AI504 Knowledge Representation

Exercises 3

Matteo Acclavio & Marco Santamaria

1. Let Σ be a signature containing a constant c, two function symbols f and g of arity 2, a predicate symbol P of arity 1 and a predicate symbols Q and E of arity 2.

Consider the Σ -models M with domain the set of strictly positive natural number, and the following interpretation:

- $c^{M} = 1$,
- $f^{M}(n, m)$ is the greatest common divisor of n and m,
- $g^{M}(n,m)$ is the least common multiple of n and m;
- $P^{M}(n)$ is the subset of prime numbers;
- $S^{M}(n, m)$ is the relation 'n divides m'.
- $E^{M}(n, m)$ is the relation 'n is equal to m'.

Say if the following formulas are valid or not in M:

- $\forall x. \forall y. (E(x, y) \leftrightarrow E(y, x));$
- $\forall x. \forall y. S(f(x, y), g(x, y));$
- $\forall x. \forall y. (S(g(x, y), f(x, y)) \rightarrow E(x, y));$
- $\forall x. \forall y. (S(x, y) \rightarrow (P(x) \leftrightarrow P(y)));$
- $\forall x. \forall y. ((S(x, y) \land P(y) \land \neg E(x, y)) \rightarrow E(x, c));$
- $\forall x. \forall y. ((P(x) \land P(y)) \rightarrow (P(f(x, y)) \lor P(g(x, y))));$
- $\forall x.(\forall y.E(g(x,y),g(y,x)) \rightarrow E(x,c));$
- $\forall x. \exists y. (P(x) \rightarrow (\neg P(y) \land S(x, y)));$
- $\forall x. \exists y. \exists z. (\neg P(x) \rightarrow (\neg E(y, z) \land P(y) \land P(z) \land S(x, y) \land S(x, z)));$
- 2. Let Σ be a signature with two predicates symbols $P,Q\in\mathcal{P}$ of arity 1. Prove if:
 - there are Σ -models M (with P and Q having different interpretations) such that:
 - $-M \models \forall x. (P(x) \land Q(x)) \leftrightarrow (\forall x. P(x) \land \forall x. Q(x));$
 - $-M \models \forall x.(P(x) \lor Q(x)) \leftrightarrow (\forall x.P(x) \lor \forall x.Q(x));$
 - $-M \models \forall x.(P(x) \rightarrow Q(x)) \leftrightarrow (\forall x.P(x) \rightarrow \forall x.Q(x));$
 - $-M \models \forall x.(P(x) \rightarrow Q(x)) \rightarrow (\forall x.P(x) \rightarrow \exists x.Q(x));$
 - $-M \models \exists x.(P(x) \rightarrow Q(x)) \leftrightarrow (\forall x.P(x) \rightarrow \exists x.Q(x));$
 - The following holds:
 - $\models \forall x. (P(x) \land Q(x)) \leftrightarrow (\forall x. P(x) \land \forall x. Q(x));$
 - $\not\models \forall x. (P(x) \lor Q(x)) \leftrightarrow (\forall x. P(x) \lor \forall x. Q(x));$
 - $\not\models \forall x. (P(x) \rightarrow Q(x)) \leftrightarrow (\forall x. P(x) \rightarrow \forall x. Q(x));$
 - $\models \forall x. (P(x) \to Q(x)) \to (\forall x. P(x) \to \exists x. Q(x));$
 - $\models \exists x. (P(x) \rightarrow Q(x)) \leftrightarrow (\forall x. P(x) \rightarrow \exists x. Q(x));$

Remark that the solutions to the first point (second and third equations) are not in contradiction with the second point!

- 3. Let Σ be a signature with a predicate symbol $R \in \mathcal{P}$ of arity 2. Prove or provide a counter-example of the following statements:
 - $M \models \exists y. \forall x. R(x, y) \rightarrow \forall x. \exists y. R(x, y).$
 - if $M \models \forall x. \forall y. (R(x,y) \rightarrow R(y,x))$, and $M \models \forall x. \forall y. \forall z. ((R(x,y) \land R(y,z)) \rightarrow R(x,z))$, then $M \models \forall x. R(x,x)$.
 - what if we also consider $M \models \forall x. \exists y. R(x, y)$ as a premise in the previous point?
 - if $M \models \forall x. \forall y. \forall z. ((R(x, y) \land R(y, z)) \rightarrow R(x, z))$ and $M \models \forall x. \exists y. R(x, y)$, then $M \models \forall x. R(x, x)$.
- 4. Let Σ be a signature containing a predicate symbol P of arity 2, and consider the following formulas:
 - (a) $A := \forall x. \exists y. P(x, y);$
 - (b) $B := \exists y. \forall x. P(x, y).$

Let M be a Σ -model with domain the set of natural numbers, where P(x, y) is interpreted as 'x is greater or equal to y.

- \bullet Translate the formulas A and B in sentences of natural language.
- Is A satisfied by M?
- Is B satisfied by M?
- Is $A \to B$ valid in M? Does A logically entail B (in any model)?
- Is $B \to A$ valid in M? Does B logically entail A (in any model)?
- 5. Consider the standard translation of modal formulas in the language of first-order logic:
 - for every propositional variable p, $ST_x(p) = P(x)$ for a predicate symbol P of arity 1;
 - $ST_x(\neg A) = \neg ST_x(A)$;
 - $ST_x(A \wedge B) = ST_x(A) \wedge ST_x(B)$
 - $ST_x(A \vee B) = ST_x(A) \vee ST_x(B)$
 - $ST_x(A \to B) = ST_x(A) \to ST_x(B)$;
 - $ST_x(\Box A) = \forall y.(R(x, y) \rightarrow ST_y(A));$
 - $ST_x(\diamondsuit A) = \exists y.(R(x, y) \land ST_y(A));$

Let Σ be a signature containing only a predicate symbol of arity 2. Prove that each model satisfying the given first-order formula describing a condition on the frame is a model of the corresponding modal formula.

```
Frame condition First-Order Formula (F)
                                                                                                                                           Modal Axiom (AX)
Seriality
                                    \forall v. \exists w. R(v, w)
                                                                                                                                           \mathsf{D} \coloneqq \Box A \to \Diamond A
Reflexivity
                                    \forall x.R(x,x)
                                                                                                                                           \mathsf{T}\coloneqq \Box A\to A
Transitivity
                                    \forall u. \forall v. \forall w. ((R(u, v) \land R(v, w)) \rightarrow R(u, w))
                                                                                                                                           4 := \Box A \rightarrow \Box \Box A
Euclideanness
                                    \forall u. \forall v. \forall w. ((R(u,v) \land R(u,w)) \rightarrow R(v,w))
                                                                                                                                          5 := \Diamond A \rightarrow \Box \Diamond A
Symmetry
                                    \forall v. \forall w. (R(v, w) \rightarrow R(w, v))
                                                                                                                                           B := A \rightarrow \Box \Diamond A
                                    \forall u. \forall v. \forall w. ((R(u, v) \land R(u, w)) \rightarrow \exists u'. (R(v, u') \land R(w, u')))
Confluence
                                                                                                                                          \mathsf{M}\coloneqq \Diamond \Box A \to \Box \Diamond A
Connectedness
                                    \forall v. \forall w. (R(v, w) \lor R(w, v))
                                                                                                                                           \mathsf{Dum} \coloneqq \Box(\Box A \to B) \vee \Box(\Box B \to A)
                                    \forall u. \forall w. (R(u, w) \rightarrow \exists v. (R(u, v) \land R(v, w)))
                                                                                                                                          \mathsf{Den} \coloneqq \Box \Box A \to \Box A
Density
```

To prove that also the converse holds, you have to consider the conjunction of the given axiom with the axiom $K := \Box(A \to B) \to (\Box A \to \Box B)$. That is, $AX \land K \models F$

- 6. Compute, if it exists, the most general unifier of the following pairs of terms:
 - (a) f(x, g(y, z)) and f(g(a, b), g(y, h(y)));
 - (b) f(f(x), g(y)) and f(z, g(h(z)));
 - (c) h(x, f(y, z)) and h(f(a, b), f(y, c));
 - (d) g(x, f(y)) and g(f(a), f(b));

- (e) f(x, g(y, z)) and f(g(a, b), g(c, d));
- 7. Define a signature and use it to write down the following sentences using first-order formulas in such a way they are suitable for using Generalized Modus Ponens:
 - Horses, cows, and pigs are mammals.
 - An offspring of a horse is a horse.
 - Bluebeard is a horse.
 - Bluebeard is Charlie's parent.
 - Offspring and parent are inverse relations.
 - Every mammal has a parent.

Then,

- Draw the proof tree generated by an exhaustive backward-chaining algorithm for the query $\exists h.\mathsf{Horse}(h)$, where clauses are matched in the order given.
- \bullet How many solutions for h actually follow from your sentences?
- Can you think of an algorithm to find all of them?