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Today we are going to talk about two things. First, we will discuss what we know (and especially what we
do not know) about proof equivalence in presence of first-order and second order quantifiers. Second, we will
discuss how the problem of proof equivalence is related to some important questions in the study of programming
languages. This connection is particularly relevant for the case of second-order logic.

1 Proof Equivalence and Program Equivalence

I guess many of you have been following Giulio Guerrieri’s course and thus you should now have a grasp of
the Curry-Howard correspondence. In very rough terms, it is a correspondence which makes it possible to see
proofs in natural deduction as functional programs, and normalization of proofs as execution of programs. More
precisely, a formula of intuitionistic logic is read as a type, that is, a set of programs having a somehow similar
behavior, and a proof of that formula yields then a program having the associated type. For instance, the
formula pÑ ppÑ pq corresponds to the type of all programs sending two inputs of type p into an input of type
p. The two derivations that we have seen some days ago, namely:

Π1 “

0
p

ÑIp1qpÑ p
ÑIp0q

pÑ ppÑ pq

Π2 “

0
p

ÑIp0qpÑ p
ÑIp1q

pÑ ppÑ pq

correspond to two programs of type p Ñ pp Ñ pq: the first program takes the two inputs x, y of type p and
gives back the first one; the second program takes the two inputs and gives back the second one. For those of
you who are now familiar with the λ-calculus, these two programs can be written as

P1 :“ λx.λy.x P2 :“ λx.λy.y

In this way, from the study of proofs and their representation by means of formal derivations, we pass to
the study of algorithms and their implementation by means of programs, that is, formal entities (e.g. lines of
code) written in a certain language. λ-calculus is one example of formal language. In fact, when considering
programs, there are two different senses in which we can reason about their equivalence:

• a coarser sense: intuitively, a program, when executed, implements some form of function between
datatypes. For example, a program that executes natural number addition and a program that checks the
primality of a natural number implement functions

ADDITION : Nˆ NÑ N
ISPRIME : N ÝÑ tTRUE, FALSEu

However, there may exist different programs that implement the same function. For example, the following
two programs both implement the addition function:

int add1(int x, int y) {

for (i=0; i< x, i++){

x=x+1;

}

return x;

}

int add2(int x, int y) {

for (i=0; i< y, i++){

y=y+1;

}

return y;

}

Primality can be checked by a program that iteratively checks that n is not divisible by any p ă n.
Observe that this program runs in exponential time. Indeed, the existence of a polytime algorithm to check
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primality remained open for many years, and was solved only in 2002 via the so-called AKS algorithm.
Program equivalence is, informally, the property enjoyed by programs that, when executed, implement
the same function. Observe that program equivalence is an extensional relation, and in particular it may
break complexity properties: the exponential time primality check is equivalent to the polytime program
AKS.

• a finer sense: an algorithm is a procedure which is usually presented informally, or via some pseudo-code.
The same algorithm can be implemented via programs written in different languages. Often, the same
algorithm can also be implemented by different programs in the same programming language. Typically,
if your algorithms includes two independent for loops, it may lead to different equivalent formulations,
as illustrated below:

Observe that this is roughly very similar to the permutation problem for the sequent calculus. In general,
algorithmic equivalence should not break complexity : as soon as we see complexity as a property of
algorithms, two programs with different complexity should implement different algorithms.

The difference between program equivalence and algorithmic equivalence resembles somehow the one between
global and local notions of proof equivalence. Yet, there is an important difference between these two: being
extensional, program equivalence admits a precise and well-understood definition, while algorithmic equivalence
remains today, much like the notion of proof equivalence, a rather elusive one. In the following, we will thus
mostly focus on program equivalence.

In Wednesday’s class we discuss the typed Böhm theorem, which asserts that normalization-equivalence is a
maximal non-trivial equational theory. The core of the argument was showing that two different normal forms
Σ1,Σ2 in NJÑ,^ are separable: one can construct a context Cr´s (intuitively, a derivation with a “hole”) such
that CrΣ1s reduces to Π1, and CrΣ2s reduces to Π2 (where Π1,Π2 are the two derivations above. This idea of
separability is at the heart of the definition of program equivalence, via the following notion:

Definition 1 (contextual equivalence). Two programs M,N of the same type A are contextually equivalent
when for any context Cr´s : AÑ tTRUE, FALSEu, CrM s “ CrN s.

In other words, two programs are contextually equivalent when there is no way to separate them from inside
the language.

Usual important properties of contextual equivalence are the following:
1. contextually equivalent programs implement the same functions and viceversa;
2. normalization-equivalent programs are contextually equivalent;
3. contextual equivalence is the maximum non-trivial equivalence on typed programs.

A consequence of 1. is that contextual equivalence may break complexity, that is, identify programs with different
execution time/space. Indeed, this may be seen as a feature, rather than a weak point: it means that we can
reason on contextual equivalence to justify program optimization. This is the replacement of a piece of expensive
code, within a larger code, with some piece of more optimized code. When we do this, we would certainly like to
be assured that the replacement will not produce bug, and, more generally, that it will not alter the observable
behavior of the program. In other words, we want to be assured that the optimized programs will still compute
the same function as the non-optimized one.

Indeed, program equivalence methods are largely applied precisely to this aim. Another important appli-
cation is for the verification of language compilers: when we write a program P in a high-level language, say,
C and we run the program, this has first to be transformed into code which is executable for the machine;
indeed P passes through a long list of translations P Ñ P1 Ñ P2 Ñ ¨ ¨ ¨ Ñ Pn from the high-level language
into languages of lower and lower level. Usually, these translations will also include some optimization tricks,
making the code more and more amenable for an efficient execution on the machine. Now, who is assuring us
that the final executable code Pn will still compute the same function as the original program P? This can
indeed be formulated as a program equivalence problem concerning code written in different languages (a bit
like the problem of comparing proof equivalence across different proof systems).

To make an example, the CompCert project, developed at Inria in France, led to the formal verification of a
compiler for the language C, via the proof assistant Coq. This formal verification is indeed nothing more than
an (extremely difficult and long) formal proof that all translations occurring during compilation do preserve
contextual equivalence.

Let us go back to proofs, now. Via the Curry-Howard correspondence, and thus the identification of proofs
with programs, the notion of contextual equivalence extends to natural deduction derivations in an obvious way.
What can be said then about contextual equivalence of proofs, given what we have seen in previous classes?
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First, the typed Böhm theorem assures us that:

Theorem 1. Normalization-equivalence coincides with contextual equivalence in NJÑ,^.

What about full natural deduction? As we have said, normalization-equivalence does not capture all admis-
sible rule permutations, like those permuting a _E with an introduction rule. At the same time, we recalled
the non-trivial result that the equivalence arising from reductions, expansions and generalized permutations
is decidable and coincides with contextual equivalence. Recall, however, that there can be no canonical proof
system capturing this equivalence, as it involves complexity-breaking permutations (i.e. permutations that may
make the size of derivations explode).

2 Proof Equivalence and Proof Assistants

As you may know, the last decade has seen a rising of interest towards the development of so-called interactive
proof assistants. These are programming languages that incorporate in the most literal sense the Curry-Howard
perspective, since the programs written in these languages are just formal proofs. Such programs can be used,
on the one hand, to check the correctness of a proof (just by checking if the associated code compiles!), and,
on the other hand, to assist the mathematician to produce new proofs (recall that, because of the well-known
incompleteness and undecidability results for first-order logic and arithmetic, there is hardly any hope to design
a programming language capable of proving theorems alone).

We mentioned before the CompCert correctness proof, which has been produced and checked with the proof-
assistant Coq. Many other striking examples can be found in the recent literature in this very dynamic field.

Since these languages essentially rely on the Curry-Howard correspondence between natural deduction (for
higher-order logic) and functional programming languages, it should not be surprising that questions related to
proof equivalence arise here and there in this field. Here I will just mention a few interesting directions.

• Language Interoperability : existing proof assistants rely on different proof systems; for example, Coq and
Lean are based on natural deduction, while e.g. Abella relies on sequent calculus. This generates the
problem of how to relate code written in one language with the one written in the other, and, notably,
how to reason, in a mathematically sound way, about proofs represented by code written in different
languages. Notably, there exist so-called proof-checker languages, like e.g. Dedukti, which are though to
provide a sort of common environment in which proofs, as described in different formal languages, can be
encoded.

• Automatic Transport of Proofs: in many situation it is convenient to state and prove results about a
certain class of mathematical structures that is convenient to formally reason about, and then transport
these results to other structures, for instance ones that are computationally more efficient, but possibly
less convenient to reason about. For example, one might prefer to reason on natural numbers in unary
notation, but to translate the resulting proofs and programs based on the binary notation. The underlying
principle here is that, given two isomorphic formulae A ” B, any proof Π of some formula φrAs containing
A should translate into a proof Π1 of the formula φrBs. However, realizing this apparently natural principle
in languages like Coq may be very difficult in practice [5], and relies on the application to formal proofs
of parametricity conditions of the kind we are going to discuss later today. More recently [11], it has
been proposed to apply a yet stronger principle called univalence, which, in very rough terms, justifies
the replacement of isomorphic formulas within a proof. However, a clear constructive and proof-theoretic
understanding of this principle has not been reached yet.

3 Second-Order Quantification, a.k.a. Polymorphism

The other thing I wanted to discuss today is quantification, from the viewpoint of proof equivalence. Importantly,
with quantifiers we enter a much wilder area, as we will see. However, the Curry-Howard correspondence with
programs will be of help here.

First, as you all probably know, quantifications in logic may be of many different types (first-order, second-
order, etc.). Today we will focus on propositional second-order quantification, that is, quantification on proposi-
tions, like in e.g. “all propositions are either true or false”, or “any proposition implies itself”. For a discussion
of proof equivalence in presence of first-order quantification, see e.g. [3, 7].

We will focus on intuitionistic logic. This is for simplicity, but also for another reason: propositional second-
order quantification in propositional classical logic is definable via

@p.A :“ ArT{ps ^ArF{ps Dp.A :“ ArT{ps _ArF{ps.

This implies in particular that provability in, say, LK2, is decidable. Instead, in intuitionistic logic this reduction
is far from possible; in particular, while provability in LJ is decidable, provability in LJ2 is undecidable (a result
that was first established in the 50s by Löb).
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System F The language of second-order propositional logic is obtained by simply adding universal and exis-
tential quantification:

A ::“ p | ¨ ¨ ¨ | @p.A | Dp.A

The calculus NJ2 is defined by adding rules for universal and existential quantification

Γ
...
A

@I
@p.A

ArB{ps
DI

Dp.A

@p.A
@E

ArB{ps
Dp.A

i

A Γ

...
C
DEpiq

C

In the rule @I we must ask that the variable X does not occur free in any undischarged assumption Γ. Similarly,
in DE we must ask that X does not occur in C nor in any other undischarged assumption Γ.

The rules DI and @E make use of a witness formula B. This is responsible for an important fact, namely the
failure of the sub-formula property, even for normal derivations. There is nothing to do with it, second order
logic has no sub-formula property, period.

As in the propositional case, the study of NJ2 is usually restricted to the negative fragment NJ2Ñ,^,@, or
even just to NJÑ,@, a fragment that has become known as System F. On the one hand, you may see that the
rule DE looks very similar to the rule _E, so you may expect this rule to suffer from the same defects (read, rule
permutations!). On the other hand, this fragment is as expressive as full NJ2, via the so-called Russell-Prawitz
encodings:

pA^Bq˚ :“ @p.pAÑ B Ñ pq Ñ p

pA_Bq˚ :“ @p.pAÑ pq Ñ pB Ñ pq Ñ p

pDq.Aq˚ “ @p.p@q.AÑ pq Ñ p.

The study of System F is tightly related to the Curry-Howard correspondence. Indeed, proofs in this system
correspond to what computer scientists call polymorphic programs. For instance, the following proof

i
p

ÑIpiqpÑ p
@I

@p.pÑ p

corresponds to a program that, for every possible type T , yields a program from T to T corresponding to
the identity function. A more general example is the Map program that, given arbitrary types A,B, a list
L “ ra1, . . . , ans of elements of type A and a function f : AÑ B, produces a list

MappA,B,L, fq “ rfpa1q, . . . , fpanqs

made of the corresponding elements of type B. Given a suitable encoding of the type of lists as a formula
Listrps of System F, the polymorphic program Map can be encoded as a proof of the second-order formula

@p.@q.Listrps ^ ppÑ qq Ñ Listrqs.

Polymorphism is a feature that is found in many programming languages (ranging from functional program-
ming languages like Haskell or OCaml, to more mainstream object-oriented languages like e.g. Java). It allows
the programmer to define code that can be re-used in a very elegant way in infinitely many different context,
by suitably re-arranging the types.

However, just like studying the proof theory second-order logic is in general very difficult (due to the
failure of several structural properties, as well as to incompleteness), studying polymorphic programs and their
equivalence conditions may also be difficult.

Proof- and Program-Equivalence in System F As in NJ, also for System F we can define reductions
and expansions, which are very simple:

Π
A

@I
@p.A

@E
ArB{ps

ù
ΠrB{ps

ArB{ps
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i

@p.A ù

i

@p.A
@E

A
@I

@p.A

Moreover, we have a normalization result analogous to NJ:

Theorem 2. For any derivation Π of System F, there exists a unique normal derivation nfpΠq such that
Π ù˚ Π1.

Theorem 2 has the same statement as the corresponding theorem of NJ. Yet, it is much more difficult to
prove, due to the absence of the sub-formula property. At the same time, thanks to Theorem 2, normalization-
equivalence in System F is well-defined and decidable (even if not checkable in polynomial time: the complexity
of computing a normal form in System F goes much beyond all primitive recursive functions!).

However, normalization-equivalence is surprisingly weak, and indeed rather unsatisfying in practice. Notably,
in the practice of polymorphic programming people very often introduce stronger notions of equivalence for
polymorphic programs. In particular, there is no analogous result to the type Böhm theorem for System F, since
contextual equivalence, the maximum non-trivial notion of equivalence, is strictly stronger than normalization-
equivalence. In particular, contextual equivalence, unlike normalization-equivalence, is even undecidable.

Here we enter a rather intricate and technical domain, but the look for stronger notions of equivalence can,
at least to some extent, be explained and justified from the logical perspective of proof equivalence.

New Rule Permutations from Parametricity What is a proof of a universally quantified formula like
@p.pÑ p, where p ranges over the domain of all propositions? The formula says that for any possible choice of
a proposition A, it is true that A implies A. A natural answer would thus seem to be that a proof of @p.pÑ p
should be some method producing, for each choice of a proposition A, a proof of A Ñ A. Under the Curry-
Howard view, this intuitively means a method producing, for each proposition (or type) A, a function from A
to A itself.

Certainly any given proposition comes with its own ways of proving A Ñ A (or its own class of functions
from A to A). Yet, as is clear by inspecting the rules for quantifiers, proving @p.p Ñ p does not amount at
listing different proofs of A Ñ A, for any possible A; instead, it amounts at proving that p Ñ p holds where p
is a variable standing for any possible proposition; in this way, for any instantiation of p as A, we can obtain
a proof of AÑ A in a uniform way. In more operational terms, this means having what is called a parametric
function from a variable type p to itself: any instantiation of p with a type A yields a function from A to A,
but all such functions will behave “in the same way” [10, 1, 2].

It has been argued that the interpretation of second-order proofs as parametric functions provides a possible
way-out from traditional philosophical arguments agains the so-called “impredicativity” of second order logic,
see [4, 6]. This is an interesting debate, but we will not enter it today.

Under the parametric view, there seems to be not many ways of constructing a proof of p Ñ p: such a
proof must produce a function from p to p, where p indicates a proposition or type we know nothing about.
The only actual choice is provided by the identity function, corresponding to the natural deduction seen above.
Indeed, a purely semantic reasoning based on the idea of parametricity leads to conclude that the derivation
above provides the unique way of proving @p.pÑ p.

We will now see how this line of reasoning can be used to conclude that different derivations must denote
the same proof, that is, to justify the appeal to rule permutations of a somewhat new kind.

For instance, consider the two derivations below:

0

B Ñ C

1

@p.pÑ p
@E

B Ñ B
2

B
ÑE

B
ÑE

C

0

@p.pÑ p
@E

C Ñ C

1

B Ñ C
2

B
ÑE

C
ÑE

C

(1)

Both derivations are constructed out of one occurrence of (@E) and two occurrences of (ÑE); however, these
rules not only occur in different order, but the two occurrences of (@E) employ distinct instantiations of the
variable p (as B on the left and as C on the right). So why should we regard these derivations as denoting the
same proof?

Suppose, as we did above, that a proof of @p.p Ñ p, since parametric, can only be one which corresponds,
functionally, to the identity function. Under this assumption, however we replace the undischarged assumption
with label n in any of the derivations in (1), this will produce (after a few normalization steps) the same proof.
This fact is best appreciated when the derivations are decorated with proof terms (see also [12], pp. 16-17):
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h : B Ñ C

f : @p.pÑ p
@E

fB : B Ñ B b : B
ÑE

fBb : B
ÑE

hpfBbq : C

f : @p.pÑ p
@E

fC : C Ñ C
h : B Ñ C b : B

ÑE
hb : C

ÑE
fCphbq : C

(2)

Parametricity warrants that fB and fC must be the identity functions 1B : B Ñ B and 1C : C Ñ C, and thus
the two derivations encode (for any f, h, b, B and C) the same proof of C:

hpfBbq “ hp1Bbq “ hb “ 1Cphbq “ fCphbq (3)

Parametricity can also be used to justify permutations of rules involving the existential quantifier. For
example, how many proofs do there exist of the proposition Dp.p? Intuitively, there are infinitely many, since
for any proof Π of some proposition A, we can obtain a different derivation as below.

Π
A

DI
Dp.p

(4)

Nevertheless, we will now argue, by reasoning in a somehow extensional way, that two derivations as below
should denote the same proof:

AÑ B
Π
A
ÑE

B
DI

Dp.p

”

Π
A

DI
Dp.p

(5)

The extensional assumption we make is the following: if two proofs Π,Σ of some formula A are not the same,
then there must be some way of separating them; more formally, there must be a (quantifier-free) formula C
with two distinct proofs Θ1,Θ2, and a derivation Θ of C with assumption A such that Θ composed with Π
normalizes to Θ1, while Θ composed with Σ normalizes to Θ2:

Π
A
Θ
C

 
Θ1

C
ı

Θ2

C
 

Σ
A
Θ
C

(6)

Under this assumption, the argument goes like this: suppose there exists a proof Σ : pDp.pq $ C (notice that p
cannot occur in C) separating the two derivations in (5) in the sense just explained.

Σ can easily be converted into a proof of @p.p Ñ C (basic logic exercise), hence into a parametric proof Σ1

of p $ C, i.e. a parametric function from the “unknown” type p to a “known” type C, where the latter in no
way depends on p. One can then be convinced that this function can in no way use its input of type p, that is
Σ1 cannot use the assumption p (and thus Σ cannot use the assumption Dp.p). We deduce then that composing
Σ with some derivation Λ of Dp.p has the effect of deleting Λ, and thus Σ cannot be separating:

AÑ B
Π
A
ÑE

B
DI

Dp.p

Σ
C

”
Σ
C

”

Π
A

DI
Dp.p

Σ
C

(7)

Put in simple words, the two derivations in (5) must denote the same proof since any way of possibly distin-
guishing them should arise from some parametric function, but no parametric function can do the job.

Using the permutation above, it is not difficult to show that any two derivations of Dp.p denote the same
proof: given two derivations as below

Π1

A
DI

Dp.p

Π2

B
DI

Dp.p

(8)

we can reason as illustrated below:

Π2

B
DI

Dp.p

(reduction)
”

Π2

B
ÑI

AÑ B

Π1

A
ÑE

B
DI

Dp.p

(5)
”

Π1

A
DI

Dp.p

(9)
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Remark 1. The permutations arising from parametricity can be related to the permutations for _E in proposi-
tional NJ. Recall that disjunction A_B can be defined in System F by the formula @p.pAÑ pq Ñ pB Ñ pq Ñ p.
This gives rise to a translation of second-order intuitionistic logic with disjunction into its disjunction-free frag-
ment [9] which not only preserves provability but also translates reductions steps into reduction steps. However,
the picture changes when permutative conversions are added as reduction steps: as discussed at length in [13, 8],
these conversions do not translate into reductions in second-order logic, but into a sequence of reductions, expan-
sions as well as conversions similar to (2), where the latter must be justified using some form of parametricity.
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