f on x, depending on which sub-routine (i.e. hypothesis) of f is fed
with the unique available copy of x. Thus we get a formal sum, where each term represents a possibility.
The rules !-contraction and !-weakening put together a finite (possibly 0) number of copies of an input,
so that it can be called a bounded number of times during execution.

What is also interesting is that LL promotion rule can be encoded in DiLL0 through the notion of
syntactic Taylor expansion [8, 10, 26, 29, 15, 3, 16, 17]: a proof in LL can be decomposed into a possibly
infinite set of (promotion-free) proofs in DiLL0. Given a proof in LL with exactly one promotion rule !p,
the idea is to replace !p (which makes the resource π available at will) with an infinite set of “differential”
proofs in DiLL0, each of them taking n ∈ N copies of π so as to make the resource π available exactly n
times. The potential infinity of the promotion rule becomes an actual infinite via the Taylor expansion.

Nets vs. sequents. The system DiLL0 is usually presented in two formalisms: sequent calculus and La-
font’s interaction nets [24] (a graphical representation of proofs similar to LL proof-nets). The symmetry
of the rules handling the dual exponentials ! and ? in DiLL0 is evident in interaction nets, but not at all in
the sequent calculus. In interaction nets for DiLL0, the rules for ? and ! have the same geometry:

?A !A

?w !w
A A

?d

?A

!d

!A

?A ?A !A !A

?c

?A

!c

!A
?- and !-weakening ?- and !-dereliction ?- and !-contraction

So, the distinction between ! and ? is given only by their different behaviors in correctness graphs (a
geometrical characterization of the interaction nets corresponding to proofs in the DiLL0 sequent calcu-
lus). But meaningful operations in DiLL0 such as cut-elimination can be defined directly on interaction
nets, regardless of being correct or not. The benefit is that DiLL0 cut-elimination steps defined on inter-
action nets are perfectly symmetric: for instance, the step for a cut ?c/!d is exactly the dual of the step
for a cut !c/?d, and similarly for the other steps (see [28, Fig. 4]).

This elegant symmetry in the presentation of cut-elimination steps is lost in DiLL0 sequent calculus,
see our Figure 3. Moreover, cut-elimination in DiLL0 sequent calculus has to deal with (many) unin-
teresting commutative steps, while interaction nets get rid of them. Thus, interaction nets allow one to
express DiLL0 cut-elimination with a sharper account than in sequent calculus. Not by chance, all papers
dealing with DiLL0 cut-elimination use only interaction nets [9, 28, 34, 12, 35, 30].

However, the interaction net presentation of DiLL0 has some flaws that do not affect the sequent
calculus: interaction nets do not have an inductive tree-like structure and so it is not easy to handle
them. Moreover, not all interaction nets correspond to a derivation in DiLL0 sequent calculus, a global
geometrical correctness criterion is required to identify them.

Our contribution. We define a proof system for DiLL0 in the formalism of open deduction [20] fol-
lowing the principles of deep inference [21, 2, 19, 31, 38]. Such a formalism, which allows rules to be
applied deep in a context, provides a more flexible composition of derivations and makes explicit the be-
havior of the cut-elimination process in DiLL0 in a more fine-grained way, since it pushes cut-elimination
at an atomic level. Besides, our deep inference system for DiLL0 gathers good qualities of both sequent
calculus and interaction nets formalisms: it restores the interaction net symmetries lost in the sequent
calculus and its derivations keep a handy inductive tree-like (or better, sequence-like) structure as in the
sequent calculus, without the need for a global correctness criterion like in interaction nets.

A first attempt in the direction of a deep inference system for DiLL0 is in [11] where, however, the
sum-rule is absent and, as a consequence, it is not suitable to represent the dynamic behavior of DiLL0.
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ax
` A,A

` Γ,A,B `
` Γ,A`B

` Γ,A ` B,∆
⊗

` Γ,A⊗B,∆
1

` 1
` Γ

⊥
` Γ,⊥

` Γ,A ` A,∆
cut

` Γ,∆
` Γ,A

!d
` Γ, !A

` Γ,A
?d

` Γ,?A

` Γ, !A ` !A,∆
!c

` Γ, !A,∆

` Γ,?A,?A
?c

` Γ,?A
!w

` !A

` Γ
?w

` Γ,?A

` Γ ` Γ
sum

` Γ
zero

` Γ

` ?Γ,A
!p

` ?Γ, !A

Figure 1: Sequent calculus rules for DiLL0 (on the left) and the promotion rule (on the right) [28].

To fully recover the expressiveness of this logic, we design our system to include a binary connective
+ which represents the sum operation. The rules for + (and for its unit 0) prevent the use of Guglielmi
and Tubella’s general result [36, 37] to show cut-elimination. However, we are able to define a normal-
ization procedure by rule permutations which fully captures the dynamics of DiLL0 cut-elimination, in
a way similar to the one in [32, 33]. Our system is sound and complete with respect to DiLL0 sequent
calculus, through a translation that commutes with cut-elimination/normalization.

In the normalization procedure, we can classify our rule permutations depending on their behavior:
some rule permutations correspond to multiplicative cut-elimination steps, other permutations corre-
spond to “resource management” cut-elimination steps (involving the ? and ! rules), other permutations
correspond to “slice management” operations (involving the propagation of + and 0).

2 Differential linear logic

We present here the classical, propositional, one-sided sequent calculus for differential linear logic with-
out promotion (DiLL0). The formulas of DiLL0 are exactly the same as in the multiplicative exponential
fragment of linear logic (MELL). MELL formulas are defined by the grammar below, where a,b,c, . . .
range over a countably infinite set of propositional variables:

A,B ::= a | a | 1 | ⊥ | A⊗B | A`B | !A | ?A

Linear negation (·) is defined through De Morgan laws so as to be involutive (A = A for any A):

(a) = a (a) = a A⊗B = A`B A`B = A⊗B 1=⊥ ⊥= 1 !A = ?A ?A = !A

Variables and their negations are atomic; ⊗,` are multiplicative connectives and 1,⊥ are their re-
spective units; !,? are exponential modalities. A MELL sequent is a (finite) multiset of MELL formulas
A1, . . . ,An (for any n≥ 0), and it is ranged over by Γ,∆,Σ.

Figure 1 gives the sequent calculus rules1 for differential linear logic DiLL0 (without promotion !p);
the rules on the first line correspond to the multiplicative linear logic fragment MLL. We set:

MELL=MLL∪{?w,?d,?c, !p} DiLL−0 = DiLL0 \{zero,sum}

We define ≡ as the least congruence on DiLL0 derivations generated by the relations in Figure 2.
Roughly, the rule zero plays the role of annihilating element with respect to all the other rules but sum, for
which it is a neutral element; whilst the rule sum commutes with any rule below it. Clearly, ≡ preserves
conclusions and can be oriented so as to define a terminating rewriting relation that pushes down the
rules zero and sum in a derivation. As a consequence, every derivation in DiLL0 can be rewritten in a
canonical form (with the same conclusion).

Definition 2.1 (Canonical form, slice). Let π be a derivation in DiLL0:

1Usually, in the literature on LL and DiLL, the rules ?w, ?d, ?c, !w, !d, !c are called respectively weakening, dereliction, con-
traction, co-weakening, co-dereliction and co-contraction. To avoid clashes with the usual terminology in deep inference (see
Footnote 4), we call them ?-weakening, ?-dereliction, ?-contraction, !-weakening, !-dereliction and !-contraction, respectively.
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zero
` Γ

r1` ∆

≡ zero
` ∆

zero
` Γ ` ∆

r2` Σ

≡ zero
` Σ

≡ ` Γ
zero

` ∆
r2` Σ

zero
` Γ ` Γ

sum
` Γ

≡ ` Γ≡ ` Γ
zero

` Γ
sum

` Γ

` Γ ` Γ
sum

` Γ
r1` ∆

≡
` Γ

r1` ∆

` Γ
r1` ∆
sum

` ∆

` Γ ` Γ
sum

` Γ ` ∆
r2` Σ

≡
` Γ ` ∆

r2` Σ

` Γ ` ∆
r2` Σ

sum
` Σ

≡ ` Γ

` ∆ ` ∆
sum

` ∆
r2` Σ

` Γ

` Γ ` Γ
sum

` Γ
sum

` Γ

≡
` Γ ` Γ

sum
` Γ ` Γ

sum
` Γ

Figure 2: The congruence ≡ on derivations generated by the rules zero and sum in DiLL0, where r1 is
any unary rule in DiLL0, and r2 is any binary rule in DiLL0 but sum.

1. π is a slice if it is in DiLL−0 (i.e. the rules zero and sum do not occur in π);

2. π is canonical or in canonical form if either it consists of a zero rule, or it is a slice, or if its last
rule is sum with a canonical form as left premise and a slice as right premise.

A canonical form of π is any canonical derivation π ′ in DiLL0 such that π ≡ π ′.

Fact 2.2 (Canonicity). Any derivation in DiLL0 has a canonical form (with the same conclusion).

Intuitively, considering only canonical derivations, slices—i.e. derivations in the subsystem DiLL−0 —
are the “real and meaningful” proofs in DiLL0 (corresponding to simple nets in [9, 26, 28, 34]), while
the rules sum and zero are needed to define cut-elimination in DiLL0, in particular they ensure that the
conclusion of a derivation is preserved after a cut-elimination step (the subsystem DiLL−0 is not closed
under cut-elimination, see below). The rule sum puts together slices with the same conclusions `Γ,
similarly to multiset union: it expresses the possibility of several “real proofs” of `Γ. The rule zero then
corresponds to the empty multiset of “real proofs” of `Γ: it claims `Γ without a proof (it is reminiscent
of daimon in ludics [14]). Because of it, any MELL sequent (also the empty one) is provable in DiLL0.

Let π be a derivation in DiLL0. We say that π is with atomic axioms (or η-expanded) if every instance
of the rule ax introduces a MELL sequent of the form ` a,a, where a is a propositional variable. We say
that π is cut-free is it does not contain any instance of the rule cut, i.e. π is a derivation in DiLL0 \{cut}.
Proposition 2.3 (Atomic axioms). For every derivation π in DiLL0 with conclusion ` Γ, there exists a
η-expanded derivation π ′ in DiLL0 with conclusion ` Γ. If, moreover, π is canonical (resp. a slice) then
π ′ is canonical (resp. a slice).

Proof. Rewrite any non-atomic instance of the rule ax according to the η-expansion relation η below:

ax

` A⊗B,A`B  η

ax

` A,A
ax

` B,B
⊗

` A⊗B,A,B
`

` A⊗B,A`B

ax
` 1,⊥  η

1
` 1

⊥
` 1,⊥

ax

` !A,?A  η

ax

` A,A
?d

` A,?A
!d

` !A,?A

(1)

It is immediate to prove that the relation η on the derivations of DiLL0 is terminating.

Cut-elimination. Despite its incoherence, DiLL0 provides a fine analysis of resource consumption
in cut-elimination. Rewriting rules  cut for cut-elimination in DiLL0 sequent calculus are defined in
Figure 3. They are just the formulation in the sequent calculus formalism of the cut-elimination steps
defined and studied in [9, 34, 12] and [28, Fig. 4] within the interaction nets formalism. We represent in
Figure 3 only the key cases, where the principal connectives in the cut formulas are dual (the pairs of dual
connectives are ⊗/`, 1/⊥, !/?). The way DiLL0 deals with the commutative cases is omitted since is
analogous to usual sequent calculi. With these cut-elimination steps it has been proved in [9, 28, 12] that
the rule cut is admissible in DiLL0 (and even in DiLL, i.e., the system DiLL0 plus MELL promotion !p).
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` Γ,A,B
`

` Γ,A`B

` ∆,A ` Σ,B
⊗

` ∆,Σ,A⊗B
cut

` Γ,∆,Σ

 cut

` Γ,A,B ` ∆,A
cut

` Γ,∆,B ` Σ,B
cut

` Γ,∆,Σ

` Γ
⊥

` Γ,⊥
1

1
cut

` Γ

 cut ` Γ

ax

` A,A ` Γ,A
cut

` Γ,A
 cut ` Γ,A

` Γ
?w

` Γ,?A
!w

` !A
cut

` Γ

 cut ` Γ

` Γ,A
?d

` Γ,?A

` ∆,A
!d

` ∆, !A
cut

` Γ,∆

 cut
` Γ,A ` ∆,A

cut
` Γ,∆

` Γ
?w

` Γ,?A

` ∆, !A ` Σ, !A
!c

` ∆,Σ, !A
cut

` Γ,∆,Σ

 cut

` Γ
?w

` Γ,?A ` ∆, !A
cut

` Γ,∆
?w

` Γ,∆,?A ` Σ, !A
cut

` Γ,∆,Σ

` Γ,?A,?A
?c

` Γ,?A
!w

` !A
cut

` Γ

 cut

` Γ,?A,?A
!w

` !A
cut

` Γ,?A
!w

` !A
cut

` Γ

` Γ,A
?d

` Γ,?A
!w

` !A
cut

` Γ

 cut
zero

` Γ

` Γ
?w

` Γ,?A

` ∆,A
!d

` ∆, !A
cut

` Γ,∆

 cut
zero

` Γ,∆

` Γ,A
?d

` Γ,?A

` ∆, !A ` Σ, !A
!c

` ∆,Σ, !A
cut

` Γ,∆,Σ

 cut

` Γ,A
?d

` Γ,?A ` ∆, !A
cut

` Γ,∆
?w

` Γ,∆,?A ` Σ, !A
cut

` Γ,∆,Σ

` Γ,A
?d

` Γ,?A ` Σ, !A
cut

` Γ,Σ
?w

` Γ,Σ,?A ` ∆, !A
cut

` Γ,∆,Σ
sum

` Γ,∆,Σ

` Γ,?A,?A
?c

` Γ,?A

` ∆,A
!d

` ∆, !A
cut

` Γ,∆

 cut

` Γ,?A,?A

` ∆,A
!d

` ∆, !A
cut

` Γ,∆,?A
!w

` !A
cut

` Γ,∆

` Γ,?A,?A
!w

` !A
cut

` Γ,?A

` ∆,A
!d

` ∆, !A
cut

` Γ,∆
sum

` Γ,∆

` Γ,?A,?A
?c

` Γ,?A

` ∆, !A ` Σ, !A
!c

` ∆,Σ, !A
cut

` Γ,∆,Σ

 cut

` Γ,?A,?A

ax

` ?A, !A
ax

` ?A, !A
!c

` ?A,?A, !A
cut

` Γ,?A,?A,?A

ax

` ?A, !A
ax

` ?A, !A
!c

` ?A,?A, !A
cut

` Γ,?A,?A,?A,?A
?c

` Γ,?A,?A,?A ` ∆, !A
cut

` Γ,∆,?A,?A
?c

` Γ,∆,?A ` Σ, !A
cut

` Γ,∆,Σ

Figure 3: Key cases of cut-elimination rewriting rules for DiLL0 sequent calculus (colors highlight cut-
relations between formula occurrences).

Theorem 2.4 (Cut-elimination, [9, 28, 12]). For every derivation π in DiLL0 with conclusion ` Γ, there
exists a cut-free derivation π ′ in DiLL0 with conclusion ` Γ such that π  ∗cut π ′.

Cut-elimination preserves atomic axioms: if π cut π ′ and π is η-expanded, then π ′ is η-expanded.
Note that if π  cut π ′ with π canonical then π ′ is not necessarily canonical (e.g. if in π a cut ?c/!d or
?d/!w is above another rule), but π ′ can be rewritten in a canonical form (see Fact 2.2 above). Indeed,
DiLL−0 is not closed under cut-elimination: steps ?c/!d or ?d/!w create instances of the rule sum or zero.

To explain the importance of the rules sum and zero as resource management, we give an informal
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account of the cut-elimination steps in Figure 3 for the key cases involving !/?. Roughly, they follow
the “law of supply and demand” so as to be resource-sensitive: in each slice no duplication or erasure
is allowed. The rules for ? (?w, ?d, ?c) ask for a number of resources of type !A (0, 1, and the sum of
the numbers asked by its premises, respectively), while the rules for ! (!w, !d, !c) supply a number of
resources of type !A (0, 1, and the sum of the numbers supplied by its premises, respectively). Cases:

1. If the numbers of demanded and supplied resources match, the cut-elimination proceeds normally
(see the steps ?d/!d and ?w/!w).

2. The step ?c/!c is slightly more complex: intuitively, it connects the dual premises of a ?-contraction
and of a !-contraction in all possible ways.

3. The step ?c/!w duplicates the rule !w, spreading the information that there are no available re-
sources to the premises of ?c.

4. The step ?d/!w represents a mismatch in supply and demand: ?-dereliction asks for a resource but
!-weakening says that it is not available; the rule zero in the resulting derivation keeps track of this
mismatch, as a sort of error in computation, and ensures that the conclusion is preserved.

5. In the step ?c/!d, ?-contraction represents two possible demands for a resource, but according to
!-dereliction only one resource is available, so there is a non-deterministic choice on which request
will be fed, the other one will receive a !-weakening; the rule sum has to be intended as a way to
keep track of all possible choices, not as a way to duplicate resources; said differently, in the step
?c/!d a derivation reduces to a pair of derivations (of slices, if we consider their canonical forms).

By duality, the discussion above about resource management is similar for the steps ?w/!c, ?w/!d and
?d/!c, respectively. Figure 4 provides an example of the cut-elimination procedure in DiLL0.

It is worth comparing cut-elimination steps as defined for DiLL0 sequent calculus (Figure 3) and for
DiLL0 interaction nets ([9, Sect. 2], [28, Fig. 4]): symmetry and duality in the latter are lost in the former.

As there is no promotion rule !p, in DiLL0 transforming a derivation in DiLL0 into one with atomic
axioms does not commute with cut-elimination. For instance, derivation π below reduces to π ′ via cut-
elimination; but derivation πη with atomic axioms, obtained from π through η-expansion (the procedure
described in the proof of Proposition 2.3) reduces to π ′η 6= π ′ via cut-elimination.

π =
ax

` !a,?a
?w

` ?a
cut

` ?a
 cut

?w
` ?a = π

′
πη =

ax

` a,a
?d

` a,?a
!d

` !a,?a
?w

` ?a
cut

` ?a

 cut
zero

` ?a = π
′
η

3 A calculus of structures for DiLL0

In this section, we introduce a deep inference system [21, 2, 19, 38] suitable for DiLL0, using the open
deduction formalism [20]. As a first novelty, we internalize the rules zero and sum of DiLL0 sequent
calculus at the level of formulas. In fact, derivations in deep inference systems have a sequence structure
instead of the more general tree-like structure of sequent calculus: every rule in deep inference has ex-
actly one premise, consisting of one formula. This because the meta-connectives for sequent composition
(the comma) and sequent juxtaposition (derivation branching) are internalized by ` and ⊗, respectively.
To internalize the DiLL0 meta-connective for sum, together with its unit, we introduce the (commutative
and associative) binary connective + and its unit 0.2 In this way, the rule sum branches the derivation tree

2Here, the new connective + has nothing to do with the additive disjunction ⊕ in LL; and the unit 0 for + must not be
confused with the additive unit 0 for ⊕ in LL.
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.... π1

` A,A
?d

` A,?A
?d

` ?A,?A
?c

` ?A

.... π

` Γ,A
!d

` Γ, !A
cut

` Γ

 cut

.... π1

` A,A
?d

` A,?A
?d

` ?A,?A

.... π

` Γ,A
!d

` Γ, !A
cut

` Γ,?A
!w

!A
cut

` Γ

.... π1

` A,A
?d

` A,?A
?d

` ?A,?A
!w

!A
cut

` ?A

.... π

` Γ,A
!d

` Γ, !A
cut

` Γ
sum

` Γ

 cut

.... π1

` A,A
?d

` A,?A
?d

` ?A,?A

.... π

` Γ,A
!d

` Γ, !A
cut

` Γ,?A
!w

!A
cut

` Γ

zero
` ?A

.... π

` Γ,A
!d

` Γ, !A
cut

` Γ
sum

` Γ

≡

.... π1

` A,A
?d

` A,?A
?d

` ?A,?A

.... π

` Γ,A
!d

` Γ, !A
cut

` Γ,?A
!w

!A
cut

` Γ

 cut

.... π1

` A,A
?d

` A,?A

.... π

` Γ,A
cut

` Γ,?A
!w

!A
cut

` Γ

 cut

.... π1

` A,A
?d

` A,?A
!w

!A
cut

` A

.... π

` Γ,A
cut

` Γ

 cut
zero

` A

.... π

` Γ,A
cut

` Γ

≡ zero
` Γ

Figure 4: An example of the cut-elimination procedure in DiLL0 sequent calculus.

with a connective, +; and similarly, the rule zero has is own premise, 0. Thus, formulas are defined by:

A,B ::= a | ā | A⊗B | A`B | 1 | ⊥ | !A | ?B | 0 | A+B

where a,b,c, . . . range over the usual countably infinite set of propositional variables (so, a MELL for-
mula as defined on p. 3 is a formula with no occurrences of + and 0). Formulas are identified up to the
equivalence ' defined as the least congruence on formulas generated by the relations in (2).

A`B' B`A A⊗B' B⊗A A+B' B+A
A` (B`C)' (A`B)`C A⊗ (B⊗C)' (A⊗B)⊗C A+(B+C)' (A+B)+C

A`⊥' A A⊗1' A A+0' A
A` (B+C)' (A`B)+(A`C) A⊗ (B+C)' (A⊗B)+(A⊗C)

!(A+B)' !A+ !B ?(A+B)' ?A+ ?B
0⊗A' 0 0`A' 0 ?0' 0 !0' 0

(2)

Some equivalences in (2) correspond to well-known isomorphisms in MLL. With respect to ', the
formula 0 is an annihilating element for all other connectives but +, for which it is a neutral element;
every connective other than + distributes over +.

An additive normal formula A is a sum of MELL formulas, i.e. A = A1 + · · ·+An (n ∈ N) where
all Ai’s are MELL formulas (A = 0 for n = 0). For any n ∈ N, we set n = 1+ · · ·+1︸ ︷︷ ︸

n times

. Note that, by the

equivalences in (2), n⊗m= k where k = n×m.
A context (resp. MELL context) C{} is a formula (resp. MELL formula) with exactly one occurrence

of the hole {} (which can be thought of as a special propositional variable). We write C{A} for the
formula obtained from the context C{} by replacing its hole with the formula A.
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Remark 3.1 (Additive normal form). By definition of ', if C{} is a context, C{A+ 0} ' C{A} and
C{A+B} ' C{A}+C{B}. If C{} is a MELL context, C{0} ' 0. In general, any formula A has an
additive normal formula A′ such that A′ ' A. Indeed, equivalences in (2) but the ones on the first line can
be oriented to define a terminating rewriting relation whose normal forms are additive normal formulas.

Derivations. A deep inference system S is a set of unary inference rules. A derivation D from a premise

B to a conclusion A in a deep inference system S , noted
B

D S
A

or D . B
S

A, is defined as follows:

• (assumption) a formula A is a derivation (denoted by A) with premise and conclusion A;

• (horizontal composition) if for all i ∈ {1,2} Di is a derivation from Bi to Ai, then for any • ∈
{`,⊗,+}, D1 •D2 is a derivation from B1 •B2 to A1 •A2 (see (3) below on the left);

• (vertical composition) if
A1

ρ

B2
∈ S and, for all i ∈ {1,2}, Di is a derivation from Bi to Ai, then

D1 ◦ρ D2 is a derivation from B1 to A2 (see (3) below on the right).3

B1 •B2
D1•D2 S

A1 •A2

=
B1

D1 S
A1

•
B2

D2 S
A2

for • ∈ {`,⊗,+}
B1

D1◦ρ D2 S
A2

=

B1
D1 S

A1
ρ

B2
D2 S

A2

for ρ ∈ S (3)

We write B
S

A if there is a derivation D . B
S

A. A rule
B

ρ

A
is derivable in S if B

S
A.

The system SDDI is defined by the rules in Figure 5. All rules in SDDI have exactly one premise, as
usual in deep inference. The down-fragment and up-fragment4 of SDDI are the following sets of rules:

DDI↓ = {ai↓, !d↓,?d↓, !w↓,?w↓, !c↓,?c↓,+↓,0↓,s} DDI↑ = {ai↑, !d↑,?d↑, !w↑,?w↑, !c↑,?c↑,+↑,0↑,s}

Note the up/down symmetry between DDI↓ and DDI↑, and that SDDI = DDI↓ ∪DDI↑ with DDI↓ ∩
DDI↑= {s}. We set DDI↓−=DDI↓\{+↓,0↓}. Note that in a DDI↓− derivation only MELL formulas occur.

Roughly, rules in DDI↓ somehow mimic the ones in DiLL0 \ {cut}. Rules in DDI↑ are their duals,
turning them upside down. Derivations in DDI↓− correspond to cut-free slices in DiLL−0 (see Theorem 4.3).

Remark 3.2 (Deep). The idea of deep inference is that inference rules can be applied “deep” in any

context: in a deep inference system S , if
B

ρ

A
∈ S then, for any context C{},

C{B}
ρ

C{A}
is derivable in S .

Therefore, a derivation in S can be seen as a finite sequence of “deep” rules: for instance, the derivation

a
?d↓

?a
⊗

b
!d↓

!b
in DDI↓ (with parallel ?d↓ and !d↓) can be “sequenced” as both

a⊗b
!d↓

a⊗ !b
?d↓

?a⊗ !b
and

a⊗b
?d↓

?a⊗b
!d↓

?a⊗ !b
.

Often we implicitly identify a derivation in a deep inference system S with its sequenced presentations.

3 We can write
A

'
B

as a rule in a derivation if A' B, although formally its use is implicit as formulas are identified up to'.

4Usually in the literature on deep inference, the dual rule r↑ of a rule r↓ is called “co-r”. We avoid these names because they
clash with the usual terminology in the literature on DiLL0, see Footnote 1.
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1
ai↓

a` ā

A
!d↓

!A

A
?d↓

?A

1
!w↓

!A

⊥
?w↓

?A

!A⊗ !A
!c↓

!A

?A` ?A
?c↓

?A

A+A
+↓

A

0
0↓

A A⊗ (B`C)
s
(A⊗B)`Ca⊗ ā

ai↑

⊥
?A

!d↑
A

!A
?d↑

A

?A
!w↑
⊥

!A
?w↑

1

?A
!c↑

?A` ?A

!A
?c↑

!A⊗ !A

A
+↑

A+A

A
0↑

0

Figure 5: The rules of the deep inference system SDDI (A,B,C are MELL formulas).

Remark 3.3 (Big one). For any formula A and n∈N, if D . n
SDDI

A, then there is a derivation D ′ . 1
SDDI

A. Indeed, D ′ is built from D by adding one rule 0↑ if n = 0, or n−1 rules +↑ if n > 1, on top of D .

System SDDI has only the atomic introduction rules ai↓ and ai↑ (indeed a is a propositional variable
in Figure 5): they can be seen as the atomic version of ax- and cut-rules of sequent calculus, respectively.
The non-atomic versions of the rules ai↓ and ai↑ are respectively:

1
i↓

A` Ā

A⊗ Ā
i↑

⊥
(where A is a MELL formula)

However, the rules i↓ and i↑ are derivable in SDDI (Lemma 3.4). Derivability of i↓ is analogous
to the fact that a derivation can be transformed to one with atomic axioms in DiLL0 sequent calculus
(Proposition 2.3), but derivability of i↑ is a typical result in deep inference systems that does not have a
corresponding result in the sequent calculus: it says that restricting cuts to an atomic level is not limiting.

Lemma 3.4 (Atomic axioms and atomic cuts). The rule i↓ is derivable in {ai↓,s,?d↓, !d↓}; and the rule
i↑ is derivable in {ai↑,s,?d↑, !d↑}.

Proof. Concerning i↓, the proof is by induction on the MELL formula A in
1

i↓

A` Ā
:

• if A = a is a propositional variable (and similarly if A = ā), then
1

ai↓

a` ā
;

• if A = 1 (and similarly if A =⊥), then 1
'
1`⊥ ;

• if A = B⊗C (and similarly for A = B`C), then

1
'

1
IH

B` B̄
⊗

1
IH

C`C̄
2×s

(B⊗C)` (B̄`C̄
)

;

• if A = !B (and similarly if A = ?B), then

1
IH

B
!d↓

!B
` B̄

?d↓
?B̄

.

The proof for i↑ is dual, using ai↑, !d↑ and ?d↑ instead of ai↓, !d↓ and ?d↓, respectively.

The rule i↑ plays a special role in deep inference systems, as the cut does in sequent calculi. Thanks
to ' and 0↓, it makes superfluous all the rules in DDI↑ (second line in Figure 5) but 0↑ and s. Note that
ai↑ is not enough for that, because i↑ needs !d↑ and ?d↑ to be simulated by ai↑, as seen in Lemma 3.4.

Lemma 3.5 (Getting rid of up-rules via i↑ and 0↓). Any rule ρ↑∈{!d↑,?d↑, !c↑,?c↑, !w↑,?w↑} is derivable
in {ρ↓, i↑, i↓,s}; the rule +↑ is derivable in {0↓}.
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ax
` a, ā

JK→
1

ai↓

a` ā

π1

` Γ,A
π2

` ∆,A
cut

` Γ,∆

JK→

m
'

n1
Jπ1K
JΓK`A

⊗
n2

Jπ2K
J∆K`A

2×s

JΓK` A⊗A
i↑

⊥
` J∆K

π1

` Γ,A
π2

` ∆,B
⊗

` Γ,A⊗B,∆

JK→

m
'

n1
Jπ1K
JΓK`A

⊗
n2

Jπ2K
J∆K`B

2×s
JΓK` (A⊗B)` J∆K

π

` Γ,A,B `
` Γ,A`B

JK→
n

JπK
JΓK`A`B

1
` 1

JK→ 1

π

` Γ
⊥

` Γ,⊥

JK→

n
JπK

JΓK
'

JΓK`⊥

π1

` Γ

π2

` Γ
sum

` Γ

JK→

n1
Jπ1K

JΓK
+

n2
Jπ2K

JΓK
+↓

JΓK

π

` Γ
?w

` Γ,?A

JK→

n
JπK

JΓK
'

JΓK` ⊥
?w↓

?A

!w
` !A

JK→
1

!w↓
!A

π

` Γ,A
!d

` Γ, !A

JK→

n
JπK

JΓK` A
!d↓

!A

π

` Γ,A
?d

` Γ,?A

JK→

n
JπK

JΓK` A
?d↓

?A

π

` Γ,?A,?A
?c

` Γ,?A

JK→

n
JπK

JΓK` ?A` ?A
?c↓

?A

π1

` Γ, !A
π2

` ∆, !A
!c

` Γ, !A,∆

JK→

m
'

n1
Jπ1K
JΓK` !A

⊗
n2

Jπ2K
J∆K` !A

2×s

JΓK` !A⊗ !A
!c↓

!A
` J∆K

zero
` Γ

JK→
0

0↓

JΓK

Figure 6: Translation of η-expanded DiLL0 sequent calculus derivations into DDI↓ ∪{i↑} derivations
(m = n1×n2).

Proof. For a rule
B̄

ρ↑

Ā
with ρ↑ ∈ {!d↑,?d↑, !c↑,?c↑, !w↑,?w↑}, see (4). For the rule

A
+↑

A+A
, see (5).

B̄
'

1
i↓

Ā`A
⊗ B̄

s

Ā`
A

ρ↓

B
⊗ B̄

i↑

⊥
'

Ā

(4)

A
'

0
0↓

A
+A

(5)

4 Correspondence between DiLL0 and SDDI

In this section we prove that SDDI is a sound and complete proof system for DiLL0 sequent calculus.
At first sight, this result is obvious because the rules zero in DiLL0 and 0↓ in SDDI make everything
provable. But the interest is to show that the fragments without zero and 0↓ correspond to each other.

If Γ = A1, . . . ,An (with n∈N) is a MELL sequent, we set JΓK= A1` · · ·`An (so, JΓK=⊥ for n = 0).

Theorem 4.1 (Completeness). Let Γ be a MELL sequent. If
DiLL0

Γ (resp.
DiLL0\{cut}

Γ), then n
DDI↓∪{i↑}

JΓK
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1
ai↓

a` ā
→

ax
` a, ā `
` a` ā

⊥
` a` ā,⊥

A⊗A
i↑

⊥
→

ax
` A,A `
` A`A

⊥
` A`A,⊥

1
!w↓

!A
→

!w
` !A

⊥
` !A,⊥

⊥
?w↓

?A
→

1
` 1

?w
` 1,?A

A
?d↓

?A
→

ax
` A,A

?d
` Ā,?A

A
!d↓

!A
→

ax
` A,A

!d
` A, !A

A⊗ (B`C)
s
(A⊗B)`C

→
ax

` A,A

ax
` B,B

ax
`C,C

⊗
` B,C,B⊗C

⊗
` A⊗B,C,A,B⊗C̄

2×`
` (A⊗B)`C,A` (B⊗C)

?A` ?A
?c↓

?A
→

ax
` !A,?A

ax
` !A,?A

⊗
` !A⊗ !A,?A,?A

?c
` !A⊗ !A,?A

!A⊗ !A
!c↓

!A
→

ax
` ?A, !A

ax
` ?A, !A

!c
` ?A,?A, !A `
` !A,?A` ?A

A` (B`C)
'
(A`B)`C

→
ax

` A,A

ax
` B,B

ax
`C,C

⊗
` B,C,B⊗C

⊗
` A⊗ (B⊗C),A,B,C

2×`
` A⊗ (B⊗C),(A`B)`C

(A`B)`C
'

A` (B`C)
→

ax
` A,A

ax
` B,B

⊗
` B,A,A⊗B

ax
`C,C

⊗
` (A⊗B)⊗C,A,B,C

2×`
` (A⊗B)⊗C,A` (B`C)

A`B
'

B`A
→

ax
` A,A

ax
` B,B

⊗
` A⊗B,B,A `
` A⊗B,B`A

A
'

A`⊥ →
ax

` A,A
⊥

` A,A,⊥ `
` A,A`⊥

A`⊥
'

A
→

ax
` A,A

1
` 1`

` A⊗1,A

Figure 7: Interpretation of the rules in DDI↓−∪{i↑} and of ' as derivations in DiLL0 sequent calculus.

(resp. n
DDI↓

JΓK) for some n ∈ N, and 1
SDDI

JΓK. Moreover, if
DiLL−0

Γ then 1
DDI
↓
−∪{i

↑}

JΓK; if
DiLL−0 \{cut}

Γ then

1
DDI
↓
−
JΓK; if

{zero}
Γ then 0

{0↓}
JΓK.

Proof. If we show that
DiLL0

Γ implies n
DDI↓∪{i↑}

JΓK, then n
SDDI

JΓK by Lemma 3.4, and thus 1
SDDI

JΓK
by Remark 3.3. So, let π be a derivation of `Γ in DiLL0. By Proposition 2.3 we can assume that π is

η-expanded. By induction on π , we define a derivation JπK . n
DDI↓∪{i↑}

JΓK (for some n ∈ N) as shown
in Figure 6. According to this translation, if π is in DiLL0 \{cut} (resp. in DiLL−0 \{cut}; in DiLL−0 ; in
{zero}) then JπK is in DDI↓ (resp. in DDI↓− and n = 1; in DDI↓−∪{i↑} and n = 1; in {0↓} and n = 0).

Completeness (Theorem 4.1) says that slices of a derivation in DiLL0 (i.e. derivations in DiLL−0 ) with
atomic axioms correspond to derivations in DDI↓− ∪{i↑} (and so in SDDI \ {+↑,0↑,+↓,0↓}, by rewrit-
ing i↑ according to Lemma 3.4) with only MELL formulas, via the translation J·K defined in Figure 6.
Soundness (Theorem 4.2) says somehow that the converse holds too.

Theorem 4.2 (Soundness). For any MELL sequent Γ and any n ∈ N, if n
SDDI

JΓK then
DiLL0

Γ; and more

precisely, if 1
DDI
↓
−∪{i

↑}

JΓK, then
DiLL−0

Γ.

Proof. Clearly, for any MELL sequent Γ, there is a derivation in DiLL0 sequent calculus: zero
` Γ

.

Let us assume that we have a derivation D in DDI↓−∪{i↑} from 1 to JΓK. To define the derivation of
` Γ in DiLL−0 , we consider the formulas occurring in D (which actually are MELL formulas) not up to
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', so when' is required, its use is made explicit as if it were an inference rule (see also Footnote 3). For

any ρ ∈ DDI↓−∪{i↑,'}, if
B

ρ

A
then

DiLL−0
B,A as shown in Figure 7. Since A and B are MELL formulas,

many equivalences in (2) cannot occur in D . The cases for ρ = ' corresponding to A⊗B ' B⊗A and
A⊗ (B⊗C)' (A⊗B)⊗C and A⊗1' A are omitted in Figure 7 as they are analogous to the ones for `.

Consider D as sequenced (Remark 3.2). By induction on the MELL context C{}, we prove that if
C{B}

ρ

C{A}
occurs in D , then

DiLL−0
C{B},C{A}. We have just shown the case C{}= {}. Other cases:

C{A}= D`C′{A} (or similarly C{A}= D⊗C′{A}) C{A}= !C′{A} (or smilarly C{A}= ?C′{A})

ax
` D, D̄

IH

` C′{B},C′{A}
⊗

` D̄⊗C′{B},D,C′{A}
`

` D̄⊗C′{B},D`C′{A}

IH

` C′{B},C′{A}
?d

` ?C′{B},C′{A}
!d

` ?C′{B}, !C′{A}

We define a derivation of ` JΓK in DiLL−0 by induction on the number of rules in D as follows:

1 → 1
` 1

1

DDI↓−∪{i↑}
J∆K

ρ

JΓK

→
IH DiLL−0

` J∆K
DiLL−0

` J∆K,JΓK
cut

` JΓK

By reversibility of ` (if
DiLL−0

A`B then
DiLL−0

A,B), we have
DiLL−0

Γ.

Let us sum up the correspondence between DiLL0 sequent calculus and SDDI deep inference system.

Theorem 4.3 (Sequent calculus vs. deep inference). Let Γ be a MELL sequent.

1. DiLL0 vs. SDDI:
DiLL0

Γ if and only if 1
SDDI

JΓK.

2. DiLL0 cut-free vs. DDI↓:
DiLL0\{cut}

Γ if and only if n
DDI↓

JΓK for some n ∈ N.

3. DiLL−0 cut-free vs. DDI↓−: if
DiLL−0 \{cut}

Γ then 1
DDI
↓
−

JΓK.

Proof. 1. For⇒, by completeness (Theorem 4.1); for⇐, by soundness (Theorem 4.2).

2.–3. For⇒, see Theorem 4.1. For⇐ (only for Item 2), by Theorems 2.4 and 4.3.1.

5 Normalization in SDDI

In this section we define a standard form for derivations in SDDI and a normalization procedure to
obtain a “cut-free” standard derivation in DDI↓ for any formula A provable in SDDI. The usual approach
to prove normalization in deep inference system relies on the splitting technique [19, 23, 1, 22, 32].
However, the presence in our syntax of the connective + and its unit 0 prevents us to use Guglielmi and
Tubella’s normalization result [36, 37], which covers and generalizes the splitting proofs. This is mainly
due to the fact that 0 is an absorbing element for ⊗, `, ? and !, together with the distributivity over +.

For this reason, following [32, 33], we define the normalization process in terms of rule permutations,
which play the same role as cut-elimination steps in DiLL0. In some cases, their definition relies on the
rules for the connective + and its unit 0. This behavior is coherent with the dynamics of cut-elimination
in DiLL0 [9, 28, 12], where the rules sum and zero step in to deal with non-deterministic choices or
mismatches between “supply and demand” (see Section 2). Interestingly, these permutations in SDDI
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mimic the elegant symmetries of cut-elimination steps as defined for interaction nets [28, Fig. 4], instead
of the awkward rewrite rules defined for the sequent calculus (Figure 3).

The fact that the syntax for SDDI is more flexible and symmetric than the sequent calculus, and
internalizes the connective + and its unit 0, allows for a more fine-grained analysis of the normalization
process than in DiLL0. In particular, we can distinguish three kinds of rule permutations corresponding to
three distinct phases in normalizing: MLL cut-elimination steps (involving ai↑, ai↓ and s only), resource
management steps (involving the ?- and the !-rules only) and slice operations (the process of duplicating
or removing a slice, which is less evident in the DiLL0 sequent calculus and DiLL0 interaction nets).

Definition 5.1 (Permutation). In SDDI, a rule ρ permutes over a rule σ (or σ permutes under ρ) if, for

any derivation
C

σ

B
ρ

A

, one of the following holds:

A =C ;
C

σ

A
;

C
ρ

A
;

C
ρ

B′
σ

A

for some formula B′ ;
C

2×ρ

B′
σ

A

for some formula B′.

A rule ρ permutes over a rule σ (or σ permutes under ρ) by a set of rules S if ρ permutes over σ , or

for any derivation
C

σ

B
ρ

A

, one of the following holds:
C

S
A

, or

C
ρ

B′′

S
B′

σ

A

for some formulas B′,B′′ .

Roughly, permuting σ under ρ means that σ can be pushed below ρ in a derivation with same premise
and conclusion. In this operation, ρ or σ might disappear or other rules might appear in between. The
definition of rule permutation is asymmetric: two ρ’s can be above one σ , but not two σ ’s below one ρ .

We call trivial the rule permutations identified by the open deduction syntax, such as the one below.

B1⊗B2
ρ1

A1⊗B2
ρ2

A1⊗A2

=
B1

ρ1
A1
⊗

B2
ρ2

A2
=

B1⊗B2
ρ2

B1⊗A2
ρ1

A1⊗A2

The following lemma is analogous to canonicity (Fact 2.2) for DiLL0 sequent calculus. It means that,
in SDDI, rules 0↓ and +↓ can be pushed down in a derivation, and rules 0↑ and +↑ can be pushed up.

Lemma 5.2 (Permuting 0 and +). Any rule in SDDI permutes over 0↓ and +↓, and under +↑ and 0↑.

Proof. We define the rule permutations below, for ρ,τ,σ ∈ SDDI with ρ 6=+↑, τ 6= 0↑ and σ 6∈ {+↓,0↓}.

B+B
+↓

B
ρ

A

 norm

B
ρ

A
+

B
ρ

A
+↓

A

B+B
+↓

B
+↑

B+B

 norm B+B

0
0↓

B
τ

A

 norm

0
0↓

A

0
0↓

B
0↑

0

 norm 0

B
σ

A
+↑

A+A

 norm

B
+↑

B
σ

A
+

B
σ

A

B
σ

A
0↑

0

 norm

B
0↑

0

(6)
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Note that some of the rule permutations in (6) may implicitly use formula equivalence ' in order to
be applied, for example in the following rule permutations concerning ai↓ and +↑, or ai↓ and 0↑:

1
ai↓

a
+↑

a+a
` ā

=

1
ai↓

a` ā
+↑

(a+a)` ā

'

1
ai↓

a` ā
+↑

(a` ā)+(a` ā)

 norm

1
+↑

1
ai↓

a` ā
+

1
ai↓

a` ā

1
ai↓

a
0↑

0
` ā

=

1
ai↓

a` ā
0↑

0` ā

'

1
ai↓

a` ā
0↑

0

 norm

1
0↑

0

(7)

Similar permutations take place when ai↓ is replaced with !c↑ or ?c↑, and in their dual configurations.

As a consequence of Lemma 5.2, pushing up the rules 0↑, +↑ and down 0↓, +↓ can be interpreted as
slice management operations: it duplicates and discards the “slices” (the subderivations without the rule
0↑, +↑, 0↓, +↓) and extends them as much as possible, propagating the non-deterministic choice + and
the resource mismatch 0 all along the derivation. It generalizes Remark 3.1 (for formulas) to derivations.

Corollary 5.3 (Slice management). Let A, A′, B, B′ be MELL formulas, and C{} be a MELL context.
Let norm be one of the steps defined in (6), and n

norm be a sequence of n ∈ N of such steps. Then,

B
D2 SDDI

C{0}
D1 SDDI

A

 m
norm

B
0↑

0
0↓

A

n

D2 SDDI

C{0}
D1 SDDI

A

 m+1
norm

0
0↓

A

B′

DB SDDI

B
+↑

B
D1 SDDI

A′
+

B
D2 SDDI

A′
+↓

A′

DA SDDI

A

 k
norm

B′
+↑

B′

DB◦D1◦DA SDDI

A
+

B′

DB◦D2◦DA SDDI

A
+↓

A

where m = |D1|+ |D2| and k = |DA|+ |DB| (|D| is the number of inference rules in the derivation D).

Actually, we can further structure SDDI derivations so as to separate an initial up-segment and a final
down-segment (Theorem 5.7). To prove this, we use the two following lemmas.

Lemma 5.4 (Permutations of rules for ! and ?). In SDDI, the following rule permutations hold:

1. Interaction-net permutations: The rules in {!d↑,?d↑, !w↑,?w↑, !c↑,?c↑} permute over the rules in
{!d↓,?d↓, !w↓,?w↓, !c↓,?c↓} by the rules in {+↓,+↑,0↓,0↑};

2. The rules in {?d↓, !d↓,?w↓, !w↓,?c↓, !c↓} permutes under any rule in {ai↑,ai↓,s};
3. The rules in {?d↑, !d↑,?w↑, !w↑,?c↑, !c↑} permutes over any rule in {ai↑,ai↓,s}.

Proof.

1. By the (non-trivial) rule permutations in Figure 8 or by their duals obtained by up/down symmetry.

2. First, note that all rule permutations involving ai↓ in {?d↓, !d↓,?w↓, !w↓,?c↓, !c↓} are trivial. More-
over, any ρ ∈ {?d↓, !d↓,?w↓, !w↓,?c↓, !c↓} permutes under s as follows.

A′
ρ

A
⊗ (B`C)

s
(A⊗B)`C

 norm

A′⊗ (B`C)
s(

A′
ρ

A
⊗B

)
`C

(8)
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A
?d↓

?A
!d↑

A

 norm A

A
!d↓

!A
?d↑

A

 norm A

⊥
?w↓

?A
!w↑
⊥
 norm ⊥

1
!w↓

!A
?w↑

1

 norm 1

⊥
?w↓

?A
!d↑

A

 norm

⊥
0↑

0
0↓

A

1
!w↓

!A
?d↑

A

 norm

1
0↑

0
0↓

A

?A` ?A
?c↓

?A
!d↑

A

 norm

?A` ?A
+↑

?A
!d↑

A
` ?A

?w↑
⊥

'
A

+

?A
?w↑
⊥

` ?A
!d↑

A
'

A
+↓

A

!A⊗ !A
!c↓

!A
?d↑

A

 norm

!A⊗ !A
+↑

!A
?d↑

A
⊗

!A
!w↑

1
'

A

+

!A
!w↑

1
⊗

!A
?d↑

A
'

A
+↓

A
?A` ?A

?c↓
?A

!w↑
⊥

 norm
?A

!w↑
⊥

` ?A
!w↑
⊥

!A⊗ !A
!c↓

!A
?w↑

1

 norm
!A

?w↑
1
⊗

!A
?w↑

1

?A` ?A
?c↓

?A
!c↑

?A` ?A

 norm

?A
!c↑

?A` ?A
` ?A

!c↑
?A` ?A

'
?A` ?A

?c↓
?A

` ?A` ?A
?c↓

?A

!A⊗ !A
!c↓

!A
?c↑

!A⊗ !A

 norm

!A
?c↑

!A⊗ !A
⊗

!A
?c↑

!A⊗ !A
'

!A⊗ !A
!c↓

!A
⊗

!A⊗ !A
!c↓

!A

Figure 8: Non-trivial rule permutations for ! and ? by {0↑,0↓,+↑,+↓} in SDDI.

We conclude by the following rule permutations for ?d↓, ?c↓ and ?w↓ (permutations for !d↓, !c↓

and !w↓ are defined similarly).

1
?d↓

?
1

ai↓

a` ā

 norm

1
ai↓

a` ā
?d↓

?(a` ā)

?1` ?1
?c↓

?
1

ai↓

a` ā

 norm
?

1
ai↓

a` ā
` ?

1
ai↓

a` ā
?c↓

?(a` ā)

⊥
?w↓

?
1

ai↓

a` ā

 norm
⊥

?w↓
?(a` ā)

3. It can be obtained dually from Item 2, by the up/down symmetry of rules.

Permutations in Figure 8 and their duals correspond to the cut-elimination steps for modalities ? and
! in the interaction-nets presentation of DiLL0, see [28, Fig. 4] and [9, 34, 12]. They take place when
a down-rule for ! meets an up-rule for ?, or vice-versa, and deal with the resource management (see
Section 2). Akin to interaction-nets and unlike the sequent calculus, these permutations on SDDI are
perfectly symmetric. Note the key role of the rules +↑, +↓, 0↑, 0↓ in some permutations. In particular,

• formulas 0 appear when there is a mismatch between “supply and demand” (?w↓/!d↑ and !w↓/?d↑),

• formulas with + appear when there is a non-deterministic choice on which request will be fed
(?c↓/!d↑ and !c↓/?d↑).

Lemma 5.5 (Linear permutations). Let A and B be MELL formulas.

1. If B
{ai↑ ,ai↓ ,s}

A then B
{ai↓}

B′
{s}

A′
{ai↑}

A for some MELL formulas B′ and A′.

2. If 1
{ai↑ ,ai↓,s}

A then 1
{ai↓}

A′
{s}

A for some MELL formula A′.

Proof (sketch). This is a standard result in deep inference systems. Nowadays, it is usually proved via
splitting [37, 36, 38], as it is a consequence of cut-elimination, but the hypotheses to apply the splitting
technique do not hold in SDDI. In [18, 32, 33, 19], which were written before the splitting technique
was found, Items 1 and 2 are proved using some sort of rule permutations. To prove Item 1 it is enough



16 A Deep Inference System for Differential Linear Logic

to use the non-trivial rule permutations of ai↓ over s shown in (9) below, and the dual rule permutations
of ai↑ under s obtained from (9) by up/down symmetry.

1⊗ (B`C)
s(

1
ai↓

a` ā
⊗B

)
`C
 norm

1
ai↓

a` ā
⊗ (B`C)

s
((a` ā)⊗B)`C

A⊗ (B`1)
s

(A⊗B)` 1
ai↓

a` ā

 norm

A⊗

(
B` 1

ai↓

a` ā

)
s

(A⊗B)`1

(9)

To have an intuition for the proof of Item 2, it is enough to remark that if 1
{ai↓}

A′, then there is a
derivation of A′ with shallow ai↓, that is, with ai↓ applied only in ⊗-context as the one below on the left:

1
ai↓

a1 ` ā1
⊗·· ·⊗

1
ai↓

an ` ān

{s}
A′

1
'

1
ai↓

a` ā
⊗

1
ai↓

a` ā
2×s

a` ā`a
ai↑

⊥
` ā

'
a` ā

 norm

1
ai↓

a` ā

Hence by Item 1, if 1
{ai↑ ,ai↓ ,s}

A then A is provable by starting from shallow ai↓ rules; and if there is a
rule ai↑, then there is at least one ai↑ that can be permuted up in the derivation, until we can obtain a
configuration as the one above on the right, which can be replaced by a rule ai↓.

Rule permutations involved in the proof of Lemma 5.5.2 essentially correspond to MLL cut-elimination
steps in the DiLL0 sequent calculus, indeed modalities ! and ? do not play any active role there.

Definition 5.6 (Normalization step). Any rewrite relation on SDDI derivations that is a non-trivial rule
permutation used in the proofs of Lemmas 5.2, 5.4 and 5.5 is a normalization step and denoted by norm.

Normalization steps rearrange rules in a DDI↓ or SDDI derivation in a fixed order, leaving unchanged
its premise and conclusion. So, derivability in DDI↓ and SDDI can be decomposed in several segments.
More precisely, every derivation in SDDI can be rearranged in a symmetrical way so that:

1. on the top there is an up-segment where:

(a) the first part consists of rules 0↑ and +↑, which decompose the derivation in vertical slices;
(b) the second part consists of up-rules for ! and ?, which deal with non-linear resources;

2. in the middle there is a linear segment, roughly corresponding to MLL and to linear resources;

3. on the bottom there is a down-segment where:

(a) the first part consists of down-rules for ! and ?, which deal with non-linear resources;
(b) the second part consists of rules 0↓ and +↓, which merge the vertical slices of the derivation.

The decomposition in DDI↓ follows the same pattern but takes only down-rules, so there is no up-segment.

Theorem 5.7 (Decomposition). Let A and B be formulas.

1. DDI↓-decomposition: If D . n
DDI↓

A, then (for some additive normal formulas A′,A′′,A′′′) there is
a derivation D ′ in DDI↓ such that D ∗norm D ′ and

D ′ . n
{ai↓}

A′′′
{s}

A′′
{?d↓ ,!d↓ ,?w↓ ,!w↓ ,?c↓ ,!c↓}

A′
{0↓ ,+↓}

A.
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2. SDDI-decomposition: If D . B
SDDI

A, then there is a derivation D ′ (called standard) in SDDI from
B to A such that D ∗norm D ′ and (for some additive normal formulas B′,B′′,B′′′,A′′′,A′′,A′):

D ′ . B
{0↑ ,+↑}

B′
{?d↑,!d↑ ,!w↑ ,?w↑ ,?c↑ ,!c↑}

B′′
{ai↓}

B′′′
{s}

A′′′
{ai↑}

A′′
{?d↓ ,!d↓ ,?w↓ ,!w↓ ,?c↓ ,!c↓}

A′
{0↓ ,+↓}

A.

Proof. The decomposition of DDI↓ derivations follows from Lemma 5.2, Lemma 5.4.2 and Lemma 5.5.2.
To prove decomposition of SDDI derivations, we alternate applications of Lemmas 5.2 and 5.4 until

we obtain a derivation of the shape below. Then we conclude by applying Lemma 5.5.1.

B
{0↑ ,+↑}

B′
{?d↑ ,!d↑ ,!w↑ ,?w↑ ,?c↑ ,!c↑}

B′′
{ai↓ ,s,ai↑}

A′′
{?d↓ ,!d↓ ,?w↓ ,!w↓ ,?c↓ ,!c↓}

A′
{0↓ ,+↓}

A.

As a consequence, the up-fragment DDI↑ of SDDI is superfluous (Corollary 5.8): all that can be
proved in SDDI, is already derivable in the down-fragment DDI↓ of SDDI by a standard derivation. The
existence of a standard derivation in DDI↓ is obvious because the rule 0↓ makes every MELL formula
derivable. The interesting part is that a standard derivation in DDI↓ can be reached via normalization
steps, hence in a computational way that is internal to SDDI. Indeed, normalization of SDDI deriva-
tions follows from SDDI decomposition (Theorem 5.7.2), so it relies on the normalization steps defined
on SDDI derivations (Definition 5.6). This normalization result is the deep inference version of cut-
elimination, since in DDI↓ there is no analogue of the rule cut (DDI↓ is the “cut-free” fragment of SDDI).

Corollary 5.8 (Normalization). Let A be a formula and n∈N. If D . n
SDDI

A then, for some n′ ∈N, there

exists a standard D ′ . n
{0↑ ,+↑}

n′
DDI↓

A such that D ∗norm D ′. In particular, n′
DDI↓

A for some n′ ∈ N.

Proof. By Theorem 5.7.2, if n
SDDI

A then there is a standard derivation

n
{0↑,+↑}

B
{?d↑ ,!d↑ ,!w↑ ,?w↑ ,?c↑,!c↑}

B′
{ai↓ ,s,ai↑}

A′′
{?d↓ ,!d↓ ,?w↓ ,!w↓ ,?c↓ ,!c↓}

A′
{0↓,+↓}

A.

Moreover, n
{0↑ ,+↑}

B implies that B = n′ for some n′ ∈ N. As no rule in {?w↑, !w↑,?c↑, !c↑,?d↑, !d↑} can
be applied to a formula of the form n′, we have n′ = B′ and we conclude by Lemma 5.5.2.

6 Relation between cut-elimination in DiLL0 and normalization in SDDI.

In this section we investigate the correspondence between the cut-elimination procedure in DiLL0 sequent
calculus (Section 2) and the normalization procedure in SDDI (Section 5).

We provided a translation J·K of η-expanded DiLL0 derivations to derivations in DDI↓ ∪{i↑} (Fig-
ure 6) and so in SDDI (via Lemma 3.4). The translation preserves “cut-freeness” (Theorem 4.1), and ex-
hibits a one-to-one correspondence between weakening, contraction and dereliction rules of the two sys-
tems. However, the translation J·K does not commute with cut-elimination/normalization: an η-expanded
derivation π in DiLL0 might reduce to a cut-free derivation π̂ via cut-elimination, but its translation JπK
in SDDI (including the transformation of the rules i↑ into ai↑, as described in Lemma 3.4) normalizes to
a DDI↓ derivation ĴπK other than Jπ̂K. That is, diagram (10) does not commute:

π JπK

Jπ̂K 6= ĴπKπ̂

J K

J K
norm
∗cut

∗
(10)
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Technically, the lack of commutation is because the rule cut is translated as an instance of i↑, which
is not a rule of SDDI (it is not an atomic cut) and hence has to be rewritten according to Lemma 3.4. But
this rewriting in SDDI might not match the resource distribution of the corresponding cut. Consider the
derivation π below in DiLL0 (with π ′ cut-free and η-expanded) and its translation Dπ in SDDI:

π =

..... π ′

` Γ
?w

` Γ,?a
!w

` !a
cut

` Γ

Figure 6→
J·K

n
'

n
Jπ ′K

JΓK
'

JΓK` ⊥
?w↓

?a

⊗
1

!w↓
!ā

s

JΓK` ?a⊗ !ā
i↑

⊥

Lemma 3.4→

n
'

n
Jπ ′K

JΓK
'

JΓK` ⊥
?w↓

?a

⊗
1

!w↓
!ā

s

JΓK`
?a

!d↑
a
⊗

!ā
?d↑

ā
ai↑

⊥

= Dπ

According to cut-elimination for DiLL0, π cut π ′ (one step). But Dπ in SDDI normalizes as follows:

Dπ

Lemma 5.4.3
 ∗norm

n
'

n
Jπ ′K

JΓK
'

JΓK`
⊥

?w↓
?a

!d↑
a

⊗
1

!w↓
!ā

?d↑
ā

s

JΓK` a⊗ ā
ai↑

⊥
'

JΓK

?w↓/!d↑
(Figure 8)

 norm

n
'

n
Jπ ′K

JΓK
'

JΓK`
⊥

0↑

0
0↓

a

⊗
1

!w↓
!ā

?d↑
ā

s

JΓK` a⊗ ā
ai↑

⊥
'

JΓK

Corollary 5.3
 ∗norm

0
0↓

JΓK

We observe that the transformation of the general i↑-rule into ai↑ (Lemma 3.4) converts any potential
interaction of weakening, contraction and dereliction up- and down-rules to an interaction of a (weaken-
ing, contraction or dereliction) down-rule with a dereliction up-rule: it arbitrarily chooses to asks for a
resource, or to make it available, exactly once. In our example, the translation creates the “mismatches”
?w↓/!d↑ and !w↓/?d↑ even if in the original DiLL0 derivation we had a “matched” interaction of a ?w with

a !w. Due to these mismatches, the normal form of the derivation Dπ is
0

0↓

JΓK
, which is not the translation

of π ′ (the normal form of π with respect to cut-elimination in DiLL0) if π ′ 6= zero
` Γ

. More generally,
this problem is related to the fact that DiLL0 misses the promotion rule !p (Figure 1), which would make
a resource available at will [13] (see [28, 34, 12] for its cut-elimination in DiLL = DiLL0∪{!p}), while
in the realm of DiLL0 resources can be used only a finite number of times during cut-elimination.

In order to provide an internal solution (i.e., in DiLL0 without adding the rule !p to the system) to the
commutation problem, we need to define a more sophisticated translation of cut-rules into SDDI.

A commutative translation. We define a new translation L·M from DiLL0 to SDDI so that diagram (10)
commutes, when J·K is replaced by L·M. The idea is that the translation L·M “bends” a derivation π of
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DiLL0
Γ,A to a derivation

A
LπM SDDI

JΓK
so as to avoid using the rule i↑. In this way, roughly, the translation L·M

converts the rule cut below (where π1 and π2 are η-expanded and cut-free DiLL0 derivations) as follows:

π1

` Γ,A
π2

` ∆,A
cut

` Γ,∆

LM→

n1
Jπ1K

JΓK`
A

Lπ2M

J∆K

where Jπ1K is the translation of π1 defined in Figure 6.

To define properly the translation LπM of an η-expanded DiLL0 derivation, we first need to declare
which formulas in π have to be “bent”, selecting one of the two cut formulas for each cut in π . Formally,
given an η-expanded DiLL0 derivation π , a translation LπM is defined in two steps.

1. For each occurrence of the rule cut in π , we mark exactly one of its two cut formulas, say A,
with A•. We propagate this mark bottom-up in π to the subformula occurrences of A in π: if
the principal formula of a rule is marked, so are the active formulas in the premises (the other
formulas in the sequent preserve their mark, if any). For instance, if the conclusion of a rule ` is
` A•,(B`C)•,D with B`C as principal formula, then its premise is ` A•,B•,C•,D.

2. We translate π decorated with marks (·)• into a derivation LπM in SDDI according to the definition
in Figure 9 (given by induction on π).

Note that an η-expanded derivation π in DiLL0 may have several translations LπM, depending on the
initial selection of cut formulas in π to mark. We omit this dependency in the notation LπM. When we
state a property of a translation LπM, we mean that it holds for any initial selection of cut formulas in π .
Lemma 6.1 (Target of the translation L·M). Let π be an η-expanded derivation in DiLL0. Then, LπM is a

derivation in SDDI. If, moreover, π is cut-free, then LπM = D ◦ JπK where D . 1
{0↑ ,+↑}

n for some n ∈ N,
and JπK (defined in Figure 6) is a derivation in DDI↓.

Proof. By induction on π . Each step in Figure 9 introduces only rules in SDDI, in particular no step
introduces the rule i↑. If π is cut-free, then no formula in π is marked; thus, each step in Figure 9 acts
like J·K defined in Figure 6 except possibly for adding some rules +↑ and 0↑ on top, and it does not
introduce any other rule in DDI↑ except s (which is also in DDI↓).

There is trivial way to “bend” a derivation π of
DiLL0

Γ,A to a derivation in SDDI: take
Ā

0↑

0
0↓

JΓK
. However,

such a translation does not make diagram (10) commute, because it does not keep track of resources. The
translation LπM, instead, is resource-sensitive, thanks to a one-to-one correspondence between the occur-
rences of rules for weakening, dereliction, and contraction in π and in LπM (proved by induction on π).
Lemma 6.2 (Resources). For any η-expanded derivation π in DiLL0, there is a one-to-one correspon-
dence between the rule occurrences of !d in π and the rule occurrences of {!d↓, !d↑} in LπM, and similarly
between ?d and {?d↓,?d↑}, !c and {!c↓, !c↑}, ?c and {?c↓,?c↑}, !w and {!w↓, !w↑}, ?w and {?w↓,?w↑}.

Let 'norm be the reflexive, transitive and symmetric closure of norm.
Theorem 6.3 (Simulation). If π is an η-expanded DiLL0 derivation and π cut π ′, then LπM'norm Lπ ′M.

Proof (sketch). By case analysis of cut-elimination steps for DiLL0, and the corresponding normalization
steps in SDDI. By Lemma 6.2, cut-elimination steps for the rules in {!d,?d, !c,?c, !w,?w} correspond to
the (non-trivial) interaction-net rule permutations in Figure 8 (Lemma 5.4.1). A cut-elimination step⊗/`
corresponds to linear permutations to prove Lemma 5.5. Commutative cut-elimination steps correspond
to trivial rule permutations. All permutations are interleaved by steps (6) and (8), in both directions.
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ax
` a, ā

LM→
1

ai↓
a` ā

ax
` a•, ā•

LM→
a⊗ ā

ai↑
⊥

ax
` a, ā•

LM→ a ax
` a•, ā

LM→ ā

π

` Γ1,Γ
•
2,A
•,B• `

` Γ1,Γ
•
2,(A`B)•

LM→
JΓ2K⊗A⊗B

LπM

JΓ1K

π

` Γ1,Γ
•
2,A,B `

` Γ1,Γ
•
2,A`B

LM→
JΓ2K

LπM

JΓ1K`A`B

π1

` Γ1,Γ
•
2,A

π2

` ∆1∆•2,B⊗
` Γ1,Γ

•
2,A⊗B,∆1,∆

•
2

LM→

JΓ2K
Lπ1M

JΓ1K`A
⊗

J∆2K
Lπ2M

J∆1K`B
2×s

JΓ1K` (A⊗B)` J∆1K

π1

` Γ1,Γ
•
2,A
•

π2

` ∆1∆•2,B
•
⊗

` Γ1,Γ
•
2,(A⊗B)•,∆1,∆

•
2

LM→

JΓ2K⊗ (Ā` B̄)⊗ J∆2K
2×s

JΓ2K⊗ Ā
Lπ1M

JΓ1K
`

J∆2K⊗ B̄
Lπ2M

J∆1K

π

` Γ1,Γ
•
2 ⊥

` Γ1,Γ
•
2,⊥

LM→

JΓ2K
LπM

JΓ1K
'

JΓ1K`⊥

π

` Γ1,Γ
•
2 ⊥

` Γ1,Γ
•
2,⊥•

LM→

JΓ2K⊗1
'

JΓ2K
LπM

JΓ1K

1
` 1

LM→ 1 1
` 1•

LM→ ⊥

π1

` Γ1,Γ
•
2,A

π2

` ∆1,∆
•
2,A
•

cut
` Γ1,Γ

•
2,∆1,∆

•
2

LM→

JΓ2K
Lπ1M

JΓ1K`A
⊗ J∆2K

s

JΓ1K`
A⊗ J∆2K
Lπ2M

J∆1K

π1

` Γ1,Γ
•
2,A
•

π2

` ∆1,∆
•
2,A

cut
` Γ1,Γ

•
2,∆1,∆

•
2

LM→

JΓ2K⊗
J∆2K

Lπ2M

Ā` J∆1K
s

JΓ2K⊗ Ā
Lπ1M

JΓ1K
` J∆1K

π1

` Γ1,Γ
•
2

π2

` Γ1,Γ
•
2
sum

` Γ1,Γ
•
2
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?c↑

!Ā
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Figure 9: Translation of η-expanded DiLL0 sequent calculus derivations into SDDI \ {ai↑} derivations
(where if Γ = A1, . . . ,An, then Γ• = A1

•, . . . ,An
•).
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Theorem 6.3 says that normalization steps in SDDI (Definition 5.6) mimic DiLL0 cut-elimination via
translation L·M. As a consequence, cut-elimination/normalization commutes with translation L·M.

Corollary 6.4 (Commutation). If π is an η-expanded DiLL0 derivation and π  ∗cut π̂ with π̂ cut-free,
then LπM ∗norm Lπ̂M and Lπ̂M is normal for norm.

Proof. By simulation (Theorem 6.3), from π  ∗cut π̂ it follows that LπM'norm Lπ̂M. As π̂ is cut-free, Lπ̂M
is normal for norm according to Lemma 6.1, hence LπM ∗norm Lπ̂M.

7 Conclusions and future work

In this paper we introduced the first sound and complete deep inference system, SDDI, for the promotion-
free fragment of differential linear logic, DiLL0 [9]. The deep inference syntax recovers the symmetry
of this logic lacking in DiLL0 sequent calculus—but which can be found in the interaction-net formalism
for DiLL0 [9]—and keeps the inductive and handy tree-like structure of sequent calculus derivations—
missing in interaction nets. The deep inference formalism allows us to reduce cuts to atomic formulas,
and provides a tool for a more fine-grained study of cut-elimination. Moreover, the syntax explicitly
represents and internalizes the notion of slices of a derivation.

The inference rules of SDDI present an up/down symmetry and we proved that the up-fragment of
SDDI is derivable from the down-fragment DDI↓. To prove this result we provided a normalization
procedure based on rule permutations. In fact, the presence of the connective + and its unit 0 prevent
the use of the general normalization result for splittable systems [37]. In our normalization procedure
for SDDI, we are able to distinguish different kinds of rule permutations depending on their compu-
tational behavior: some rule permutations correspond to linear (in terms of resource) cut-elimination
steps, some to resource management cut-elimination steps and some to slice management operations.
Thanks to Corollary 5.3 we could implement a reduction strategy alternating slice management and
proper cut-elimination steps inside each slice. The internal normalization procedure in SDDI to prove
Corollary 5.8 provides “cut-free” derivations. And the translation J·K defined in Figure 6 maps cut-
free DiLL0 derivations to DDI↓, the “cut-free” fragment of SDDI (Theorem 4.3.2). We showed that
cut-elimination/normalization does not commute with translation J·K, but it does with the translation L·M
defined in Figure 9, a resource-sensitive refinement of J·K.

Translation of DiLL proof-nets. Another ongoing work is to extend our deep inference system in order
to represent the full differential linear logic DiLL = DiLL0∪{!p} [28, 34, 30] (including the promotion
rule), possibly with the rule mix which allows one to derive A`B from A⊗B. The presence of promotion
!p allows us to define a translation that commutes with cut-elimination for the reasons discussed above.

In this extended deep inference system, we can translate not only the DiLL sequent calculus but also
DiLL proof-nets, via a direct embedding that does not pass through the sequent calculus. Indeed, the open
deduction formalism [20] allows a direct encoding of proof-nets, plus a handy and inductive syntax.

Computational meaning and non-determinism. In DiLL0 interaction nets, when a cut-elimination
step creates a new construct sum (expressing a non-deterministic choice) or zero (expressing mismatch
on demanded and supplied resources), this construct is instantaneously propagated to all the interaction
net where it is plugged in, without any computational step. It is like DiLL0 interaction nets allow one to
deal with canonical forms only, in the sense of Definition 2.1.
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A feature of our deep inference formalism is that the constructs + (non-determinism) and 0 (resource
mismatch) are internalized in the syntax, and when they appear during the normalization process, they are
propagated all along the derivation by means of normalization steps (slice management, Lemma 5.2 and
Corollary 5.3). Is there a computational meaning in these kind of steps? Is it possible to interpret them in
a model of computation which intrinsically represents non-determinism, parallelism and concurrency?

The π-calculus [27] (a model of concurrent computation) can be encoded in DiLL0 [6], but Mazza
[25] pointed out that the non-determinism expressed by DiLL0 is too weak for true concurrency. Deep
inference may shed new light on the quest for a convincing proof-theoretic counterpart of concurrency.
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