

Introduction to Proof Equivalence

Matteo Acclavio, Paolo Pistone

Class 3.5 (a.k.a. 6): Denotational Semantics and Game Semantics matteoacclavio.com/Course.html?course=2023-ESSLLI

Denotational Semantics

- if $\mathfrak D$ proves $A \vdash B$ and $\mathfrak D'$ proves $B \vdash C$, then it is defined $\mathfrak D * \mathfrak D'$ proving $A \vdash C$;
- if $\mathfrak{D} \leadsto \mathfrak{D}'$ (via cut-elimination/normalization/...), then $\{\!\{\mathfrak{D}\}\!\} = \{\!\{\mathfrak{D}'\}\!\}$

- if D proves A ⊢ B and D' proves B ⊢ C, then it is defined D * D' proving A ⊢ C;
- if $\mathfrak{D} \leadsto \mathfrak{D}'$ (via cut-elimination/normalization/...), then $\{\!\{\mathfrak{D}\}\!\} = \{\!\{\mathfrak{D}'\}\!\}$

 $\label{eq:lazy-solution: lazy-solution: lazy-solution} \text{Lazy solution: } \frac{\left\{ \text{derivations} \right\}}{\text{cut-elimination}}$

4□▶ 4億▶ 4億▶ 4億▶ 億 900

$$\begin{array}{cccc} \{\!\{-\}\!\}\colon & \{ \text{ Proofs } \} & \to & \{ \text{ Denotations } \} \\ & \mathfrak{D} & \to & \{\!\{\mathbb{D}\!\}\!\} \end{array}$$

- if D proves A ⊢ B and D' proves B ⊢ C, then it is defined D * D' proving A ⊢ C;
- if $\mathfrak{D} \leadsto \mathfrak{D}'$ (via cut-elimination/normalization/...), then $\{\!\{\mathfrak{D}'\}\!\}$

```
Lazy solution: \frac{\{\text{derivations}\}}{\text{cut-elimination}}
```

Categorical semantics: C with $O_C = \{Formulas\}$ and $O_C = \{Formulas\}$

- if D proves A ⊢ B and D' proves B ⊢ C, then it is defined D * D' proving A ⊢ C;
- if $\mathfrak{D} \leadsto \mathfrak{D}'$ (via cut-elimination/normalization/...), then $\{\!\{\mathfrak{D}\}\!\} = \{\!\{\mathfrak{D}'\}\!\}$

Lazy solution:
$$\frac{\{\text{derivations}\}}{\text{cut-elimination}}$$

Categorical semantics: C with $O_C = \{Formulas\}$ and $O_C = \{Formulas\}$

Let's try to have something more concrete!

Negative fragment of intuitionisitc logic

Formulas

$$A, B ::= 1 \mid a \mid A \supset B \mid A \wedge B$$

Sequent Calulus

$$\frac{1}{A + A} AX \frac{\Gamma, A + B}{\Gamma, A \supset B} \supset^{R} \frac{\Gamma + A - \Delta, B + C}{\Gamma, \Delta, A \supset B + C} \supset^{L} \frac{\Gamma + A - \Delta + B}{\Gamma, \Delta + A \land B} \wedge^{R} \frac{\Gamma, A, B + C}{\Gamma, A \land B + C} \wedge^{L}$$

$$\frac{1}{A + A} \frac{\Gamma, A, A + B}{\Gamma, A + B} C \frac{\Gamma + B}{\Gamma, A + B} W$$

$$\frac{\Gamma, A, A + B}{\Gamma, A + C} C \text{ cut}$$

Game Semantics for Intuitionistic Logic

Game Semantics name is ambiguous:

- Lorenzen and Lorenz, Felscher, Stubborn, Fermüller . . . : proof search as dialogue
- Blass, Conway, Abramsky, Hyland, Ong, . . . : denotational semantics for proofs

Arena of a formula

[1]	[a]	$\llbracket F_1 \wedge F_2 \rrbracket$	$\llbracket F_1 \supset F_2 rbracket$
0	а		
empty graph	single vertex with label a	the disjoint union of $[F_1]$ and $[F_2]$	the disjoint union of $\llbracket F_1 \rrbracket$ and $\llbracket F_2 \rrbracket$ plus \rightarrow -edges from any vertex in $\llbracket F_1 \rrbracket$ with no outgoing \rightarrow -edge to any vertex in $\llbracket F_2 \rrbracket$ with no outgoing \rightarrow -edge

Arena of a formula

[1]	[a]	$\llbracket F_1 \wedge F_2 \rrbracket$	$\llbracket F_1 \supset F_2 \rrbracket$
0	а	$\llbracket F_1 \rrbracket$	
		[F ₂]	[F ₂]
empty graph	single vertex with label a	the disjoint union of $[\![F_1]\!]$ and $[\![F_2]\!]$	the disjoint union of $\llbracket F_1 \rrbracket$ and $\llbracket F_2 \rrbracket$ plus \rightarrow -edges from any vertex in $\llbracket F_1 \rrbracket$ with no outgoing \rightarrow -edge to any vertex in $\llbracket F_2 \rrbracket$ with no outgoing \rightarrow -edge

Examples:

Rules of the game for a formula *F*:

- The "board" is the arena [F]
- Two-players game (∘ and •)
- The player ∘ starts on a root
- Each player (non-initial) move is justified by one previous opponent move¹
- The player must "reply" to the previous ○-move
- a player wins when the other is out of moves

Definition (WIS)

- Play: sequence of moves
- Winning strategy: set of plays considering every possible ∘-move
- Innocent: each ∘-move is justified by the previous •-move (∘ is shortsighted)

¹We ask that the node of this move points (\rightarrow) the node of a justifying move

Let's play on
$$[((a \land a) \supset b) \supset (a \supset b)]$$

$$a_{\overline{2}}$$
 $a_{\overline{0}}$ $b_{\overline{1}}$ b_{0}

Let's play on
$$[((a \land a) \supset b) \supset (a \supset b)]$$

$$a_{\overline{2}} \longrightarrow b_{\overline{1}} \longrightarrow b_{\overline{0}}$$

$$\mathcal{S} = \left\{egin{array}{c} \epsilon \ b_0^\circ \end{array}
ight.$$

Let's play on
$$[((a \land a) \supset b) \supset (a \supset b)]$$

$$a_{\overline{2}}$$
 $a_{\overline{0}} \rightarrow b_{\overline{1}}$ $a_{\overline{1}} \rightarrow b_{\overline{0}}$

$$\mathcal{S} = \left\{egin{array}{c} \epsilon \ b_0^\circ \ b_0^\bullet b_1^\bullet \end{array}
ight.$$

Let's play on
$$\llbracket ((a \land a) \supset b) \supset (a \supset b) \rrbracket$$

$$a_{\overline{2}}$$
 $a_{\overline{0}}$ $b_{\overline{1}}$ $a_{\overline{1}}$ $b_{\overline{0}}$

$$\mathcal{S} = \left\{egin{array}{c} \epsilon \ b_0^\circ \ b_0^\bullet b_1^\bullet \ b_0^\circ b_1^\bullet a_0^\circ \end{array}
ight.
ight.$$

Let's play on $\llbracket ((a \land a) \supset b) \supset (a \supset b) \rrbracket$

It is o's turn
PLAYER ● WINS!

$$\mathcal{S} = \left\{ egin{array}{l} \epsilon \ b_0^\circ \ b_0^\bullet b_1^\bullet a_0^\circ \ b_0^\bullet b_1^\bullet a_0^\circ a_1^\bullet \end{array}
ight.
ight.$$

Let's play on
$$\llbracket ((a \land a) \supset b) \supset (a \supset b) \rrbracket$$

$$a_{\overline{2}} \longrightarrow b_{\overline{1}} \longrightarrow b_{\overline{0}}$$

$$\mathcal{S} = \left\{ egin{array}{l} \epsilon \ b_0^\circ \ b_0^\bullet b_1^ullet \ b_0^\circ b_1^ullet a_0^\circ \ b_0^\circ b_1^ullet a_0^\circ a_1^ullet \ \end{array}
ight.$$

Let's play on
$$\llbracket ((a \land a) \supset b) \supset (a \supset b) \rrbracket$$

$$a_{\overline{2}}$$
 $a_{\overline{0}} \rightarrow b_{\overline{1}}$ $a_{\overline{1}} \rightarrow b_{\overline{0}}$

$$\mathcal{S} = \left\{ egin{array}{l} \epsilon \ b_0^\circ \ b_0^\bullet b_1^ullet \ b_0^\circ b_1^ullet a_0^\circ \ b_0^\circ b_1^ullet a_0^\circ a_1^ullet \ \end{array}
ight.$$

Let's play on $\llbracket ((a \land a) \supset b) \supset (a \supset b) \rrbracket$

It is ∘'s turn

$$a_{\overline{2}} \longrightarrow b_{\overline{1}} \longrightarrow b_{\overline{0}}$$

$$\mathcal{S} = \left\{ egin{array}{l} \epsilon \ b_0^\circ \ b_0^\bullet b_1^\bullet \ b_0^\circ b_1^\bullet a_0^\circ \ b_0^\circ b_1^\bullet a_0^\circ a_1^\bullet \ b_0^\circ b_1^\bullet a_2^\circ \ \end{array}
ight.$$

Let's play on $\llbracket ((a \land a) \supset b) \supset (a \supset b) \rrbracket$

It is •'s turn
PLAYER • WINS!

$$\mathcal{S} = \left\{egin{array}{c} \epsilon \ b_0^\circ \ b_0^\bullet b_1^\bullet \ b_0^\circ b_1^\bullet a_0^\circ \ b_0^\circ b_1^\bullet a_0^\circ a_1^\bullet \ b_0^\circ b_1^\bullet a_2^\circ \ b_0^\circ b_1^\bullet a_2^\circ a_1^\bullet \end{array}
ight\}$$

Let's play on
$$[((a \land a) \supset b) \supset (a \supset b)]$$

It is 's turn

We can write the set of maximal views in S as follows

$$\mathcal{M}ax(\mathcal{S}) = \left\{ \begin{array}{c} \mathbf{b}_0 \mathbf{b}_1 \mathbf{a}_0 \mathbf{a}_1 \\ \mathbf{b}_0 \mathbf{b}_1 \mathbf{a}_2 \mathbf{a}_1 \end{array} \right\}$$

where dotted lines identify the justifier of a move

Let's play on
$$[((a \supset a) \supset a) \supset a]$$

$$a_{3} \rightarrow a_{2} \rightarrow a_{1} \rightarrow a_{0}^{\circ}$$
 $\mathcal{M}ax(\mathcal{S}_{1}) = \left\{a_{0}\right\}$
 $\mathcal{M}ax(\mathcal{S}_{2}) = \left\{a_{1}\right\}$
 $\mathcal{M}ax(\mathcal{S}_{3}) = \left\{a_{1}\right\}$

Let's play on
$$[((a \supset a) \supset a) \supset a]$$

$$a_{3} \rightarrow a_{2} \rightarrow a_{1} \rightarrow a_{0}$$
 $\mathcal{M}ax(S_{1}) = \left\{a_{0}a_{1}\right\}$
 $\mathcal{M}ax(S_{2}) = \left\{a_{1}a_{2}a_{1}\right\}$
 $\mathcal{M}ax(S_{3}) = \left\{a_{2}a_{1}a_{1}\right\}$

Let's play on
$$[((a \supset a) \supset a) \supset a]$$

$$a_{3} \rightarrow a_{2} \xrightarrow{\bullet} a_{1} \rightarrow a_{0}$$
 $\mathcal{M}ax(S_{1}) = \left\{ a_{0} \xrightarrow{a_{1}} a_{2} \right\}$
 $\mathcal{M}ax(S_{2}) = \left\{ \begin{array}{c} \\ \end{array} \right\}$
 $\mathcal{M}ax(S_{3}) = \left\{ \begin{array}{c} \\ \end{array} \right\}$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{\overline{3}} \rightarrow a_{\overline{2}} \rightarrow a_{\overline{1}} \rightarrow a_{\overline{0}}$$

$$\mathcal{M}ax(\mathcal{S}_1) = \left\{ a_0 a_1 a_2 a_3 \right\}$$
 $\mathcal{M}ax(\mathcal{S}_2) = \left\{ \qquad \qquad \right\}$
 $\mathcal{M}ax(\mathcal{S}_3) = \left\{ \qquad \qquad \right\}$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{3} \rightarrow a_{2} \rightarrow a_{1} \rightarrow a_{0}^{\circ}$$
 $\mathcal{M}ax(S_{1}) = \left\{a_{0} a_{1} a_{2} a_{3}\right\}$
 $\mathcal{M}ax(S_{2}) = \left\{a_{0}\right\}$
 $\mathcal{M}ax(S_{3}) = \left\{a_{0}\right\}$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{3} \rightarrow a_{2} \rightarrow a_{1} \rightarrow a_{0}$$

$$\mathcal{M}ax(S_{1}) = \left\{ a_{0} a_{1} a_{2} a_{3} \right\}$$

$$\mathcal{M}ax(S_{2}) = \left\{ a_{0} a_{1} \right\}$$

$$\mathcal{M}ax(S_{3}) = \left\{ a_{0} a_{1} \right\}$$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{\overline{3}} \rightarrow a_{\overline{2}} \rightarrow a_{\overline{1}} \rightarrow a_{\overline{0}}$$
 $\mathcal{M}ax(S_1) = \left\{ a_0 a_1 a_2 a_3 \right\}$
 $\mathcal{M}ax(S_2) = \left\{ a_0 a_1 a_2 a_3 \right\}$
 $\mathcal{M}ax(S_3) = \left\{ a_0 a_1 a_2 a_3 \right\}$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{3} \rightarrow a_{2} \rightarrow a_{1} \rightarrow a_{0}$$

$$Max(S_{1}) = \left\{a_{0} a_{1} a_{2} a_{3}\right\}$$

$$Max(S_{2}) = \left\{a_{0} a_{1} a_{2} a_{1}\right\}$$

$$Max(S_{3}) = \left\{a_{0} a_{1} a_{2} a_{1}\right\}$$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{3} \rightarrow a_{2} \rightarrow a_{1} \rightarrow a_{0}$$

$$Max(S_{1}) = \left\{ a_{0} a_{1} a_{2} a_{3} \right\}$$

$$Max(S_{2}) = \left\{ a_{0} a_{1} a_{2} a_{1} a_{2} \right\}$$

$$Max(S_{3}) = \left\{ a_{0} a_{1} a_{2} a_{1} a_{2} \right\}$$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{\overline{3}} \rightarrow a_{\overline{2}} \rightarrow a_{\overline{1}} \rightarrow a_{\overline{0}}$$

$$\mathcal{M}ax(\mathcal{S}_1) = \left\{ \begin{matrix} \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3 \\ \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3 \end{matrix} \right\}$$

$$\mathcal{M}ax(\mathcal{S}_2) = \left\{ \begin{matrix} \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \\ \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3 \end{matrix} \right\}$$

$$\mathcal{M}ax(\mathcal{S}_3) = \left\{ \begin{matrix} \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \\ \mathbf{a}_0 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_1 \mathbf{a}_2 \mathbf{a}_3 \end{matrix} \right\}$$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{3} \rightarrow a_{2} \rightarrow a_{1} \rightarrow a_{0}^{\circ}$$

$$Max(S_{1}) = \left\{a_{0} a_{1} a_{2} a_{3}\right\}$$

$$Max(S_{2}) = \left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\}$$

$$Max(S_{3}) = \left\{a_{0} a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\}$$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{\overline{3}} \rightarrow a_{\overline{2}} \rightarrow a_{\overline{1}} \rightarrow a_{0}$$

$$Max(S_1) = \left\{ \stackrel{\checkmark}{a_0} \stackrel{\checkmark}{a_1} \stackrel{\checkmark}{a_2} \stackrel{\checkmark}{a_3} \right\}$$
 $Max(S_2) = \left\{ \stackrel{\checkmark}{a_0} \stackrel{\checkmark}{a_1} \stackrel{\checkmark}{a_2} \stackrel{\checkmark}{a_1} \stackrel{\checkmark}{a_2} \stackrel{\checkmark}{a_3} \right\}$
 $Max(S_3) = \left\{ \stackrel{\checkmark}{a_0} \stackrel{\checkmark}{a_1} \right\}$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

$$a_{3} \rightarrow a_{2} \rightarrow a_{1} \rightarrow a_{0}$$

$$Max(S_{1}) = \left\{a_{0} a_{1} a_{2} a_{3}\right\}$$

$$Max(S_{2}) = \left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\}$$

$$Max(S_{3}) = \left\{a_{0} a_{1} a_{2}\right\}$$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

It is •'s turn

$$a_{\overline{3}} \rightarrow a_{\overline{2}} \rightarrow a_{\overline{1}} \rightarrow a_{\overline{0}}$$

$$\begin{aligned} \mathcal{M}ax(S_1) &= \left\{ \overset{\checkmark}{a_0} \overset{\checkmark}{a_1} \overset{\checkmark}{a_2} \overset{\checkmark}{a_3} \right\} \\ \mathcal{M}ax(S_2) &= \left\{ \overset{\checkmark}{a_0} \overset{\checkmark}{a_1} \overset{\checkmark}{a_2} \overset{\checkmark}{a_3} \right\} \\ \mathcal{M}ax(S_3) &= \left\{ \overset{\checkmark}{a_0} \overset{\checkmark}{a_1} \overset{\checkmark}{a_2} \overset{\checkmark}{a_3} \right\} \end{aligned}$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

It is o's turn

 $a_{3} \rightarrow a_{2} \rightarrow a_{1} \rightarrow a_{0}$

$$Max(S_1) = \{a_0 a_1 a_2 a_3\}$$
 $Max(S_2) = \{a_0 a_1 a_2 a_1 a_2 a_3\}$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

 $\mathcal{M}ax(\mathcal{S}_3) = \left\{ a_0 a_1 a_2 a_1 a_2 \right\}$

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

It is •'s turn
PLAYER • WINS!

$$a_{\overline{3}} \rightarrow a_{\overline{2}} \rightarrow a_{\overline{1}} \rightarrow a_{\overline{0}}$$

$$\mathcal{M}ax(S_1) = \left\{ \begin{matrix} \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_3 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_0 & \mathbf{a}_1 & \mathbf{a}_1 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_1 \\$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

Let's play on
$$\llbracket ((a \supset a) \supset a) \supset a \rrbracket$$

It is o's turn

$$a_{\overline{3}} \rightarrow a_{\overline{2}} \rightarrow a_{\overline{1}} \rightarrow a_{\overline{0}}$$

$$\begin{aligned} \mathcal{M}ax(S_1) &= \left\{ \stackrel{\checkmark}{a_0} \stackrel{\checkmark}{a_1} \stackrel{\checkmark}{a_2} \stackrel{\checkmark}{a_3} \right\} \\ \mathcal{M}ax(S_2) &= \left\{ \stackrel{\checkmark}{a_0} \stackrel{\checkmark}{a_1} \stackrel{\checkmark}{a_2} \stackrel{\checkmark}{a_1} \stackrel{\checkmark}{a_2} \stackrel{\checkmark}{a_3} \right\} \\ \mathcal{M}ax(S_3) &= \left\{ \stackrel{\checkmark}{a_0} \stackrel{\checkmark}{a_1} \stackrel{\checkmark}{a_2} \stackrel{\checkmark}{a_1} \stackrel{\checkmark}{a_2} \stackrel{\checkmark}{a_3} \right\} \end{aligned}$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

Theorem (Full Completeness)

Every WIS on [F] is the image of a proof of F.

We can translate derivations into WISs:

$$\left\{ \left\{ \frac{\|\mathbb{D}_1}{a^\bullet \vdash a^\circ} \, \mathsf{AX} \right\} \right\} = \left\{ \epsilon, a^\circ, a^\circ a^\bullet \right\} \qquad \left\{ \left\{ \frac{\|\mathbb{D}_1}{\Gamma^\bullet \vdash B^\circ} \, \mathsf{W} \right\} \right\} = \left\{ \left\{ \frac{\|\mathbb{D}_1}{\Gamma^\bullet \vdash A^\circ \vdash B^\circ} \, \supset^\mathsf{R} \right\} \right\} = \left\{ \left\{ \frac{\|\mathbb{D}_1}{\Gamma^\bullet \land A^\bullet \vdash B^\circ} \, \supset^\mathsf{R} \right\} \right\} = \left\{ \left\{ \frac{\|\mathbb{D}_1}{\Gamma^\bullet \land A^\bullet \land C^\bullet \vdash B^\circ} \, \land^\mathsf{L} \right\} \right\} = \left\{ \mathbb{D}_1 \right\} \qquad \left\{$$

Theorem (Full Completeness)

Every WIS on [F] is the image of a proof of F.

Sequent	Shape of ${\cal S}$	Shape of $\mathfrak{D}_{\mathcal{S}}$
⊢1	$\mathcal{S} = \{\epsilon\}$	- 1
a ⊦ a	$\mathcal{S} = \{\epsilon, a, aa\}$	<u> </u>
$\Gamma, B \wedge C \vdash A$	any	$\frac{\Gamma, B, C \vdash A}{\Gamma, B \land C \vdash A} \land^{L}$
Γ ⊢ <i>B</i> ⊃ <i>A</i>	any	$\frac{\Gamma, B \vdash A}{\Gamma \vdash B \supset A} \supset^{R}$
$\Gamma \vdash A_1 \land A_2$ Γ contains no \land -formula	$\mathcal{S} = \mathcal{T} \cup \mathcal{R}$ $\mathcal{T} = \left\{ \tau \in \mathcal{S} \mid \tau \text{ contains no moves in } A_2 \right\}$ $\mathcal{R} = \left\{ \rho \in \mathcal{S} \mid \rho \text{ contains no moves in } A_1 \right\}$	$ \begin{array}{c cccc} & \Sigma_{T} \parallel & \Sigma_{R} \parallel \\ & \Gamma \vdash A_{1} & \Gamma \vdash A_{2} \\ \hline & \Gamma, \Gamma \vdash A_{1} \land A_{2} \\ \hline & \Gamma \vdash A_{1} \land A_{2} \end{array} $ C
$\Gamma, A \supset B\{c^{\bullet}\} \vdash c^{\circ}$ c atomic and $A \supset B\{c^{\bullet}\} \neq c^{\bullet}$ $B\{c^{\bullet}\}$ contains the atom c^{\bullet} Γ contains no \land -formulas	$\begin{split} & c^{\circ}c^{\bullet} \in \mathcal{S} \\ \mathcal{T} = \left\{ \tau \mid \text{there are } \sigma \text{ and } \tau' \text{ such that } \sigma\tau\tau' \in \operatorname{Split}_{\mathcal{S}}^{A} \right\} \\ & \mathcal{R} = \left\{ \rho \mid \text{there is no } \sigma \text{ such that } \rho\sigma \in \operatorname{Split}_{\mathcal{S}}^{A} \right\} \end{split}$	$\frac{\left\ \sum_{f}\right\ }{\frac{\Gamma+A}{\Gamma,A} \supset B(c^*), B(c^*) + c^{\circ}}{\frac{\Gamma,\Gamma,A \supset B(c^*), A \supset B(c^*) + c^{\circ}}{\Gamma,A \supset B(c^*) + c^{\circ}}} \supset^{L}$
Γ, <i>B</i> ⊦ <i>A</i>	${\cal S}$ contains no moves in ${\cal B}$	$\frac{\sum_{s} \ }{\frac{\Gamma \vdash A}{\Gamma, B \vdash A}} W$

Proof equivalence in LI

$$\mathfrak{D} = \frac{\frac{1}{b + b} \underset{\triangle}{\mathsf{ax}}}{\frac{\mathsf{ax}}{b + b}} \xrightarrow{\mathsf{ax}} \frac{\frac{\mathsf{ax}}{\mathsf{a} + a_0} \underset{\triangle}{\mathsf{ax}}}{\frac{\mathsf{ax}}{\mathsf{a} + a_0 \land a_2}} \underset{\triangle}{\mathsf{c}} \underset{\wedge}{\mathsf{c}} \underset{\wedge}{\mathsf{non-local}}}{\mathsf{non-local}} \qquad \qquad \underset{\mathsf{non-local}}{\widetilde{\mathsf{b} + b}} \xrightarrow{\mathsf{ax}} \frac{\mathsf{ax}}{\mathsf{a} + a_0} \xrightarrow{\mathsf{ax}} \frac{\mathsf{ax}}{\mathsf{ax}} \xrightarrow{\mathsf{ax}} \xrightarrow{\mathsf{ax}} \frac{\mathsf{ax}}{\mathsf{ax}} \xrightarrow{\mathsf{ax}} \xrightarrow{\mathsf{ax}} \frac{\mathsf{ax}}{\mathsf{ax}} \xrightarrow{\mathsf{ax}} \xrightarrow$$

and

$$\{\!\{\mathfrak{D}\}\!\} = \{\!\{\mathfrak{D}'\}\!\} = \left\{ \begin{array}{ll} a_0 \;,\; a_0 a \;,\; a_0 a b \;,\; a_0 a b b \\ \epsilon, \\ a_2 \;,\; a_2 a \;,\; a_2 a b \;,\; a_2 a b b \end{array} \right\}$$

which corresponds to the lambda term $\lambda f^{(b\supset b)\supset a}$. $(f(\lambda x^a.x), f(\lambda y^a.y))$

Independent rules
$$\begin{bmatrix} \Gamma_{1}, \Delta_{1} & \frac{\Gamma_{2}, \Delta_{2}, \Delta_{3}}{\Gamma_{2}, \Gamma_{3}, \Delta_{2}, \Sigma_{2}} \rho_{1} \\ \frac{\Gamma_{1}, \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Delta_{2}, \Sigma_{2}} \rho_{1} \end{bmatrix} = \frac{\Gamma_{1}, \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Delta_{2}} \frac{\rho_{1}}{\Gamma_{3}, \Delta_{4}} \rho_{2}$$

$$\begin{bmatrix} \Gamma_{1}, \Delta_{1} & \frac{\Gamma_{2}, \Delta_{3}}{\Gamma_{3}, \Delta_{2}, \Sigma_{2}} \rho_{1} \\ \frac{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Sigma_{1}, \Sigma_{2}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Sigma_{1}, \Sigma_{2}} \rho_{1} \end{bmatrix} = \frac{\Gamma_{1}, \Delta_{1}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \frac{\rho_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{2}$$

$$\begin{bmatrix} \Gamma_{1}, \Delta_{1}, \Delta_{2} & \Gamma_{2}, \Delta_{3} & \Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2} \\ \frac{\Gamma_{1}, \Gamma_{2}, \Delta_{1}, \Sigma_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{1} \end{bmatrix} = \frac{\Gamma_{1}, \Delta_{1}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{2}$$

$$\begin{bmatrix} \Gamma_{1}, \Delta_{1}, \Delta_{2} & \Gamma_{2}, \Delta_{3} & \rho_{2} & \Gamma_{1}, \Delta_{2} \rho_{1} \\ \frac{\Gamma_{1}, \Gamma_{2}, \Delta_{1}, \Sigma_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{1} \end{bmatrix} = \frac{\Gamma_{1}, \Delta_{1}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{2}$$

$$\begin{bmatrix} \Gamma_{1}, \Delta_{1}, \Delta_{2} & \Gamma_{2}, \Delta_{3} & \rho_{2} \\ \frac{\Gamma_{1}, \Delta_{1}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{1} \end{bmatrix} = \frac{\Gamma_{1}, \Delta_{1}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{2}$$

$$\begin{bmatrix} \Gamma_{1}, \Delta_{1}, \Delta_{2} & \Gamma_{1}, \Delta_{2}, \Delta_{3} & \Gamma_{1}, \Delta_{2}, \Delta_{3} \\ \frac{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{1} \end{bmatrix} = \frac{\Gamma_{1}, \Delta_{1}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{2}$$

$$\begin{bmatrix} \Gamma_{1}, \Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{1}, \Delta_{2} & \Gamma_{1}, \Delta_{2}, \Delta_{3}, \Delta_{3}, \Delta_{2}, \Delta_{2}, \Delta_{3}, \Delta_{3}, \Delta_{3}, \Delta_{2}, \Delta_{2}, \Delta_{3}, \Delta$$

$$\equiv_{\mathsf{WIS}} := (\equiv \cup \equiv_{\mathsf{c}} \cup \equiv_{\mathsf{e}} \cup \equiv_{\mathsf{u}})$$

The permutation $\equiv_{\mathbf{u}}$ is said non-local

What about cut?

Composition = Interaction + Hide

$$\frac{\Gamma \vdash \frac{B}{B} \quad \Delta, \frac{B}{B} \vdash C}{\Gamma, \Delta \vdash C} \text{ cut }$$

$$\Rightarrow \frac{\Gamma \vdash B \quad \Delta, B \vdash C}{\Gamma, \Delta, B \supset B \vdash C} \supset^{L} \frac{\Gamma, \Delta, B \supset B \vdash C}{\Gamma, \Delta \vdash C} \text{ hide}$$

Composition = Interaction + Hide

$$\frac{\Gamma \vdash B \quad \Delta, B \vdash C}{\Gamma, \Delta \vdash C} \text{ cut} \qquad \Longrightarrow \frac{\frac{\|\mathfrak{D}_{1}}{\Gamma \vdash B \quad \Delta, B \vdash C}}{\frac{\Gamma, \Delta, B \supset B \vdash C}{\Gamma, \Delta \vdash C}} \supset^{L} \frac{\mathbb{D}_{1}}{\Gamma, \Delta \vdash C} \text{ hide}$$

$$\|\mathfrak{D}_{1}\| \qquad \qquad \|\mathfrak{D}_{2}\| \qquad \qquad \|\mathfrak{D}_{1}\| *_{B} \|\mathfrak{D}_{2}\|$$
for * for for for
$$\mathbb{B}^{\bullet} \qquad \mathbb{B}^{\bullet} \qquad \mathbb{C}^{\bullet} \longrightarrow \mathbb{C}^{\circ}$$

Composition = Interaction + Hide

$$\frac{\Gamma \vdash B \quad \Delta, B \vdash C}{\Gamma, \Delta \vdash C} \text{ cut} \qquad \Longrightarrow \frac{\frac{\|\mathfrak{D}_{1}}{\Gamma \vdash B \quad \Delta, B \vdash C}}{\frac{\Gamma, \Delta, B \supset B \vdash C}{\Gamma, \Delta \vdash C}} \supset^{L} \frac{\mathbb{D}_{1}}{\Gamma, \Delta \vdash C} \text{ hide}$$

$$\|\mathfrak{D}_{1}\| \qquad \|\mathfrak{D}_{2}\| \qquad \qquad \|\mathfrak{D}_{1}\| *_{B} \|\mathfrak{D}_{2}\|$$
for * for for for
$$\mathbb{B}^{\bullet} \qquad \mathbb{B}^{\bullet} \qquad \mathbb{C}^{\circ}$$

Literature approach

Approach we use here

Let τ a view over $A \vdash B_1$ and ρ a view over $B_2 \vdash C$.

The *interaction* of τ ad ρ over B is the sequence of moves $\sigma = \tau \stackrel{B}{\bullet} \rho$ starting with $\sigma_0 = \rho_0$ defined as:

$$\sigma_{i+1} = \begin{cases} \tau_{k+1} & \text{where } \sigma_i = \tau_k \text{ is a move in } A \text{ or a } \circ \text{-move in } B_1 \\ \rho_{k+1} & \text{where } \sigma_i = \rho_k \text{ is a move in } C \text{ or a } \circ \text{-move in } B_2 \\ b^\perp & \text{where } \sigma_i = b \text{ is a } \bullet \text{-move in } B_1 \text{ and } b^\perp \text{ occurs in } \rho \\ b^\perp & \text{where } \sigma_i = b \text{ is a } \bullet \text{-move in } B_2 \text{ and } b^\perp \text{ occurs in } \tau \\ \text{not defined} & \text{otherwise} \end{cases}$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \mid$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \quad \llbracket [d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket$$

$$au = bbaacc$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \; \middle| \; \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$$

$$\tau \stackrel{B}{\bullet} \rho_1 = b$$

$$[((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b]$$

$$au = bbaacc$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \; \middle| \; \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$$

$$\tau \stackrel{B}{\bullet} \rho_1 = bb$$

$$[((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b]$$

$$au = bbaacc$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \; \middle| \; \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$$

$$\tau \stackrel{B}{\bullet} \rho_1 = bbb$$

$$c \longrightarrow a \longrightarrow b$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket$$

$$au = bbaacc$$

$$c \rightarrow a \qquad b$$
 $e \rightarrow e \rightarrow a$
 $\rho_1 = bbaaee$

$$[((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b]$$

 $\tau = bbaacc$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \qquad \llbracket (d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$$

$$\tau \stackrel{B}{\bullet} \rho_1 = bbbba$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket$$

$$au = bbaacc$$

$$c \rightarrow a \qquad b$$
 $e \rightarrow e \rightarrow a$
 $\rho_1 = bbaaee$

$$c \rightarrow a \rightarrow b \qquad c \rightarrow a \qquad c \rightarrow a \qquad b \qquad c \rightarrow a \qquad c \rightarrow a \qquad b \qquad c \rightarrow a \qquad c \rightarrow$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket$$

$$au = bbaacc$$

$$c \rightarrow a \qquad b$$
 $e \rightarrow e \rightarrow a$
 $\rho_1 = bbaaee$

$$\tau \stackrel{B}{\bullet} \rho_1 = bbbbaaa$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \; \middle| \; \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$$

$$au = bbaacc$$

$$c \rightarrow a \qquad b$$
 $e \rightarrow e \rightarrow a \qquad b$
 $\rho_1 = bbaaee$

$$\tau \stackrel{B}{\bullet} \rho_1 = bbbbaaaa$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket$$

$$au = bbaacc$$

$$c \rightarrow a \qquad b$$
 $e \rightarrow e \rightarrow a$
 $\rho_1 = bbaaee$

$$\tau \stackrel{B}{\bullet} \rho_1 = bbbbaaaae$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket$$

$$au = bbaacc$$

$$c \rightarrow a \qquad b$$
 $e \rightarrow e \rightarrow a$
 $\rho_1 = bbaaee$

$$\tau \stackrel{B}{\bullet} \rho_1 = bbbbaaaaee$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \supset (c \supset a) \supset b \rrbracket \parallel u \supset (c \supset a) \supset b \rrbracket \parallel u \supset (c \supset a) \supset b \rrbracket \parallel u \supset (c \supset a) \supset b \rrbracket \sqcup [c \supset a) \supset b \rrbracket \sqcup [c \supset a] \supset [c \supset a]$$

 $\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \; \middle| \; \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$

$$au=$$
 bbaacc

$$\tau \stackrel{B}{\bullet} \rho_2 = b$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \ || \ \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$$

au= bbaacc

$$\tau \stackrel{\mathcal{B}}{\bullet} \rho_2 = bb$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \parallel$$

 $\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \; \middle| \; \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$

$$\tau \stackrel{B}{\bullet} \rho_2 = bbb$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \parallel \llbracket d \rfloor$$

 $\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \; \middle| \; \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$

$$\tau \stackrel{B}{\bullet} \rho_2 = bbbb$$

$$\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \parallel$$

 $\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \; \middle| \; \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$

$$\tau \stackrel{B}{\bullet} \rho_2 = bbbba$$

$$[((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b]$$

 $\llbracket ((c \supset a) \supset b) \vdash d \supset (c \supset a) \supset b \rrbracket \; \middle| \; \llbracket d \supset (c \supset a) \supset b, d \vdash ((e \supset e) \supset a) \supset b \rrbracket$

$$\tau \stackrel{B}{\bullet} \rho_2 = bbbbaa$$

Hide

$$\tau \stackrel{\mathcal{B}}{\bullet} \rho_1 = bbbbaaaaee$$

Justifiers are defined as in τ and in ρ . If a move is justied by an hidden move, than follow the justification arrow (dotted lines) until reach an unhidden move

Hide

Justifiers are defined as in τ and in ρ . If a move is justied by an hidden move, than follow the justification arrow (dotted lines) until reach an unhidden move

Theorem (Compositionality)

The composition of two WISs is a WIS.

Theorem

There is a one-to-one correspondence between the following sets:

- the set of WISs over [F]
- the set of normal derivations of F in Natural deduction
- the set of $\eta\beta$ -normal (simply typed) λ -terms (with pairs) of type F
- the set of (cut-free) derivations of F in LI modulo ≡_{WIS}
- the set of morphisms of a (small) Cartesian Closed Category