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1 A little bit of history

In a private letter from March 1706, Gottfried Wilhelm von Leibniz wrote about
his works on ‘characteristica universalis’, a formal language he imagined in
which it would be possible to express mathematical, scientific, and metaphysical
concepts.

It is true that in the past I planned a new way of calculating suitable for
matters which have nothing in common with mathematics, and if this kind of
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logic were put into practice, every reasoning, even probabilistic ones, would be
like that of the mathematician: if need be, the lesser minds which had

application and good will could, if not accompany the greatest minds, then at
least follow them. For one could always say: let us calculate, and judge

correctly through this, as much as the data and reason can provide us with the
means for it. But I do not know if I will ever be in a position to carry out such
a project, which requires more than one hand; and it even seems that mankind
is still not mature enough to lay claim to the advantages which this method

could provide.

Moved by a similar vision, at the International Congress of Mathematicians
of 1900, David Hilbert proposed, among his 23 problems, the problem of check-
ing coherence of mathematics. The problem was to find a formal system that
could be used to prove all mathematical truths, and only mathematical truths.
In 1931, Kurt Gödel showed that such a system could not exist, as it would
be either incomplete or inconsistent. However, the idea of a formal system to
represent knowledge, provided with a reasoning engine, was born.

With the advent of computers, the idea of a formal system to represent
knowledge became more and more concrete. In 1956, John McCarthy, Marvin
Minsky, Nathaniel Rochester, and Claude Shannon organized the Dartmouth
Conference, where the term ‘artificial intelligence’ was coined. The goal of ar-
tificial intelligence was to create machines capable of performing tasks that re-
quired human intelligence, such as reasoning, learning, perception, and problem-
solving.

Expert systems emerged in the mid-1960s, with applications in various fields,
including medical applications. Two initial approaches to knowledge represen-
tation were developed:

• General Problem Solver: This approach used data structures to rep-
resent knowledge and a mechanism for decomposing tasks.

• Advice Taker: This approach used predicate calculus to model common
sense reasoning.

Many works following the first approach represent knowledge by means of graph
representations and semantic networks (similar to knowledge graphs). In such
graphs, problem-solving becomes a form of graph traversal. At the same time,
automated theorem provers were developed to reason in frameworks based on
first-order logic, following the second approach.

The ‘conflict’ between those who wanted to consider knowledge as a set of
static facts and those who wanted to consider knowledge as part of the inference
mechanism itself was resolved with the introduction of ProLog. The early devel-
opment of logic programming advocated the representation of domain-specific
knowledge rather than general-purpose reasoning.

During the years leading up to the mid-1970s, the expectations for what
expert systems could achieve in various fields were highly optimistic. Early
research aimed to develop fully automated (i.e., entirely computerized) expert
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systems. However, the expectations of what computers could accomplish were
often overly idealistic. Karp’s work [?] highlighted the limitations of expert
systems due to the complexity of certain problems, making unrealistic to have
‘efficient’ way to provide solutions to common problems due to space and time
constraints.

One of the first uses of ProLog was in the legal area. A notable use case
was ‘The British Nationality Act as a Logic Program’ in 1986, which modeled
the law from 1981 [?]. This work became a benchmark for law in AI. Another
major boost to the development of expert systems was the release of the IBM
PC in 1981, which led to the proliferation of new computer architectures, closed
networks, and the client-server model.

2 Classical Propositional Logic

Propositional logic is a formal system in which the basic units of knowledge are
propositions, which are statements that can be either true or false.

Formulas are sequences of symbols generated from a setA of atomic propo-
sition using the following grammar:

𝐴, 𝐵 := 𝑝 | ¬𝐴 | 𝐴 ∧ 𝐵 | 𝐴 ∨ 𝐵 | 𝐴 → 𝐵

atom negation conjunction disjunction implication

We call literal any formula which is an atom or the negation of an atom.
The semantics of propositional logic is defined by truth assignments,

which are functions that assign a truth value to each atomic proposition. For-
mally, a model for propositional logic is a function 𝔐 : F → {ff, tt} that assigns
to each atomic proposition a truth value ff for false and tt for true. Equivalently,
a model can be seen as a subset formulas F that contains all formulas which
are evaluated as true.

The truth value of a formula is defined by fixing truth values for atomic
propositions, that is by fixing a truth value (𝑎)𝔐 ∈ {tt, ff} for each 𝑎 ∈ A, and
by letting the truth value of a formula be determined by the truth values of its
sub-formulas as follows:

(𝐴 ∧ 𝐵)𝔐 =

{
ff if (𝐴)𝔐 = ff or (𝐵)𝔐 = ff

tt otherwise

(𝐴 ∨ 𝐵)𝔐 =

{
ff if (𝐴)𝔐 = ff and (𝐵)𝔐 = ff

tt otherwise

(𝐴 → 𝐵)𝔐 =

{
ff if (𝐴)𝔐 = tt and (𝐵)𝔐 = ff

ff otherwise

(¬𝐴)𝔐 =

{
ff if (𝐴)𝔐 = tt

tt if (𝐴)𝔐 = ff

(1)
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𝐴 𝐵 𝐴 ∧ 𝐵 𝐴 ∨ 𝐵 𝐴 → 𝐵 ¬𝐴
ff ff ff ff tt tt
ff tt ff tt tt tt
tt ff ff tt ff ff
tt tt tt tt tt ff

Figure 1: Truth table for the logical operators of propositional logic.

Remark 1. In propositional logic, the truth value of a formula is determined by
the truth values of the atoms in it, and it is computed by a recursive procedure
on the structure of the formula. This procedure is the same as computing the
truth table of the given formula – see Figure 1.

A formula 𝐴 is satisfied by a model 𝔐 (written 𝔐 ⊨ 𝐴) if 𝐴 is evaluated
as true in 𝔐. We say that a formula 𝐴 entails a formula 𝐵 (written 𝐴 ⊨ 𝐵) if
every model that satisfies 𝐴 also satisfies 𝐵, that is, if 𝔐 ⊨ 𝐴, then 𝔐 ⊨ 𝐵 for
every model 𝔐. The process of checking whether a formula 𝐴 entails a formula
𝐵 is called model checking.

We say that a formula 𝐴 is satisfiable if there exists a model 𝔐 such that
𝔐 ⊨ 𝐴. A formula 𝐴 is valid if it is evaluated as true in every model, that is if
𝔐 ⊨ 𝐴 for every model 𝔐. A formula 𝐴 is unsatisfiable if there is no model
satisfying 𝐴. In this case we write ⊭ 𝐴.

By definition, we have the following theorem that relates entailment and
implication, known as deduction theorem.

Theorem 2 (Deduction theorem). Let 𝐴 and 𝐵 formulas. Then, 𝐴 entails 𝐵

if and only if the implication 𝐴 → 𝐵 is valid. That is,

𝐴 ⊨ 𝐵 iff ⊨ 𝐴 → 𝐵.

Proof. Let 𝔐 be a model. By definition of entailment, if 𝔐 ⊨ 𝐴, then 𝔐 ⊨ 𝐵.
It follows that 𝔐(𝐴 → 𝐵) = tt, that is, 𝔐 ⊨ 𝐴 ∧ 𝐵.

Conversely, let 𝔐 be a model such that 𝔐 ⊨ 𝐴 ∧ 𝐵. Then, by definition of
the truth table of the implication, either 𝔐 ⊨ 𝐴 and 𝔐 ⊨ 𝐵, thus 𝔐 ⊨ 𝐴 → 𝐵,
or 𝔐 ⊭ 𝐴, and in this case the implication is evaluated as true. □

2.1 Logical Equivalence

Two formulas are logically equivalent if they are satisfied by the same models,
that is, if 𝐴 ⊨ 𝐵 and 𝐵 ⊨ 𝐴.

Proposition 3. Let 𝐴 and 𝐵 be formulas. Then, 𝐴 and 𝐵 are logically equiva-
lent if and only if the formula (𝐴 → 𝐵) ∧ (𝐵 → 𝐴) is valid.

Proof. Let 𝔐 be a model. By definition of logical equivalence, 𝐴 and 𝐵 are
logically equivalent if 𝔐 ⊨ 𝐴 if and only if 𝔐 ⊨ 𝐵. Using deduction theorem,
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Algorithm 1: Negation Normal Form

Input: A formula 𝐴.
Output: A formula 𝐵 in NNF equivalent to 𝐴.

return 𝐴 if 𝐴 is a literal;
return NNF(𝐴1) ⊙ NNF(𝐴2) if 𝐴 = 𝐴1 ⊙ 𝐴2 with ⊙ ∈ {∧,∨,→};
return 𝐴1 if 𝐴 = ¬¬𝐴1;
return NNF(¬𝐴1) ∨ NNF(¬𝐴2) if 𝐴 = ¬(𝐴1 ∧ 𝐴2);
return NNF(¬𝐴1) ∧ NNF(¬𝐴2) if 𝐴 = ¬(𝐴1 ∨ 𝐴2);
return NNF(𝐴1) ∧ NNF(¬𝐴2) if 𝐴 = ¬(𝐴1 → 𝐴2);

this implies that ⊨ 𝐴 → 𝐵 and 𝔐 ⊨ 𝐵 → 𝐴, thus 𝔐 ⊨ (𝐴 → 𝐵) ∧ (𝐵 → 𝐴).
Conversely, if 𝔐 ⊨ (𝐴 → 𝐵) ∧ (𝐵 → 𝐴), then 𝔐 ⊨ 𝐴 → 𝐵 and 𝔐 ⊨ 𝐵 → 𝐴. We
conclude by deduction theorem that 𝐴 ⊨ 𝐵 and 𝐵 ⊨ 𝐴, that is the definition of
logically equivalent. □

For some applications we discuss in the next sections, we are interested in
some formulas in a specific form.

Definition 4. Let 𝐴 be a formulas. We say that:

• 𝐴 is a conjunctive clause if it is a conjunction of literals;

• 𝐴 is a disjunctive clause if it is a disjunction of literals;

• 𝐴 is in negation normal form (NNF) if it is a formula in which nega-
tions are only applied to atoms;

• 𝐴 is in conjunctive normal form (CNF) if it is a conjunction of dis-
junctive clauses.

• 𝐴 is in disjunctive normal form (DNF) if it is a disjunction of con-
junctive clauses.

Given a formula 𝐴, we can always find a logically equivalent formula 𝐵 in
NNF by applying the Algorithm 1 and a logically equivalent formula 𝐶 in CNF
by applying the Algorithm 2.

Proposition 5. Let 𝐴 be a formula, NNF(𝐴) be the formula returned by the
Algorithm 1, and CNF(𝐴) be the formula returned by the Algorithm 2. Then,
𝐴, NNF(𝐴) and CNF(𝐴) are logically equivalent.

Proof. Exercise by induction on the structure of the formula 𝐴. □

3 Formal Reasoning in Propositional Logic

Because of the applications of propositional logic in automated reasoning, it is
important to have (efficient) algorithms to check whether a formula 𝐵 entails a
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Algorithm 2: Conjunctive Normal Form

Input: A formula 𝐴.
Output: A formula 𝐶 in CNF equivalent to 𝐴.

Let 𝐵 = NNF(𝐴);
if 𝐵 is a conjunctive or disjunctive clause then

return 𝐵;
end
if 𝐵 = 𝐵1 ∧ 𝐵2 then

return CNF(𝐵1) ∧ CNF(𝐵2);
end
if 𝐵 = 𝐵1 ∨ (𝐵2 ∧ 𝐵3) then

return CNF(𝐵1 ∨ 𝐵2) ∧ CNF(𝐵1 ∨ 𝐵3);
end

formula 𝐴. We say that an algorithm that checks whether a formula 𝐵 entails
a formula 𝐴 is:

• Sound (⊢⇒⊨), that is, it always returns true when 𝐵 entails 𝐴; and

• Complete (⊨⇒⊢), that is, if 𝐵 entails 𝐴, then the algorithm returns true.

When designing an algorithm to check entailment, we aim to design an algo-
rithm that is both sound and complete: soundness ensures that the algorithm
is correct, that is, that it never validate an entitlement which is not true in
some model, while completeness ensures that the algorithm is ‘infallible’ in its
answers.

In this subsection we are interested in providing algorithms to answer the
following problem:

Given a knowledge base KB, does KB entail 𝐴?

For this, we consider some algorithms to check entailment in propositional logic,
where the knowledge base KB is encoded as (the conjunction of) a set of for-
mulas. Given an algorithm EA to check entailment, we write KB ⊢EA to denote
that EA is capable of deciding whether the formula encoding the KB entails 𝐴.

3.1 Model Checking with Brute Force

A simple algorithm to check entailment is based on truth tables, and it consists
of checking if each model for the knowledge base KB satisfies the formula 𝐴.

The idea is to list all possible models for KB, that is, all the possible assigna-
tion of truth values to the atomic propositions such that KB is valid, and then
check whether the formula 𝐴 is evaluated as true in all these models. Thus,
this method is not efficient, as it requires at least 2𝑛 evaluations for each for-
mula with 𝑛 atomic propositions in KB and in 𝐴, making it impractical for
applications which may consider large formulas.
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Algorithm 3: Model Checking Algorithm

Input: A knowledge base KB and a formula 𝐴.
Output: True if KB entails 𝐴, false otherwise.

for each model 𝔐 such that 𝔐 ⊨ KB do
if 𝔐 ⊭ 𝐴 then

return false;
end

end
return true;

Remark 6. We could decide to limit our attention to the ‘minimal’ models in
which we define the truth value of the atoms occurring in 𝐴. In fact, thanks
to the deduction theorem (Theorem 2), we know that KB ⊨ 𝐴 iff ⊨ KB → 𝐴.
Therefore, we could limit our attention to the models in which 𝐴 is evaluated as
tt: the only possibility for KB → 𝐴 to be evaluated as ff is when KB is evaluated
as tt and 𝐴 as ff, while if KB is evaluated as ff, then KB → 𝐴 is evaluated as tt
no matter of the value of 𝐴.

We write KB ⊢MC 𝐴 is the model checking algorithm from Algorithm 3, after
constructing all the (relevant) models for KB, return true only if every such
model for KB is also a model for 𝐴. We have the following theorem.

Theorem 7. The algorithm MC is sound and complete with respect to entail-
ment. That is,

KB ⊢MC 𝐴 if and only if KB ⊨ 𝐴.

Proof. Let KB be a knowledge base, and 𝐴 a formula.

• Soundness: if KB ⊢MC 𝐴, then for any model 𝔐 such that 𝔐 ⊨ KB we also
have that 𝔐 ⊨ 𝐴. That is, KB ⊨ 𝐴.

• Completeness: KB ⊨ 𝐴, then for any model 𝔐 such that 𝔐 ⊨ KB we also
have that 𝔐 ⊨ 𝐴. By definition, this means that KB ⊢MC 𝐴. □

3.2 A Simple inference system for entailment

We can define a simple inference system for entailment in propositional logic,
which is based on the following rule, called Modus Ponens, stating that if 𝐴
and 𝐴 → 𝐵 are valid, then we can conclude that also 𝐵 is valid.

𝐴 𝐴 → 𝐵
MP

𝐵
(2)

We can easily check that the Modus Ponens rule is sound, that is, if both its
premises are valid, then its conclusion is valid.
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Lemma 8. The Modus Ponens rule is sound with respect to entailment. That
is, if 𝐴 and 𝐴 → 𝐵 are valid, then 𝐵 is valid. That is,

⊨ 𝐴 ∧ (𝐴 → 𝐵) → 𝐵.

Proof. Let 𝔐 be a model. By definition of the truth table of the implication, if
𝔐 ⊨ 𝐴 and 𝔐 ⊨ 𝐴 → 𝐵, then 𝔐 ⊨ 𝐵. □

Remark 9. Another rule that could be useful to check entailment is the And-
Elimination rule, which states that if 𝐴 ∧ 𝐵 is valid, then both 𝐴 (and 𝐵) is
valid. This rule is useful for extracting from some formulas from a knowledge
base if this latter is represented as the conjunction of formulas. However, if we
consider knowledge bases as sets of formulas rather than their cojunction, then
this rule is not necessary.

𝐴 ∧ 𝐵
∧E

𝐴
and

𝐴 ∧ 𝐵
∧E

𝐴
(3)

Prove sondness for this rule is immediate because a model satisfies 𝐴 ∧ 𝐵 iff it
satisfies both 𝐴 and 𝐵.

The Modus Ponens is the unique rule we need to infer properties from a
knowledge base espressed in classical propositional logic. Note that, because of
the semantics of classical logic, the following axioms have to be considered in
order to capture in a purely syntactical way the entailment relation.

(A1) 𝐴 → (𝐵 → 𝐴)
(A2) (𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) → (𝐴 → 𝐶))
(A3) 𝐴 ∧ 𝐵 → 𝐴

(A4) 𝐴 ∧ 𝐵 → 𝐵

(A5) 𝐴 → (𝐵 → (𝐴 ∧ 𝐵))
(A6) 𝐴 → 𝐴 ∨ 𝐵

(A7) 𝐵 → 𝐴 ∨ 𝐵

(A8) (𝐴 → 𝐶) → ((𝐵 → 𝐶) → (𝐴 ∨ 𝐵 → 𝐶))
(A9) (𝐴 → 𝐵) → ((𝐴 → ¬𝐵) → ¬𝐴)

(A10) ¬¬𝐴 → 𝐴

(4)

These axioms are required solely to capture the following logical equivalence
between formulas dictated by the truth tables of the logical operators.

Formula Name
(𝐴 ∧ 𝐵) ≡ (𝐵 ∧ 𝐴) Commutativity of ∧
(𝐴 ∨ 𝐵) ≡ (𝐵 ∨ 𝐴) Commutativity of ∨

((𝐴 ∧ 𝐵) ∧ 𝐶) ≡ (𝐴 ∧ (𝐵 ∧ 𝐶)) Associativity of ∧
((𝐴 ∨ 𝐵) ∨ 𝐶) ≡ (𝐴 ∨ (𝐵 ∨ 𝐶)) Associativity of ∨

¬(¬𝐴) ≡ 𝐴 Double-negation elimination
¬(𝐴 ∧ 𝐵) ≡ (¬𝐴 ∨ ¬𝐵) De Morgan law for conjunction
¬(𝐴 ∨ 𝐵) ≡ (¬𝐴 ∧ ¬𝐵) De Morgan law for disjunction

(𝐴 ∧ (𝐵 ∨ 𝐶)) ≡ ((𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶)) Distributivity of ∧ over ∨
(𝐴 ∨ (𝐵 ∧ 𝐶)) ≡ ((𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)) Distributivity of ∨ over ∧

(5)
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For example, the axiom (A3) and (A4) corresponds to the definition of the
conjunction, while the axiom (A6) and (A7) corresponds to the definition of the
disjunction.

3.3 Checking Entailment via Resolution

As a consequence of the deduction theorem (Theorem 2), we have that the
entailment can be checked using unsatisfiability, which we are going to use in
the next

Corollary 10. Let 𝐴 and 𝐵 be formulas. Then, 𝐴 entails 𝐵 iff 𝐴 ∧ ¬𝐵 is
unsatisfiable. That is,

𝐴 ⊨ 𝐵 if and only if ⊭ 𝐴 ∧ ¬𝐵 . (6)

Proof. By the deduction theorem we know that 𝐴 ⊨ 𝐵 iff ⊨ 𝐴 → 𝐵. This is
equivalent to say that 𝐴 → 𝐵 must be evaluated as tt in all possible models.

We now remark that 𝐴 → 𝐵 is evaluated as tt in a model 𝔐, iff ¬𝐴 ∨ 𝐵 is
evaluated as tt, iff ¬(¬𝐴 ∨ 𝐵) is evaluated as ff, and iff 𝐴 ∧ ¬𝐵 is evaluated as ff.

Then, if 𝐴 → 𝐵 is evaluated as tt in all models, then 𝐴∧¬𝐵 must be evaluated
as ff in all models. This means that, in particular, 𝐴 ∧ ¬𝐵 is unsatisfiable. □

Said differently, a formula 𝐴 is entailed by a knowledge base KB if and only
if there is no model 𝔐 such that 𝔐 ⊨ KB and 𝔐 ⊭ 𝐴. This observation suggests
a simple algorithm to check entailment, which is based on the following idea: if
you can find a model 𝔐 such that 𝔐 ⊨ KB and 𝔐 ⊭ 𝐴, then KB does not entail
𝐴; otherwise KB entails 𝐴.

The algorithm we use to check entailment is based on the resolution rule.
First, to make the syntax more readable, we represent conjunctive normal form
formulas as lists of clauses. That is, we simply write

[ℓ1,1, . . . , ℓ1,𝑛1
], . . . , [ℓ𝑚,1, . . . , ℓ𝑚,𝑛𝑚 ]

to denote the CNF formula

(ℓ1,1 ∨ · · · ∨ ℓ1,𝑛1
) ∧ · · · ∧ (ℓ𝑚,1 ∨ · · · ∨ ℓ𝑚,𝑛𝑚 ) .

The empty clause [] has to be interpreted as the false, or any unsatisfiable
formula. From now on, we identify a CNF-formula 𝐴 with the set of its clauses,
that is, we can write either 𝐴 = {𝐶1, . . . , 𝐶𝑛} or 𝐴 = 𝐶1 ∧ · · · ∧ 𝐶𝑛.

Remark 11. Both conjunction and disjunction are idempotent in classical
logic, that is, 𝐴 ∧ 𝐴 ≡ 𝐴 and 𝐴 ∨ 𝐴 ≡ 𝐴. This remark allows us to consider
a CNF formula as a set of clauses, and clauses as sets of literals. This avoids
us to have to deal with repetitions of literals in the clauses, and repetitions of
clauses in the CNF formula.
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With this notation, we can write the resolution rule as follows, where ℓ and
ℓ′ are two dual literals.

[ℓ1, . . . , ℓ𝑘−1, ℓ], [ℓ′, ℓ𝑘 , . . . , ℓ𝑚]
Res

[ℓ1, . . . , ℓ𝑛]
(7)

The conclusion of the rule is called resolvant. For example, the resolution
rule applied to the clauses [¬𝑠, 𝑝, 𝑞, 𝑟] and [¬𝑝, 𝑡] gives the resolvent clause
[¬𝑠, 𝑞, 𝑟, 𝑡]. We call a resolution derivation a sequence of applications of the
resolution rule, starting from a set of clauses 𝐴 and ending with the empty
clause [].

Notation 12. When representing resolution derivations we may just write the
sequence of clauses that are used by the resolution rule. That is, we may write
the resolution derivation below on the left instead of writing the one on the right
(which keeps a copy of all derived clauses).

[𝑠, 𝑝], [¬𝑠, 𝑝, 𝑞], [¬𝑞], [¬𝑝]
Res

[𝑠, 𝑝], [¬𝑠, 𝑝], [¬𝑝]
Res

[𝑝, 𝑝], [¬𝑝]
Factoring

[𝑝], [¬𝑝]
Res

[]

[𝑠, 𝑝], [¬𝑠, 𝑝, 𝑞], [¬𝑞], [¬𝑝]
Res

[𝑠, 𝑝], [¬𝑠, 𝑝], [¬𝑝], [¬𝑠, 𝑝, 𝑞], [¬𝑞]
Res

[𝑝, 𝑝], [¬𝑝], [𝑠, 𝑝], [¬𝑠, 𝑝], [¬𝑝], [¬𝑠, 𝑝, 𝑞], [¬𝑞]
Factoring

[𝑝], [¬𝑝], [𝑠, 𝑝], [¬𝑠, 𝑝], [¬𝑝], [¬𝑠, 𝑝, 𝑞], [¬𝑞]
Res

[], [𝑝], [¬𝑝], [𝑠, 𝑝], [¬𝑠, 𝑝], [¬𝑝], [¬𝑠, 𝑝, 𝑞], [¬𝑞]

In some sense, the derivation on the left is the ‘resource aware’ version of the
derivation on the right, where we only keep track of the clauses that are used by
the instances of resolution rules.

Note that, when applying the resolution rule, we do not necessary have to
remove the two clauses that are used in the resolution, but we can keep them
in the set of clauses. In addition, depending on which mathematical structure
we are assuming for the clauses (i.e., sets or lists), we may need to consider the
so-called factoring rule, which states that if a clause contains two literals that
are the same, then one of the two literals can be removed.

We have the following result:

Lemma 13. The resolution rule is sound. That is, if the premise of the rule is
a valid set of clauses, then the conclusion also is.

Proof. We observe that if a model 𝔐 satisfies a set of clauses must satisfy all of
them. In particular, it satisfies the two clauses in the premises of the resolution
rule. Without loss of generality, we start our reasoning on the left-hand side
clause in the premise of the rule, but the same reasoning can be applied by
starting from the right-hand side clause.

Since 𝔐 ⊨ [ℓ1, . . . , ℓ𝑘−1, ℓ], then 𝔐 ⊨ ℓ1∨· · ·∨ℓ𝑘−1 or 𝔐 ⊨ ℓ. In the first case,
(ℓ1 ∨ · · · ∨ ℓ𝑘−1)𝔐 = tt and we have can conclude that 𝔐 ⊨ ℓ1 ∨ · · · ∨ ℓ𝑛 because
(𝐴∨𝐵)𝔐 = tt whenever (𝐴)𝔐 = tt and ℓ1∨· · ·∨ℓ𝑛 = (ℓ1∨· · ·∨ℓ𝑘−1)∨ (ℓ𝑘∨· · ·∨ℓ𝑛).
Otherwise, we have that (ℓ)𝔐 = tt, thus (ℓ′)𝔐 = ff because ℓ and ℓ′ are dual
literals. Since (ℓ′, ℓ𝑘 , . . . , ℓ𝑚)𝔐 = tt, then we must have (ℓ𝑘 ∨ · · · ∨ ℓ𝑚)𝔐 = tt. We
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then conclude that 𝔐 ⊨ [ℓ1, . . . , ℓ𝑘−1, ℓ′, ℓ𝑘 , . . . , ℓ𝑚] for the same argument on
the evaluation of the disjunction as above. □

We want to show that we can use resolution to check validity of a CNF-
formula. To do so, we define the resolution closure of a set of clauses 𝐴 as
the set of all clauses that can be derived from 𝐴 recursively using the resolution
rule. We denote the resolution closure of 𝐴 as Res(𝐴).

Lemma 14. If C and C′ are sets of clauses, with C ⊆ C′, then Res(C) ⊆
Res(C′).

Proof. Left as an exercise. □

Remark 15. In propositional logic, it is always possible to compute the reso-
lution closure of a finite set of clauses. This because the set of possible clauses
derivable from a set of clauses is finite. More precisely, the set of clauses over
𝑛 atoms contains 4𝑛 elements: each clause can contain the atom, its negation,
or none of them, or both of them.

Theorem 16. Let 𝐴 be a set of clauses (i.e., a CNF-formula). Then 𝐴 is valid
iff there is no resolution derivation of [] from 𝐴.

Proof. Lemma 13 tells us that the resolution rule is sound, therefore if 𝐴 is valid,
then any set of clauses that can be derived from 𝐴 using the resolution rule
must be valid. The set of clauses containing the empty clause [] is unsatisfiable,
therefore it cannot be derived using resolution rule from a valid set of clauses.

We prove the converse by contraposition. That is, we show that if we can
derive the empty clause [] from 𝐴 using the resolution rule, then 𝐴 must be
unsatisfiable. We reason by induction on the number of atoms occurring in 𝐴:

• if 𝐴 is a CNF-formula containing only one atom, and we can derive the
empty clause [] from 𝐴 using the resolution rule, then 𝐴 = [𝑎] [¬𝑎]1(
because

[𝑎] [¬𝑎]
Res

[]

)
;

• if 𝐴 contains 𝑛 > 1 atoms, then we can write 𝐴 as

𝐴 = 𝐶1, . . . 𝐶𝑘︸      ︷︷      ︸
clauses containing 𝑎

, 𝐶𝑘+1, . . . 𝐶𝑚︸         ︷︷         ︸
clauses not containing 𝑎 or ¬𝑎

, 𝐶𝑚+1, . . . 𝐶𝑛︸         ︷︷         ︸
clauses containing ¬𝑎

If we can derive the empty clause [] from 𝐴 using the resolution rule, and
[] is in the resolution closure of 𝐶𝑘1 , . . . 𝐶𝑚, then we can conclude that
𝐴 is unsatisfiable. In fact, 𝐴′ = 𝐶𝑘1 , . . . 𝐶𝑚 is a set of clauses containing
strictly less than 𝑛 atoms, and we can apply the inductive hypothesis to
conclude that 𝐴′ is unsatisfiable. Thus also 𝐴 = 𝐴′ ∧ 𝐵 is unsatisfiable.

Otherwise, we must have that [] has been derived by applying the reso-
lution rule to two clauses [𝑎] and [¬𝑎], which should belong to Res(𝐴).

1More in general, we should say that 𝐴 must be of the form [𝑎, . . . , 𝑎] [¬𝑎, . . . , ¬𝑎].
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Thus, we should have two resolution derivations of [𝑎] and [¬𝑎] of the
following form:

𝐶1, . . . , 𝐶𝑘 , 𝐶𝑘+1, . . . , 𝐶𝑚

[𝑎]

𝐶𝑘+1, . . . , 𝐶𝑚, 𝐶𝑚+1, . . . , 𝐶𝑛

[¬𝑎]

Note that in the derivation on the left-hand side, no clause in {𝐶𝑚+1, . . . , 𝐶𝑚}
is considered, and in the derivation on the right-hand side, no clause in
{𝐶1, . . . , 𝐶𝑘} is considered. This means that we can construct two reso-
lution derivations of [] from a set of clauses 𝐵 = 𝐴 \ {𝑎,¬𝑎} obtained by
removing 𝑎 and ¬𝑎 from 𝐴.

𝐶1 \ {𝑎}, . . . , 𝐶𝑘 \ {𝑎}, 𝐶𝑘+1, . . . , 𝐶𝑚

[]

𝐶𝑘+1, . . . , 𝐶𝑚, 𝐶𝑚+1 \ {¬𝑎}, . . . , 𝐶𝑛 \ {¬𝑎}

[]

By the inductive hypothesis, we can conclude that both sets of clauses 𝐵1 =

{𝐶1, . . . , 𝐶𝑘 , 𝐶𝑘+1, . . . , 𝐶𝑚} \ {𝑎} and 𝐵1 = {𝐶1, . . . , 𝐶𝑘 , 𝐶𝑘+1, . . . , 𝐶𝑚} \ {¬𝑎}
are unsatisfiable. From this, we conclude that 𝐴 must be unsatisfiable: if
𝐴 would be satisfiable, then there exists a model 𝔐 such that 𝔐 ⊨ 𝐴. In
such a model 𝔐 we would have that

– either (𝑎)𝔐 = tt and 𝔐 ⊨ 𝐶𝑘+1 ∧ · · · ∧ 𝐶𝑚 ∧ 𝐶𝑚+1 ∧ · · · ∧ 𝐶𝑚.

– or (¬𝑎)𝔐 = tt and 𝔐 ⊨ 𝐶1 ∧ · · · ∧ 𝐶𝑘 ∧ 𝐶𝑘+1 ∧ · · · ∧ 𝐶𝑚;

In the first case, we would have that 𝔐 ⊨ 𝐶𝑖 for all 𝑖 ∈ {𝑘 + 1, . . . , 𝑛},
and, since (𝑎)𝔐 = tt and (¬𝑎)𝔐 = ff, we would have that 𝔐 ⊨ 𝐶𝑚+1 \
{¬𝑎}, . . . , 𝐶𝑛 \ {¬𝑎}. This implies that 𝔐 ⊨ 𝐵2, contraddicting the fact
that 𝐵2 is unsatisfiable. In the second case, we can reason in the same way,
reaching a contradiction with the fact that 𝐵1 is unsatisfiable. Therefore,
𝐴 must be unsatisfiable.

□

We can now define an algorithm to check entailment based on the resolution
rule based on Corollary 10 defined as in Algorithm 4.

Remark 17. We could consider additional rules to simplify the resolution pro-
cess. For example:

• the tautology rule, which states that if a clause contains a literal and its
negation, then the clause is a tautology and can be removed. Intuitively,
since the clause is the disjunction of literals, if it contains a literal and its
negation, then the clause is always evaluated as true. Therefore, it does
not provide any information;

• the subsumption rule, which states that if a clause is a subset of another
clause, then the clause can be removed. Here the intuition is that if a clause
is a subset of another clause, then the superset clause already contains all
the information provided by the subset clause.

12
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Algorithm 4: Resolution Algorithm

Input: A knowledge base KB and a formula 𝐴.
Output: True if KB entails 𝐴, false otherwise.

Let C = {𝐶1, . . . , 𝐶𝑛} be the set of clauses in CNF encoding KB ∧ ¬𝐴;
do

Let C′ = ∅;
for 𝑖, 𝑗 ∈ {1, . . . 𝑛} with 𝑖 ≠ 𝑗 do

Compute the resolvent 𝐶𝑖 𝑗 of 𝐶𝑖 and 𝐶 𝑗 (if possible);
if 𝐶𝑖 𝑗 = [] then

return true;
else

C′ = C′ ∪ {𝐶𝑖 𝑗 };
end

end

while C ≠ C ∪ C′;
return false;

Similar remarks can be used to improve the efficiency of the resolution algorithm.
In particular, the David-Putnam algorithm is a well-known algorithm that uses
these (and other) rules to simplify the resolution process.

We write KB ⊢Res 𝐴 it is possible to derive the empty clause [] from the set
of clauses KB ∧ ¬𝐴 using the resolution rule. We have the following result.

Theorem 18. The algorithm Res is sound and complete with respect to entail-
ment. That is,

KB ⊢Res 𝐴 if and only if KB ⊨ 𝐴.

Proof. By Corollary 10 we know that KB ⊨ 𝐴 iff ⊭ KB ∧ ¬𝐴. We conclude since
we have proven in Theorem 16 that ⊭ KB ∧ ¬𝐴 iff KB ⊢Res 𝐴. □

3.4 Forward and Backward Chaining

We now discuss two approaches to infer properties from a knowledge base: the
forward chaining and the backward chaining. The forward chaining is
based on the idea of applying rules from known facts from the database to infer
new facts. The backward chaining is based on the idea of applying rules from
the goal to infer the facts that are needed to reach the goal.

In both cases, we consider a knowledge base KB containing only clauses of a
specific shape called definite clause, which are (disjunctive) clause containing
at most one positive literal. The head of a definite clause is the positive literal,
and the body is the conjunction of the negative literals. Among definite clauses,
we distinguish facts, which are clauses made of a single positive literal, and
Horn clauses, which are clauses containing exactly one positive literal. The
interest in consider definite clauses, is that each definite clause can be seen as

13
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an implication with antecedent the conjunction of the negative literals and the
consequent the positive literal.

[¬𝑏1, . . . ,¬𝑏𝑛, ℎ]
def
= (¬𝑏1) ∨ · · · (∨¬𝑏𝑛) ∨ ℎ ≡ (𝑏1 ∧ · · · ∧ 𝑏𝑛) → ℎ

Alternatively, each Horn clause can be seen as a rule of inference, with conclusion
the positive literal and premise(s) the negative literals, and each fact can be seen
a rule with no premises.

[¬𝑏1, . . . ,¬𝑏𝑛, ℎ] ⇝
𝑏1 · · · 𝑏𝑛

ℎ
and [ℎ] ⇝

ℎ

With this interpretation of definite clauses in mind, checking if a query 𝑞

is satisfied by a knowledge base can be seen as the process of constructing a
tree with root 𝑞 and leaves the facts in the knowledge base. Forward chaining
constructs a forest of trees top-down (from leaves to the root), until a tree with
root 𝑞 is found. Backward chaining constructs a single tree bottom-up (from
the root to the leaves), until a tree with leaves the facts in the knowledge base
is found.

The forward chaining algorithm is defined as in Algorithm 5. The algo-
rithm returns true if the query 𝑞 can be inferred from the knowledge base KB,
and false otherwise. The algorithm starts from the set G of facts (i.e., definite
clauses which are facts) in the knowledge base KB, and it progressively add the
facts which can be obtained by applying the rules in KB. For optimizing this
procedure, the algorithm keeps track of the number of literals in the body of
each clause, and it adds the head of the clause to the set of facts only when all
the literals in the body have been added to the set of facts.

Example 19. Consider the run of the forward chaining algorithm to check the
entailment of the query 𝑄 on the following knowledge base:

𝐶1 := 𝐴 𝐶2 := 𝐵 𝐶3 := (𝐴 ∧ 𝐵) → 𝐿

𝐶4 := (𝐴 ∧ 𝑃) → 𝐿 𝐶5 := (𝐵 ∧ 𝐿) → 𝑀 𝐶6 := (𝐿 ∧ 𝑀) → 𝑃

𝐶7 := 𝑃 → 𝑄

When the algorithm starts, it sets F = {𝐴, 𝐵}, and it sets

𝑛𝐶1
= 1, 𝑛𝐶2

= 1, 𝑛𝐶3
= 2, 𝑛𝐶4

= 2, 𝑛𝐶5
= 2, 𝑛𝐶6

= 2, 𝑛𝐶7
= 1.

Then the while loop starts, and the algorithm picks 𝐴 from F . Since 𝐴 is not
𝑄, the algorithm checks which clauses contain 𝐴 in the body, that is, 𝐶1, 𝐶3

and 𝐶4, letting 𝑛𝐶1
= 0, 𝑛𝐶3

= 1, and 𝑛𝐶4
= 1. Since 𝑛𝐶1

= 0, the algorithm
adds the head of 𝐶1, that is 𝐴, to the set of facts F . Then it removes 𝐴 from
F . Then the algorithm picks 𝐵 from F , and, since 𝐵 ≠ 𝑄, it checks the clauses
containing 𝐵 in the body, that is, 𝐶2, 𝐶3 and 𝐶5, letting 𝑛𝐶2

= 0, 𝑛𝐶3
= 0, and

𝑛𝐶5
= 1. Since 𝑛𝐶2

= 0 and 𝑛𝐶3
= 0, the algorithm tries to add the head of 𝐶2,

that is 𝐵, and the head of 𝐶3, that is 𝐿, to the set of facts F . However, since
[𝐵] is a clause in the knowledge base, the algorithm only adds 𝐿 to F (and [𝐿]
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Algorithm 5: Forward Chaining

Input: A knowledge base KB, and a query 𝑞.
Output: True if KB entails 𝑞, false otherwise.

Let F = { 𝑓 | exists 𝐶 ∈ KB is a fact [ 𝑓 ]};
Let 𝑛𝐶 be the number of literals in the body of each clause 𝐶 ∈ KB;
while F ≠ ∅ do

Pick an element 𝑓 from F ;
if 𝑓 = 𝑞 then

return true;
else

for 𝐶 ∈ C do
if 𝑓 is in the body of 𝐶 = [¬𝑏1, . . . ,¬𝑏𝑛, ℎ] then

𝑛𝐶 = 𝑛𝐶 − 1;
if 𝑛𝐶 = 0 and [ 𝑓 ] ∉ KB then

F = F ∪ {ℎ} and KB = KB ∪ {[ 𝑓 ]};
end

end

end
F = F \ { 𝑓 };

end

end
return false;

to KB). Then it removes 𝐵 from F . Then the algorithm continues by picking
𝐿 and adding 𝑀, then picking 𝑀 and adding 𝑃. At this point, we see that the
algorithm will not add back 𝐿 in F , because the clause [𝐿] is already present in
KB. Finally, the algorithm picks 𝑃 and adds 𝑄 to the set of facts F . Since 𝑄

is the query, the algorithm returns true.

We write KB ⊢FC 𝑞 if the forward chaining algorithm returns true when
applied to the knowledge base KB and the query 𝑞. We have the following
result.

Theorem 20. The forward chaining algorithm is sound and complete with re-
spect to entailment. That is,

KB ⊢FC 𝑞 if and only if KB ⊨ 𝑞.

Proof. Soundness of the algorithm follows from the fact that the algorithm is
simply applying the Modus Ponens rule – see Lemma 8.

To prove completeness, we consider a model 𝔐 such that ( 𝑓 )𝔐 = tt for any
𝑓 which ever occurs in the set of facts F during the execution of the forward
chaining algorithm. For any such model, 𝔐 ⊨ KB:

• if 𝑓 is a fact in the knowledge base, that is, a fact clause, then 𝔐 ⊨ 𝑓

because 𝑓 is in the initial set of facts F ;
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• if 𝑓 is a fact that has been added to the set of facts F , then there must
be a clause 𝐶 = [¬𝑏1, . . . ,¬𝑏𝑛, ℎ] in the knowledge base such that 𝑓 = ℎ

is the head of 𝐶 and all atoms 𝑏1, . . . , 𝑏𝑛 in the body of 𝐶 occurred in the
set of facts F . Since 𝑓 is added to the set of facts F , only when all the
literals in the body of 𝐶 occurred in F . Then by the induction hypothesis,
we must have that (𝑏𝑖)𝔐 = tt for each literal in the body, and ( 𝑓 )𝔐 = tt.

• if at least an atom 𝑏 occurring in the body of 𝐶 have not been added to
the set of facts F during the execution of the forward chaining algorithm,
then (𝑏)𝔐 = ff and ( 𝑓 )𝔐 = ff.

In all cases, every definite clause of the knowledge base is satisfied by the model
𝔐, and we conclude that 𝔐 ⊨ KB. Assume now that 𝑞 is valid in 𝔐, but
𝑞 has never occurred in the set of facts F at the end of the execution of the
forward chaining algorithm. For this to be true, there must be a clause 𝐶 =

[¬𝑏1, . . . ,¬𝑏𝑛, 𝑞] in the knowledge base such that (𝑏𝑖)𝔐 = tt for all 𝑖, and (𝑞)𝔐 =

ff. Now, since we have that (𝑏𝑖)𝔐 = tt for all 𝑖, then each 𝑏𝑖 occurred in F at a
certain point during the run of the algorithm. This means that 𝑛𝐶 has become
0 at a certain point, thus that 𝑞 has been added to the set of facts F . This is a
contradiction with the assumption we have made that (𝑞)𝔐 = ff because 𝑞 has
never occurred in the set of facts F . Therefore, if 𝑞 is valid in 𝔐, then 𝑞 must
have occurred in the set of facts F at the end of the execution of the forward
chaining algorithm. □

The backward chaining algorithm is defined as in Algorithm 6. The al-
gorithm returns true if the query 𝑞 can be inferred from the knowledge base
KB, and false otherwise. The algorithm starts from the query 𝑞 and it applies
‘backward’ rules in KB to check under which pre-conditions the query 𝑞 can
be inferred, and repeats the process until the pre-conditions are facts in the
knowledge base.

Note that, as written, it is easy to find simple knowledge bases and queries for
which the backward chaining algorithm does not terminate, even if the answer is
positive. For an example, consider the knowledge base KB = {𝐶1 = [¬𝑝, 𝑞], 𝐶2 =

[¬𝑞, 𝑝], 𝐶3 = [𝑞]} and the query 𝑞. The algorithm could enter into a loop by
calling itself recursively on the set of queries {𝑝} (by applying the rule in 𝐶2),
then on the set of queries {𝑞} (by applying the rule in 𝐶1), while it could have
reached the goal by immediately applying the rule in 𝐶3.

Example 21. Consider a run of the backward chaining algorithm on the same
query 𝑄 and database KB from Example 19.

In this case, the algorithm starts from the query 𝑄 and it applies the rules in
the knowledge base to infer the facts that are needed to reach the fact 𝑄. The only
possible rule is 𝐶7 := 𝑃 → 𝑄. Therefore, the algorithm removes 𝑄 from the set
of queries and adds 𝑃 to Q. Then it can only apply the rule 𝐶6 := (𝐿 ∧𝑀) → 𝑃,
removing 𝑃 and adding 𝐿 and 𝑀 to Q. Here the execution can go wrong: if
the algorithm applies the rule 𝐶4, it would remove 𝐿 from Q, but addign 𝐴, and
adding back 𝑃. In this case, the algorithm would enter into a loop of applications
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Algorithm 6: Backward Chaining

Input: A knowledge base KB, and a set of queries Q = {𝑞}.
Output: True if KB entails 𝑞, false otherwise.

for each 𝑞 ∈ Q do
if there is 𝐶 = [¬𝑏1, . . . ,¬𝑏𝑛, 𝑞] ∈ KB then

Let Q = Q \ {𝑞} ∪ {𝑏1, . . . , 𝑏𝑛};
if Q is empty then

return true;
else

call Backward Chaining Algorithm on KB and Q;
end

else
return false;

end

end

of 𝐶6 followed by 𝐶4. However, if the algorithm applies the rule 𝐶5, it would
remove 𝑀 from Q and add 𝐵 and 𝐿. Then it could either apply 𝐶2 to remove 𝐵,
but in any case it should apply 𝐶3 to remove 𝐿 and add both 𝐴 and 𝐵 (or end
again in the loop of 𝐶6 and 𝐶4). In this case, the algorithm would remove both
𝐴 and 𝐵 from Q via 𝐶1 and 𝐶2, exiting the loop of recursive calls and returning
true since the set of queries is empty.

4 Propositional Modal Logic

Modal logic is an extension of propositional logic that includes modal opera-
tors allowing to express attributes of propositions, such as necessity, possibility,
knowledge, belief, and time as the ones in the following table.

Logic Symbols Expressions Symbolized
Modal Logic □ It is necessary that . . .

^ It is possible that . . .
Deontic Logic 𝑂 It is obligatory that . . .

P It is permitted that . . .
F It is forbidden that . . .

Temporal Logic 𝐺 It will always be the case that . . .
F It will be the case that . . .
H It has always been the case that . . .
P It was the case that . . .

Doxastic Logic B𝑥 𝑥 believes that . . .
Epistemic Logic K𝑥 𝑥 knows that . . .

We will focus on what we refer to as modal logic, which is a formal system
that extends propositional logic with modal operators □ and ^. The syntax of
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formulas is defined by extending the syntex of propositional logic with modalities
as follows:

𝐴, 𝐵 := 𝑝 | ¬𝐴 | 𝐴 ∧ 𝐵 | 𝐴 ∨ 𝐵 | 𝐴 → 𝐵 | ^𝐴 | □𝐴 𝑝 ∈ A

4.1 Semantics of Modal Logic

The semantics of modal logic is defined by Kripke models. Intuitively, while
models for propositional logic are structures made of a single world in which
each proposition is evaluated as true or false, models for modal logic are made
of different possible worlds, each provided with an evaluation function, and a
relation between worlds. The relation between worlds is used to express the
notion of accessibility between worlds, and it is used to define the semantics of
the modal operators.

Formally, a (Kripke) model is a triple 𝔐 = (𝑊, 𝑅,𝑉) made of:

• a set of worlds 𝑊 ;

• a binary accessibility relation 𝑅 ⊆ 𝑊 ×𝑊 ;

• a valuation function 𝑉 : 𝑊 ×F → {tt, ff} that assigns to each world the set
of propositions which are evaluated as true in that world.

We may write 𝑣𝑅𝑤 to denote that the world 𝑤 is accessible from the world 𝑣

via 𝑅.
We write 𝔐, 𝑤 ⊨ 𝐴 to denote that the formula 𝐴 is evaluated as true in the

world 𝑤 of the model 𝔐. The truth value of a formula 𝐴 in a world 𝑤 of a model
𝔐 is defined by induction on the structure of the formula as follows, under the
assumption that the valuation function 𝑉 is defined for each world 𝑤 and for
each 𝑎 ∈ A.

𝔐, 𝑤 ⊨ 𝑎 if 𝑉 (𝑤, 𝑎) = tt
𝔐, 𝑤 ⊨ ¬𝐴 if 𝔐, 𝑤 ⊭ 𝐴

𝔐, 𝑤 ⊨ 𝐴 ∧ 𝐵 if 𝔐, 𝑤 ⊨ 𝐴 and 𝔐, 𝑤 ⊨ 𝐵

𝔐, 𝑤 ⊨ 𝐴 ∨ 𝐵 if 𝔐, 𝑤 ⊨ 𝐴 or 𝔐, 𝑤 ⊨ 𝐵

𝔐, 𝑤 ⊨ 𝐴 → 𝐵 if 𝔐, 𝑤 ⊭ 𝐴 or 𝔐, 𝑤 ⊨ 𝐵

𝔐, 𝑤 ⊨ ^𝐴 if ∃𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣 and 𝔐, 𝑣 ⊨ 𝐴

𝔐, 𝑤 ⊨ □𝐴 if ∀𝑣 ∈ 𝑊 such that 𝑤𝑅𝑣 we have that 𝔐, 𝑣 ⊨ 𝐴

(8)

The frame of the model is the graph (𝑊, 𝑅) with vertices the set of worlds
of the model, and with edges the accessibility relation. We can define the frame
condition for a model 𝔐 as the condition that the accessibility relation 𝑅 has,
as, e.g., being reflexive, transitive, or symmetric.

We use the following notation to denote the entailment relation in modal
logic, where 𝔐 is a model, 𝑤 is a world, and 𝐴 is a formula.

• 𝔐, 𝑤 ⊨ 𝐴 if 𝐴 is evaluated as true in the world 𝑤 of the model 𝔐;

• 𝔐 ⊨ 𝐴 if 𝐴 is evaluated as true in all worlds of the model 𝔐;
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• ⊨ 𝐴 if 𝐴 is evaluated as true in all possible models;

Moreover, for specific applications we may be interested in considering a
class of models with underlying frame 𝔉 or with underlying frame in the class
of frames ℭ. In this case, we write:

• ⊨𝔉 𝐴 if 𝐴 is evaluated as true in all models with frame 𝔉;

• ⊨ℭ 𝐴 if 𝐴 is evaluated as true in all models whose frame is in the class ℭ;

We can characterize frames with specific properties by defining modal ax-
ioms. That is, we can define a modal axiom AXℭ that characterizes a class of
frames ℭ by the property that ⊨ℭ 𝐴 if and only if K ∧ AXℭ ⊨ 𝐴.

Frame Condition Description Modal Axiom
Normal K := □(𝐴 → 𝐵) → (□𝐴 → □𝐵)
Reflexive 𝑤𝑅𝑤 for all 𝑤 ∈ 𝑊 D := □𝐴 → ^𝐴
Serial 𝑣𝑅𝑤 for all 𝑣 ∈ 𝑊 there exists 𝑤 ∈ 𝑊 T := □𝐴 → 𝐴

Transitive 𝑢𝑅𝑣 and 𝑣𝑅𝑤 implies 𝑢𝑅𝑤 for all 𝑢, 𝑣, 𝑤 ∈ 𝑊 4 := □𝐴 → □□𝐴
Euclidean 𝑢𝑅𝑣 and 𝑢𝑅𝑤 implies 𝑣𝑅𝑤 for all 𝑢, 𝑣, 𝑤 ∈ 𝑊 5 := ^𝐴 → □^𝐴
Symmetry 𝑤𝑅𝑣 implies 𝑣𝑅𝑤 for all 𝑤, 𝑣 ∈ 𝑊 B := 𝐴 → □^𝐴

For example, Epistemic (modal) logic is a class of logic that is used to reason
about knowledge. In this logic, we consider sets of agents, each with their own
knowledge, and we use the modal operator K𝑖 to denote that the agent 𝑖 knows a
formula. The models of this logic are more complex, since each modal operator
defines an accessibility relation 𝑅𝑖 between worlds. Moreover, modalities in
epistemic logic satisfying the axiom S5 = T ∧ 4 ∧ 5, which is the conjunction of
the axioms for serial, transitive and euclidean.

Another interesting application of modal logic isDynamic logic, where modal-
ities are used to express actions and their effects. In propositional dynamic
logic, each program 𝛼 defines modalities [𝛼] and ⟨𝛼⟩, and the accessibility re-
lation 𝑅𝛼. The worlds of the model are interepreted as the states of the system,
and the accessibility relation 𝑅𝛼 connects the world 𝑣 with 𝑤 if the program 𝛼

transforms the state 𝑣 into the state 𝑤.
The formula [𝛼] 𝐴 can be interpreted as ‘the formula 𝐴 is true in any state

which can be reached after executing 𝛼’, while ⟨𝛼⟩ 𝐴 is interpreted as ‘the for-
mula 𝐴 is true in some state which can be reached after executing 𝛼’. Dynamic
logics are at the base of the theory of program verification, where the goal is to
check whether a program satisfies a given specification. Notable examples are
the modal mu-calculus and the Hennessy–Milner logic.

5 First-Order Logic (W.I.P.)

6 Formal Reasoning in FoL Logic (W.I.P.)
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