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Classical Logic
Formulas

A,B==alalAAB|AVB
Sequent Calculus LK

rAB
ax ——

rA B,A r rAA
\ A W —— C -
a,a NAvB MAAB A A
Theorem

rA

LK is a sound and complete proof system for classical logic.
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Classical Logic

Formulas
A,B==alalAAB|AVB
Sequent Calculus LK

rAB A B,A r rnAA A AA
ax —— Vv A W—r C—— ———— Ccut
a,a [LAvB T,AAB,A T,A rA rA
Theorem
LK is a sound and complete proof system for classical logic. J
Theorem
Cut elimination holds in LK. J
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Denotational Semantics for
Classical Logic



{-%: {Proofs} — {Denotations }
D - (o}

such that:

AtrC;

@ if D proves A + B and D’ proves B + C, then it is defined D = D’ proving

@ if © ~» D’ (via cut-elimination/normalization/. . .), then {D}} = {D’}
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Lafont’s pair

o o
A A
w
+A,B FB,A
cut
FAA

C

FA
Joyal’'s argoment: any denotational semantics for LK is trivial

(any cartesian closed category with an initial object 0 such that 0% ~Aisa poset)
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We cannot have a denotational semantics for LK

D¢
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We cannot have a denotational semantics for LK

Or can we? .
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A possible solution: reduce the proof space
Polarized formulas

AB=alalAAN B|AV B|AATB|AVTB
Focused sequent calculus LKF:

Asynchronous rules

FATTO® B, IO FAB.,T 1O
_ v
T AsrBr1e FAV B0
Synchronous rules
FAl©® +BJ©O . AT | ©
A ———— vt e—-ro—
FAATB|O FA VT AT ©
Initial, store, release, and decide rules
FINQ,0 N O P P,O
init —————— store ————— release ————— decide —— @ —
+ralao FELQN O FN|© F-TP,©

where N is a negative formula, P is positive,
Q is a positive formula or a negative atom
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Theorem

LetT be a sequent, © a set of formulas, A a formula. Then
@ + I 11 © is provable in LKF iff+ I, © is provable in LK
@ + A | © is provable in LKF iff - A, Ois provable in LK

Theorem (Cut-elimination)
The following cut-rules are eliminable in LKF:

FATTO® FAT (O FALO® FATNO

cuty cuty
LN O, FI' 10,0
FINO,P FP IO Ble,p Pre
deuty deuty
FOLI NS, © FB1©,©

Il In LKF we cannot have the Lafont’s pair !!!
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Combinatorial Proofs

(back to generality!)



Combinatorial Proofs

Definition

A combinatorial proof of a formula F is an axiom-preserving skew fibration
f: G — [FI

from a RB-cograph G to the cograph of F.

.\._. * .\o—c :
((avb)Aé)vz aké 2

Idea:
@ cograph = graph enconding a formula
@ RB-cograph = MLL proof nets
@ skew fibration = {W!, C!}-derivations (ALL proof nets)
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Cographs'

1Duffin 1965

Q>
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1Duffin 1965
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Cographs
Definition
*o—©O
A cograph is a graph containing no four vertices such that /
*o—0
Theorem

A graph is a cograph iff constructed from single-vertices graphs using the graph
operations

GBH |
G H

12/52



From formula to cographs

((anb)vec)a(dve)
V/A\V
VAN
/N,

o

OO0 O T TUTD» ®» Y ®
® OO0 oo

u]
o)
I
"
it
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From formula to cographs

((anb)vec)a(dve)
\//A\\/
VAN
/N,

~

Q0O O CTCUT®» oY Q®
O O QDO O DT

u]
o)
I
"
it
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From formula to cographs

((anb)vec)a(dve)
N
VANVAN
/N

7L\

OO0 O TCTCT»" o ®
O DO QO DdQOO oo T

u]
o)
I
"
it
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From formula to cographs

((anb)vec)a(dve)
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From formula to cographs

((anb)vec)a(dve)
\//A\\/
VAN
/N,
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From formula to cographs

((anb)vec)a(dve)
N
VANVAN
/N

O 0O O T OTCUT " oo
O DO QO DdOoO ®OooOT
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From formula to cographs

((anb)vec)a(dve)
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From formula to cographs
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From formula to cographs
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From formula to cographs

((anb)vec)a(dve)
\//A\\/
VAN
/N,

Q0O O CTCUT®» oY Q®
O O QDO O DT
[\

Q

u]
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I
"
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From formula to cographs

((anb)vec)a(dve)
N
VANVAN
/N

O OO0 TCCTCUT®»M o W®
O ®O QO Dd® QOO OdaOoT

u]
o)
I
"
it
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From formula to cographs

((anb)vec)a(dve)
N
VAN
/N,

QO OO0 T TCUT "o o Qo
® O QO d® QOO ®Q O T

DD EDEDED D NP o N
o—Q0
X%“

Q.




From cographs to formulas
Lemma

If G is a cograph, then either G or G is disconnected.

Formula =7

D¢
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From cographs to formulas
Lemma

If G is a cograph, then either G or G is disconnected.

2

Formula=7?Vv f
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From cographs to formulas
Lemma

If G is a cograph, then either G or G is disconnected.

J
;

7N
=

Formula=7?Vv f
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From cographs to formulas
Lemma

If G is a cograph, then either G or G is disconnected.

AN
>c ,,,,,, f ? / l\?

Formula=(? AcA?) V|
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From cographs to formulas
Lemma

If G is a cograph, then either G or G is disconnected.

/<V\f
e | of |
a/ \b / \e

Formula=((avb)AcA(dve))Vf

o F
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Cograph and Formula Isomophism

Definition

AAB=BAA

The formula isomorphism = is the equivalence relation generated by:
(AAB)AC=AA(BAC)

AvB=BVA

(AvB)vC=Av (BvC)
Theorem

F~F < [FI1=I[F1
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RB'COgraph82

2Retoré 1993
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2Retoré 1993
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MLL Proof nets

The sequent calculus for LK
rAB rnA B,A rAA
ax —— \/\/ —— ()

-
aa T.AvB 'T.AABA T.A rA

Definition
A proof structure is a graph constructed using the following links

/@\ A B A B
"

A%B ARB

A proof net is a proof structure encoding a derivation in MLL
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MLL Proof nets

The sequent calculus for MLL

rl /\7 E; r; /\ E;, Z}
ax —— \ A
a,a rAvB IAAB,A

Definition
A proof structure is a graph constructed using the following links

/@\ A B A B
"

A%B ARB

A proof net is a proof structure encoding a derivation in MLL
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MLL Proof nets

The sequent calculus for MLL

L TAB LA B.A
a3 ASB TA®B.A

ax

Definition
A proof structure is a graph constructed using the following links

/@\ A B A B
" “}v;’ “}v;’

A%B ARB

A proof net is a proof structure encoding a derivation in MLL
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MLL Proof nets

Definition

A proof structure is correct if “pruning” one input from each %-gate we obtain a
connected and acyclic graph.

a a b b c c

Definition

A proof net is correct iff it is connected and acyclic (for each switching).

u]

]
I
it
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MLL Proof nets

Definition

A proof structure is correct if “pruning” one input from each %-gate we obtain a
connected and acyclic graph.

a a b b c
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Definition

A proof net is correct iff it is connected and acyclic (for each switching).
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MLL Proof nets

Definition

A proof structure is correct if “pruning” one input from each %-gate we obtain a
connected and acyclic graph.

A proof net is correct iff it is connected and acyclic (for each switching).

Definition
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MLL Proof nets

Definition

A proof structure is correct if “pruning” one input from each %-gate we obtain a
connected and acyclic graph.

a a b b c c

Definition

A proof net is correct iff it is connected and acyclic (for each switching).

u]

]
I
it
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MnARB FA BA
ax 5 LA BA
> LAYE A®B,A
A B i =
a a v
AZ%B A®B
A B —
_ \./ \./
a—-a | |
A%B

A®B

D¢
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Handsome proof nets

|
Definition

A RB-proof net is correct iff it is se-connected and ae-acyclic.

D¢
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Handsome proof nets: unfolding

Unfolding = remove e-vertices from the graph

D¢
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Handsome proof nets: unfolding
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Handsome proof nets: unfolding

Unfolding = remove e-vertices from the graph

Note: by removing e-vertices we remove all non-axiom —-edges
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Handsome proof nets: unfolding

Unfolding = remove e-vertices from the graph

Note: by removing e-vertices we remove all non-axiom —-edges Note: by
removing —-edges we may introduce bow-ties (see above)
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Handsome proof nets: unfolding

T
N

Definition

A RB-cograph is correct iff it is ae-connected and ae-acyclic

D¢
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Handsome proof nets: unfolding

|
Definition

A RB-cograph is correct iff it is ae-connected and ge-acyclic .
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Handsome proof nets: unfolding
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Handsome proof nets: unfolding

a—a——b—b ¢

—C
N/
|

Definition

A RB-cograph is correct iff it is ae-connected and ge-acyclic .
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Handsome proof nets: unfolding

a—é@c—&

v/

Definition

A RB-cograph is correct iff it is ae-connected and ge-acyclic .

D¢
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Handsome proof nets: unfolding

a—a b=b>

a—>b
b ~c——C
S~

| <]
a—->b
Definition

A RB-cograph is correct iff it is ae-connected and ae-acyclic w.r.t. cordless paths.

J
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RB-cograph

a—-ab

a—&— b—b “c——3C | ><l
v =
a—->b

Definition
A RB-cograph is correct iff it is ae-connected and ae-acyclic w.r.t. cordless paths. )

Theorem

MLL

— F < exists a correct RB-cograph (V, —~, =) s.t. [F] =V, ~)

u]
o)
I
"
i
<
¢
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Skew Fibrations®

[ ] [ ]
\o—o
ﬁé a

3Hughes 2005; StraBburger RTA2007
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Skew Fibrations®

.\. . [ ]
3
bea 4

3Hughes 2005; StraBburger RTA2007
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Skew Fibration

G f(YV)QU/ f(w)

Definition
@ A graph homomorphism : H — G between two graphs is a map
f: Vo — Vg preserving —-edges;




Skew Fibration

G f(v) u  f(w)

Definition
@ A graph homomorphism : H — G between two graphs is a map
f: Vo — Vg preserving —-edges;




Skew Fibration

G f(YV)QU/ f(w)

Definition
@ A graph homomorphism : H — G between two graphs is a map
f: Vo — Vg preserving —-edges;
@ A fibration is an homomorphism 7: H — G such that

f(v)rg\f(w) =svEw

—
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Skew Fibration

G f(v) v f(w)
Definition
@ A graph homomorphism : H — G between two graphs is a map
f: Vo — Vg preserving —-edges;
@ A fibration is an homomorphism f: H — G such that

f(v)~f(w) = vEw
@ A skew fibration is an homomorphism f: H — G such that

f(v)ﬁu = vZw for a w such that f(w) ﬁu

—
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Skew Fibration

G f(v)—u  H(w)
Definition
@ A graph homomorphism : H — G between two graphs is a map
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Wc{BvA} ° c{A]
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skew
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Skew Fibrations (midterm exam)

.Qi::;\\\\\\.
: Y Y
\o °

DA
27/52



Skew Fibrations (midterm exam)

DA
27/52



Skew Fibrations (midterm exam)

DA
27/52



Skew Fibrations (midterm exam)
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Skew Fibrations (midterm exam)

\o .
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Skew Fibrations (midterm exam)
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Skew Fibrations (midterm exam)

[ ] °
\. \.
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Skew Fibrations (midterm exam)

v- .\o
Is a not skew fibration :
[ ] .L‘v
\. [ ] \:
[ ] [ ] [ ) [ ] [ ]
\. \. \. [ ] \. \O
Is a skew fibration
“ . s “
SN S NN



Skew Fibrations*

Theorem (Decomposition)
wicly
F' — F — there is a skew fibration f: [F'] — [F] J
[F1
F’ biective | | c{(ArC)v(BAD))
fmt [é']] c{(AvB)A(CvD))
F’ a@ c {a v a}
"{Wi,cl} _— ||acl —  surjective act
F G v ¢la)
f|w! [G1 c|s
F wh
injecive C{A \% B}
A\
[F1

4Hughes 2005 ; StraBburger RTA2007 s <5 -

it
V)
¢
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Reassembling the pieces
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Combinatorial Proofs
What we have:

@ RB-cograph: a graphical syntax for MLL proofs
What do we what:

@ Skew fibrations: graph homomorphisms representing {W-, C'}-derivations

M
|

@ Combine them to have a graphical syntax for LK = MLL U {W, C}
AB

w
TAA TABC .2
vV
A,BvC
"T.AAA(BVC)

A
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Combinatorial Proofs

What we have:

@ RB-cograph: a graphical syntax for MLL proofs

@ Skew fibrations: graph homomorphisms representing {W-, C'}-derivations
What do we what:

@ Combine them to have a graphical syntax for LK = MLL U {W, C}

I
M LAA
A,B v
I w LAVA A.B
LA LA AB.C - A
c v LA (AVA)AB
LA ABVC w
ClI',A,(AVA)/\(BVC)
rAAA(BVC)

"T.AAA(BVC)
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Combinatorial Proofs

Theorem (Decomposition)

LK MLL wicly
—F—=+—F +—

Theorem

Every LK derivation can be represented by a combinatorial proof
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Combinatorial Proofs

Theorem (Decomposition)

LK MLL wicly
—F—=+—F +—

F J
’D’HMLL
LK F
-
F:

|

et}
f:

—_—

Theorem

Every LK derivation can be represented by a combinatorial proof
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Combinatorial Proofs

Theorem (Decomposition)

LK MLL wicly
—F—=+—F +—

’D’HMLL (RB-cograph encoding D’J
HLK F o
i i skew fibration for ©
F 3‘ {wt.ct}
f:
Theorem

Y
cograph of F

Every LK derivation can be represented by a combinatorial proof
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Combinatorial Proofs
Theorem

Every combinatorial proof can be sequentialized into a derivation in LK U {cut} J

What is the problem with the converse?
Hughes’s example:

B a?v?aA dbvbﬂcfvd)vvci
a,c

Theorem

, whels)

— F < thereis a skew fibration f: [F'] — [F]
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Combinatorial Proofs form a Proof System
Fact (Cook-Reckhow)

Check whether a syntactic object represents a valid proof can be done by means
of a polynomial time algorithm.

@ Check if a graph is a cograph
@ Check if a RB-cograph is ae-connected and ze-acyclic

@ Checkifamap f: H — G between cograph is a skew fibration
@ Check if f is axiom-preserving

Theorem
Combinatorial Proofs form a proof system for classical logic. J
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Combinatorial Proofs
and
Proof Equivalence



Combinatorial Proofs and Proof equivalence

Claim J

Two proofs are the same iff they can be represented by the same CP

@ Combinatorial Proofs and sequent calculus
@ Combinatorial Proofs and deep inference
@ Combinatorial Proofs and Resolution and Analytic Tableaux
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Comparing Proofs from Different Proof Systems

t
FE,CAX FAX - ot
3 c,dW w +d.c.d w alze | aliavd
+(aAb),c,cd +(aab),dc.d s = =g
+(aAb),(cad),cd " 5((‘—:\“—:”:\/
('/\b)(cAd)cdvv = Cravare
((' _';)VV(E’:CAAB?VCCddV Mang |V ErDveve
v
F(@aab)v(ead)vevd (anb)v(cad)vevd
. M v v
(@Aab)v( c A d v ( d v c)
(avb)a(cvd)atad [(avb)/\(cvd)/\E/\a]A
avb.dEAd [avb][(cvd)/\é/\&]/\
| lavbllevdenad g4
o[ 43] S




Proof Equivalence in Sequent Calculus

Independent rule permutations
M2,00,A3 T3,A4 T, A Ti, A0 Ag
MA  Tals by Mileinbe | Mol
M1, M2, M3, %1, 22 ” M1,M2, 03,24, 2 e
I A A I A A I A Ap To,Ag M A, A
Frnh, =T 5, TileAns, P=Tinbe’' Tals
[EPEP ¥} [ [ER PP R o [ER PP R ) b2
Comonoid transformations
I AL Az Ay r,AmAz,AsC rAA rA W
F,A‘,AC ~ [,AA; A Wzl’,A,A NALA _ =TA
rA rA MAA rA
Permutations of structural rules with comma/v
A BAB 5 F,A,B,A,B2 c 2xW TFABAB
TAvBAvB- '2"TAB % rago V. LASA
C \% \% rAvB
rAvB NAvB rAvB
Exchising and Unfolding
| <[
<[
AWl A
A BA™w
NAABA
NAABA

B.B.A
c———
rA B,A

A
rA B.B,A
E
. LA 'TAABB.A
"TAABT.AAB.A
LAABA  ©
TLANB.A

=




Compositionality



How to represent cut

Combinatorial proofs allows to represent cut-free proofs
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How to represent cut

Combinatorial proofs allows to represent cut-free proofs
Fact

Proof of I with a cut on a formula A < Proof of [,A A A
tr,A A A

r.A ~
0 ® @ @
-~

@
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How to represent cut

Combinatorial proofs allows to represent cut-free proofs
Fact

rA AA AM
cut ~~ NAANA A ~
rA hideT
® ®
N N
®

Proof of I with a cut on a formula A < Proof of [,A A A

®
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How to represent cut

Fact

Combinatorial proofs allows to represent cut-free proofs

Proof of I with a cut on a formula A < Proof of [,A A A J
_ rA AA
rA AA A
cut ~y NAANA A
rA hide —————

rA AA
Ny

ARG ODAEAE 0AOO6
ORENG ® 066

39/52



Cut-elimination

Cut-elimination = elimination of contradictions

ax VS ax l'Lnn
eed i

)
r r B- B:
) O A A B

QR

40/52



Cut-elimination (a different approach)

A different approach:

—~
—
3
—
-
>
—
—
<
DEIPNE——
<
=
Il

((mwm)
// J/ J/ / i

(ava)~(avevh)vav(@ard -

D¢
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The (current) realm of
Combinatorial Proofs



CPs for Relevant and Affine Logics

@ Relevant Logic = LK without weakening

@ Affine Logic = LK without contraction

(Ti’;ghl)nj*mvmm,*(wl.(rlv:;;us:‘)skﬁb
_ 'Y
N s (wl&c"t) : S‘I;Fnh
j Fsﬁ;
G T o )
{owl,m} < fowdomscl} < {owd,m,cl}
{swl,scl} :Fib), {swl,cl}:WFib
Frop. 87) rop. 8.16)
. . e
{swi}:FIFib {sw),sacl} :FFib __{swl,acl}:FWFib
(Prop.88)  (Prop. 8.10) (Prop. 8.17)
‘ bkl i i
Ly ~
{scl}:SFib {cl}: SWFib
(Prop. 89) (Frop. 8.10)
. . ~
=}:lso {sacl}:FSFib __{acl}:FSur = FSWFib
(Prop. 6.6) (Prop. 8.11) (Prop. 7.4,8.15)
*figure from Ralph and StraBburger Tablueaux2019 paper
@ Entailment Logic (non associative connectives)

Qe
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Modal Logic S4

Modal Formulas

A,B==al|al|AAB|AVB|OA|CA
Sequent Calculus Rules

AT AT
LKU{ K ,
oA, ol

D , T C{A}
A, O
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Multiplicative Linear Logic with Exponentials

D¢
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First Order Classical Logic
Formulas

t:= C|f(t1,...,tn)

a= p(ty,....th) | p(tr,..., ta)

A,B= al|AAB|AVB]|VYxA|3dxA
I, A[x/t]

Rules LK U E|

A

v X not free in r
[LVx.A

[L3Ax.A

v

Axp(x)Vyp(y)
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Intuitionistic Logic
Formulas

A,B:=al|AAB|ADB
Sequent Calculus Rules

BrA B,C+rA 'A A+B A AB+C
—— ax oR AL AR ok
ara ' Bo>A IMBACHA NA+rAAB NALADBEC
rB,BrA r-A

—1 w

F1 BrA BrA

b-====5b az=———>a

b-===sp

Q@
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Proof Equivalence in LJ

Definition
The proof equivalence in

Natural Deduction = A-calculus = Winning Innocent Strategies
is given by

Rules permutations + Comonoid transformations + Unfolding + Excising

Definition
The proof equivalence in

Intuitionistic Combinatorial Proofs

is given by

Rules permutations + Comonoid transformations + Exchising
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F2, A0, Ay T3,A4 M, Ay Ty,02,A3
MLAr Tolabotz 2= TilorBs 1 Tol
P1 P2
Independent M,M2, M5, 24, 2 M, M3, %1, %2
rules
I A, A I A, Az I AL Ay T2, I A, Az
Trnbe ! =T AL T Tila by, P2=Tanbs! ol
Mrne? i, PAPSER Mlavns, '°
rAABBiC, rAABB:C , e o -
e D —_— — ~ 2x s
TABrC = T.ArBAABrC- " TABrC [
—— Al - Al IMAABFC
Resource FLAABFC FLAABFC TLAABFC
Management rAA+B rAvB
ALB _ = NAALB FAArB. = [ALB
FAALB TAB
A BB C TFA ABBrC |
- v .B,B+ B
Excising b ArC i rvA T.AASBBrC
and '-A B,A+C L =e ﬁw A ABrC L = mj"
H T o - A~ PRAW =] + — N =l =l +
Unfolding [‘,A,ADBr—CD MA>BFrC > =
NAADBEC
=cp = (EU=U =) Swis = (EU=U = U =)

u]
o)
I
"
i

Qe
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Proof Equivalence in LJ

— AX — AX
brb brb —AX ——AX — AX —— AX
R —— —— 5" —— AX ara ara ara ara
Fbob ara Fbob ara —— AX A — L
ot ot brb a,arana brb a,arana
(bob)oara (bob)oara — o — R
AR Fb>b arana rb>b araha
(bob)oa,(bob)darana L ot
(bob)oarana (bob)oarana
(bob)darana
b-—====b——a="—">a b=====| b\*na— =" "g
be==== bga—k"" a a= " ">a
((17‘ ) l;) ) éj > (; A a )

((Lal;)aajﬁ)(;/\;)
Both these proofs correspond to the same WIS
ao , apa , aab , apabb
6’

a , aa, arab, arabb

Are two proofs using different amounts of the same resources equal?
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Constructive Modal Logic
Modal Formulas

A,B=alAAB|ADB|OA|CA |1
Additional Sequent Calculus Rules

Nr-A B.,T+A B,T+A
Kg K
al + oA oB,al + CA

ol - A
b=—==sb
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M2, 82,03 T3.04 M. A1 T1,02. 44 rAL A, MLAL A, FAL A, To.A MLAL A,

Toloboly = Tilaiiby ! Tabe  TE8) =TAL”  Tilebil =T’ i
rules P P2 P2 P pr P2
[FNFAER RIS [FNFNER RIS IS LI ER [FN PRI [FN BRI
r,AABB+C rAABBHC re-c
2x At —— 2 xW r-c
r,A.BrC = TLAABAABFC rABrC = —
—— A — — A LAAB+C
Resource rLAABFC TLAABFC rLAABFrC
Management rAALB rLA+B
rA+B = TAAB NAAWB _ = lAB
rAAFB TArB
Arc ABBLC r-A ABBHC |
isi [ .B.BF s
Excising w Arc S22 rvA TAASBBrC
and kA BAFC | = WW rkA ABrC | = rif
i — JAASBE —_—
Unfolding FAASErC- FASBrC
A w reA rB,BrA rB.BrA
rBrA = OF+DA rBrA =o OFLOB.OBrDA °
or.oB+DA of,oB + DA or.oB+DA * or.oB + DA
Structural vs K
rerA rerA r,B,C.CrA rBCCrA
rB,CrA e =g al, 0B+ 0A M rB.CrA K =, 0Ol ¢B.0C.0Cor 0A .
ol,¢B,0C,+ oA ¢ ol,¢B,0C + 0A al,oB,0oC + 0A © ol,oB,aoC+ 0A
r-A r-A
J rBrA B rCrA
umes OroBroA ° ™ oroCroA °

=cp = (=

U=.U =)

=)= (Ecp UEU)

al,0B,0C+0A al,0B,0C+ 0A

=wis := (S1U=0c) Zow = (Swis U =cc)

CIRT= = «E» =
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