Introduction to Proof Equivalence

Matteo Acclavio, Paolo Pistone

Class 3.5 (a.k.a. 6): Denotational Semantics and Game Semantics matteoacclavio.com/Course.html?course=2023-ESSLLI

Denotational Semantics

$$
\left\{\begin{array}{ccc}
\{-\|:\{\text { Proofs }\} & \rightarrow & \text { Denotations }\} \\
\mathfrak{D} & \rightarrow & \{\mathfrak{D}\}
\end{array}\right.
$$

such that:

- if \mathfrak{D} proves $A \vdash B$ and \mathfrak{D}^{\prime} proves $B \vdash C$, then it is defined $\mathfrak{D} * \mathfrak{D}^{\prime}$ proving $A+C$;
- if $\mathfrak{D} \leadsto \mathfrak{D}^{\prime}\left(\right.$ via cut-elimination/normalization/...), then $\{\mathfrak{D}\}=\left\{\left\{\mathfrak{D}^{\prime}\right\}\right.$

$$
\left\{\begin{array}{ccc}
\{-\|:\{\text { Proofs }\} & \rightarrow & \text { Denotations }\} \\
\mathfrak{D} & \rightarrow & \{\mathfrak{D}\}
\end{array}\right.
$$

such that:

- if \mathfrak{D} proves $A \vdash B$ and \mathfrak{D}^{\prime} proves $B \vdash C$, then it is defined $\mathfrak{D} * \mathfrak{D}^{\prime}$ proving $A+C$;
- if $\mathfrak{D} \leadsto \mathfrak{D}^{\prime}\left(\right.$ via cut-elimination/normalization/...), then $\{\mathfrak{D}\}=\left\{\left\{\mathfrak{D}^{\prime}\right\}\right.$

Lazy solution: $\frac{\{\text { derivations }\}}{\text { cut-elimination }}$

$$
\begin{array}{cccc}
\{-\|:\{\text { Proofs }\} & \rightarrow & \text { Denotations }\} \\
\mathfrak{D} & \rightarrow & \{\mathfrak{D}\}
\end{array}
$$

such that:

- if \mathfrak{D} proves $A \vdash B$ and \mathfrak{D}^{\prime} proves $B \vdash C$, then it is defined $\mathfrak{D} * \mathfrak{D}^{\prime}$ proving $A+C$;
- if $\mathfrak{D} \leadsto \mathfrak{D}^{\prime}\left(\right.$ via cut-elimination/normalization/...), then $\{\mathfrak{D}\}=\left\{\left\{\mathfrak{D}^{\prime}\right\}\right.$

Lazy solution: $\frac{\{\text { derivations }\}}{\text { cut-elimination }}$
Categorical semantics: C with $O_{C}=\{$ Formulas $\}$ and $O_{C}=\{$ Proofs of $A \vdash B\}$

$$
\begin{array}{cccc}
\{-\|:\{\text { Proofs }\} & \rightarrow & \text { Denotations }\} \\
\mathfrak{D} & \rightarrow & \{\mathfrak{D}\}
\end{array}
$$

such that:

- if \mathfrak{D} proves $A \vdash B$ and \mathfrak{D}^{\prime} proves $B \vdash C$, then it is defined $\mathfrak{D} * \mathfrak{D}^{\prime}$ proving $A+C$;
- if $\mathfrak{D} \leadsto \mathfrak{D}^{\prime}\left(\right.$ via cut-elimination/normalization/...), then $\{\mathfrak{D}\}=\left\{\left\{\mathfrak{D}^{\prime}\right\}\right.$

Lazy solution: $\frac{\{\text { derivations }\}}{\text { cut-elimination }}$
Categorical semantics: C with $O_{C}=\{$ Formulas $\}$ and $O_{C}=\{$ Proofs of $A \vdash B\}$

Let's try to have something more concrete!

Negative fragment of intuitionisitc logic

Formulas

$A, B::=1|a| A \supset B \mid A \wedge B$

Sequent Calulus

$$
\begin{aligned}
& \frac{}{a \vdash a} A X \frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset^{R} \frac{\Gamma \vdash A \Delta, B \vdash C}{\Gamma, \Delta, A \supset B \vdash C} \supset^{L} \frac{\Gamma \vdash A \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge^{R} \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} \wedge^{\mathrm{L}} \\
& \frac{\Gamma \vdash 1}{} 1 \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} C \quad \frac{\Gamma \vdash B}{\Gamma, A \vdash B} \mathrm{~W}
\end{aligned}
$$

Game Semantics for Intuitionistic Logic

Game Semantics name is ambiguous:

- Lorenzen and Lorenz, Felscher, Stubborn, Fermüller : proof search as dialogue
- Blass, Conway, Abramsky, Hyland, Ong, denotational semantics for proofs

Arena of a formula

【1】	【a】	$\llbracket F_{1} \wedge F_{2} \rrbracket$	$\llbracket F_{1} \supset F_{2} \rrbracket$
Ø ${ }_{\text {empty graph }}$	a single vertex with label a	the disjoint union of $\llbracket F_{1} \rrbracket$ and $\llbracket F_{2} \rrbracket$	the disjoint union of $\llbracket F_{1} \rrbracket$ and $\llbracket F_{2} \rrbracket$ plus \rightarrow－edges from any vertex in $\llbracket F_{1} \rrbracket$ with no outgoing \rightarrow－edge to any vertex in $\llbracket F_{2} \rrbracket$ with no outgoing \rightarrow－edge

Arena of a formula

【1】	【a】	$\llbracket F_{1} \wedge F_{2} \rrbracket$	$\llbracket F_{1} \supset F_{2} \rrbracket$
Ø ${ }_{\text {empty graph }}$	a single vertex with label a	the disjoint union of $\llbracket F_{1} \rrbracket$ and $\llbracket F_{2} \rrbracket$	the disjoint union of $\llbracket F_{1} \rrbracket$ and $\llbracket F_{2} \rrbracket$ plus \rightarrow－edges from any vertex in $\llbracket F_{1} \rrbracket$ with no outgoing \rightarrow－edge to any vertex in $\llbracket F_{2} \rrbracket$ with no outgoing \rightarrow－edge

Examples：

$$
\begin{gathered}
\llbracket\left(\left(a_{3} \supset a_{2}\right) \supset a_{1}\right) \supset a_{0} \rrbracket=a_{3} a_{2} a_{1} a_{0} \\
\llbracket\left(\left(b_{1} \supset b_{0}\right) \supset a_{1}\right) \supset\left(a_{2} \wedge a_{0}\right) \rrbracket=b_{1} b_{0} a_{\longrightarrow} a_{2} a_{0} \\
\llbracket\left(\left(a_{2} \wedge a_{0}\right) \supset b_{1}\right) \supset\left(a_{1} \supset b_{0}\right) \rrbracket=a_{0} a_{2} b_{\wedge} a_{\square}^{\longrightarrow} b_{0}
\end{gathered}
$$

Rules of the game for a formula F :

- The "board" is the arena $\llbracket F \rrbracket$
- Two-players game (o and •)
- The player o starts on a root
- Each player (non-initial) move is justified by one previous opponent move ${ }^{1}$
- The player • must "reply" to the previous o-move
- a player wins when the other is out of moves

Definition (WIS)

- Play: sequence of moves
- Winning strategy: set of plays considering every possible o-move
- Innocent: each o-move is justified by the previous •-move (० is shortsighted)

[^0]Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$
It is o's turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$
It is •'s turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
\\
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$
It is o's turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} \\
\\
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$
It is •'s turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is o's turn
 PLAYER • WINS!

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\circ}
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$
It is o's turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\circ}
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$
It is •'s turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\circ}
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$
It is o's turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{2}^{\circ}
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is -'s turn
 PLAYER • WINS!

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{2}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{2}^{\circ} a_{1}^{\circ}
\end{array}\right\}
$$

$$
\text { Let's play on } \llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket
$$

It is 's turn

We can write the set of maximal views in \mathcal{S} as follows

$$
\operatorname{Max}(\mathcal{S})=\left\{\begin{array}{c:c}
b_{0} & b_{1} \\
a_{0} & a_{1} \\
b_{0} b_{1} a_{1} & a_{2} a_{1}
\end{array}\right\}
$$

where dotted lines identify the justifier of a move

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn

$$
a_{3} \longrightarrow a_{2} \longrightarrow a_{1} a_{0}{ }^{\circ}
$$

$$
\begin{array}{ll}
\operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} \quad\right\} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\{ & \} \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\{ & \}
\end{array}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is \bullet 's turn

$$
\left.\begin{array}{l}
a_{3} a_{2} \rightarrow a_{1} \bullet a_{0} \\
\operatorname{Max}\left(\mathcal{S}_{1}\right)= \begin{cases}a_{0} a_{1} & \}\end{cases} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\{ \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\{
\end{array}\right\},
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn

$$
\left.\begin{array}{l}
a_{3} \rightarrow a_{2}^{\bullet} a_{1} a_{0} \\
\operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{{\underset{a}{0}}_{a_{1} a_{1} a_{2}}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\{ \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\{
\end{array}\right\}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

Let's play on $\llbracket((a \supset a) \supset a) \supset a \rrbracket$

It is o's turn
 PLAYER • WINS!

$$
a_{3}^{\bullet} \longrightarrow a_{2} a_{1} a_{0}
$$

$$
\begin{array}{ll}
\operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\{ & \} \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\{ & \}
\end{array}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn

$$
\left.\begin{array}{c}
a_{3} a_{2} a_{1} a_{0}{ }^{\circ} \\
\operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0},\right. \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\{
\end{array}\right\}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is \bullet 's turn

$$
a_{3} \longrightarrow a_{2} a_{1} \bullet a_{0}
$$

$$
\left.\begin{array}{l}
\operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1}\right.
\end{array}\right\},
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn

$$
a_{3} \longrightarrow a_{2}{ }^{\bullet} \rightarrow a_{1} \longrightarrow a_{0}
$$

$$
\left.\begin{array}{l}
\operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1} a_{2}\right. \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\{
\end{array}\right\}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is \bullet 's turn

$$
a_{3} \longrightarrow a_{2} a_{1} \longrightarrow a_{0}
$$

$$
\left.\begin{array}{l}
\operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1} a_{2} a_{1}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\{
\end{array}\right\}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn

$$
a_{3} \longrightarrow a_{2} a_{1} \longrightarrow a_{0}
$$

$$
\begin{aligned}
& \operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1} a_{2} a_{1} a_{2}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{3}\right)=\{
\end{aligned}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is \bullet 's turn
 PLAYER • WINS!

$$
a_{3} a_{2} a_{1} a_{0}
$$

$$
\begin{aligned}
& \operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{3}\right)=\{
\end{aligned}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn

$$
a_{3} \longrightarrow a_{2} a_{1} a_{0}{ }^{\circ}
$$

$$
\begin{aligned}
& \operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{3}\right)=\left\{a_{0}\right\}
\end{aligned}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is \bullet 's turn

$$
a_{3} \longrightarrow a_{2} a_{1} \bullet a_{0}
$$

$$
\left.\begin{array}{l}
\operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\left\{a_{0} a_{1}\right.
\end{array}\right\},
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn

$$
a_{3} \longrightarrow a_{2} a_{1} \longrightarrow a_{0}
$$

$$
\begin{aligned}
& \operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{3}\right)=\left\{a_{0} a_{1} a_{2}\right\}
\end{aligned}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is \bullet 's turn

$$
a_{3} \longrightarrow a_{2} a_{1} \longrightarrow a_{0}
$$

$$
\begin{aligned}
& \operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{\begin{array}{l}
\left.a_{0} a_{1} a_{2} a_{3}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{\begin{array}{l}
a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}
\end{array}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\left\{\begin{array}{l}
a_{0} a_{1} a_{2} a_{1}
\end{array}\right\}
\end{array} .\left\{\begin{array}{ll}
\end{array}\right\}\right.
\end{aligned}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn

$$
a_{3} \longrightarrow a_{2} a_{1} \longrightarrow a_{0}
$$

$$
\begin{aligned}
& \operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{\begin{array}{l}
\operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{2} a_{3}\right\} \\
\operatorname{Max}\left(\mathcal{S}_{3}\right)=\left\{a_{2} a_{1} a_{2} a_{3}\right\} \\
\left.a_{0} a_{1} a_{2} a_{1} a_{2}\right\}
\end{array}\right\}
\end{aligned}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn
 PLAYER • WINS!

$$
a_{3} a_{2} a_{1} a_{0}
$$

$$
\begin{aligned}
& \operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{3}\right)=\left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\}
\end{aligned}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

$$
\text { Let's play on } \llbracket((a \supset a) \supset a) \supset a \rrbracket
$$

It is o's turn

$$
a_{3} \longrightarrow a_{2} \longrightarrow a_{1} \longrightarrow a_{0}
$$

$$
\begin{aligned}
& \operatorname{Max}\left(\mathcal{S}_{1}\right)=\left\{a_{0} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{2}\right)=\left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\} \\
& \operatorname{Max}\left(\mathcal{S}_{3}\right)=\left\{a_{0} a_{1} a_{2} a_{1} a_{2} a_{3}\right\}
\end{aligned}
$$

!We here writing the maximal views of three distinct WISs! (dotted lines identify the justifier of a move)

Theorem (Full Completeness)

Every WIS on $\llbracket F \|$ is the image of a proof of F.

We can translate derivations into WISs:

Theorem (Full Completeness)

Every WIS on $\llbracket F \rrbracket$ is the image of a proof of F.

Sequent	Shape of \mathcal{S}	Shape of \mathfrak{D}_{S}	
$\vdash 1$	$\mathcal{S}=\{\epsilon\}$	$\left\ulcorner_{\vdash 1}{ }^{1}\right.$	
$a \vdash a$	$\mathcal{S}=\{\epsilon, a, a a\}$	$\overline{a+a} A X$	
$\Gamma, B \wedge C \vdash A$	any	$\frac{\stackrel{\mathfrak{D}_{\mathcal{S}} \\|}{\Gamma, B, C+A}}{\Gamma, B \wedge C+A} \wedge^{\mathrm{L}}$	
$\Gamma \vdash B \supset A$	any	$\frac{\Gamma, B+A}{\Gamma+B \supset A} \supset^{\mathrm{D} s \\|}$	
$\Gamma \vdash A_{1} \wedge A_{2}$ Γ contains no \wedge-formula	$\begin{gathered} \mathcal{S}=\mathcal{T} \cup \mathcal{R} \\ \mathcal{T}=\left\{\tau \in \mathcal{S} \mid \tau \text { contains no moves in } A_{2}\right\} \\ \mathcal{R}=\left\{\rho \in \mathcal{S} \mid \rho \text { contains no moves in } A_{1}\right\} \end{gathered}$	$\begin{aligned} & \begin{array}{l} \mathfrak{D}_{\mathcal{V}} \\| \\ \Gamma \vdash A_{1} \Gamma \\ \Gamma \vdash A_{2} \\ \Gamma, \Gamma \vdash A_{1} \wedge A_{2} \\ \Gamma \vdash A_{1} \wedge A_{2} \end{array} \wedge^{R} \end{aligned}$	
$\Gamma, A \supset B\left\{c^{\bullet}\right\} \vdash c^{\circ}$ c atomic and $A \supset B\left\{c^{\bullet}\right\} \neq c^{\bullet}$ $B\left\{c^{\bullet}\right\}$ contains the atom c^{\bullet} Γ contains no \wedge-formulas	$\begin{gathered} c^{\circ} c^{\bullet} \in \mathcal{S} \\ \mathcal{T}=\left\{\tau \mid \text { there are } \sigma \text { and } \tau^{\prime} \text { such that } \sigma \tau \tau^{\prime} \in \operatorname{Split}_{\mathcal{A}}{ }^{A}\right\} \\ \mathcal{R}=\left\{\rho \mid \text { there is no } \sigma \text { such that } \rho \sigma \in \operatorname{Split}_{\mathcal{S}}^{A}\right\} \end{gathered}$	$\frac{\left.\begin{array}{c} \mathbb{D}_{\tau} \\| \\ \Gamma \vdash A \quad \Gamma, A \supset B\left\{c^{\bullet}\right\}, B\left\{c^{\bullet}\right\}+c^{\circ} \\ \Gamma, \Gamma, A \supset B\left\{c^{\bullet}\right\}, A \supset B\left\{c^{\bullet}\right\}+c^{\circ} \\ \Gamma, A \supset B\left\{c^{\bullet}\right\}+c^{\circ} \\ \\ C \end{array}\right)}{}$	
$\Gamma, B \vdash A$	\mathcal{S} contains no moves in B	$\frac{\begin{array}{c} \mathfrak{D}_{S} \\| \\ \Gamma+A \end{array}}{\Gamma, B+A} \mathrm{~W}$	

Proof equivalence in LI

and

$$
\{\mathfrak{D}\}=\left\{\left\{D^{\prime}\right\}\right\}=\left\{\begin{array}{cc}
& a_{0}, a_{0} a, a_{0} a b, a_{0} a b b \\
\epsilon, & a_{2}, a_{2} a, a_{2} a b, a_{2} a b b
\end{array}\right\}
$$

which corresponds to the lambda term $\lambda f^{(b \supset b) \supset a} .\left(f\left(\lambda x^{a} \cdot x\right), f\left(\lambda y^{a} \cdot y\right)\right)$

$$
\begin{aligned}
& \text { Independent } \quad \frac{\Gamma_{1}, \Delta_{1} \frac{\Gamma_{2}, \Delta_{2}, \Delta_{3} \Gamma_{3}, \Delta_{4}}{\Gamma_{2}, \Gamma_{3}, \Delta_{2}, \Sigma_{2}} \Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Sigma_{1}, \Sigma_{2}}{} \rho_{1} \quad \equiv \frac{\Gamma_{1}, \Delta_{1} \Gamma_{1}, \Delta_{2}, \Delta_{3}}{\frac{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Delta_{2},}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Sigma_{1}, \Sigma_{2}} \rho_{1}} \Gamma_{3}, \Delta_{4} \\
& \frac{\Gamma, \Delta_{1}, \Delta_{2}}{\frac{\Gamma, \Sigma_{1}, \Delta_{2}}{\Gamma, \Sigma_{1}, \Sigma_{2}} \rho_{1}} \equiv \frac{\Gamma, \Delta_{1}, \Delta_{2}}{\Gamma, \Delta_{1}, \Sigma_{2}} \rho_{2} \quad \frac{\Gamma, \Delta_{1}, \Delta_{2} \Gamma_{2}, \Delta_{3}}{\Gamma, \Sigma_{1}, \Sigma_{2}} \rho_{1} \quad \frac{\Gamma_{1}, \Gamma_{2}, \Delta_{1}, \Sigma_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{1} \quad \equiv \frac{\Gamma, \Delta_{1}, \Delta_{2}}{\frac{\Gamma, \Sigma_{1}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}} \rho_{1}} \rho_{2}
\end{aligned}
$$

The permutation \equiv_{u} is said non-local

What about cut?

Composition $=$ Interaction + Hide

Composition $=$ Interaction + Hide

$$
\frac{\left.\begin{array}{c}
\| \mathfrak{D}_{1} \\
\Gamma \vdash B \quad \Delta, B \vdash C
\end{array} \begin{array}{c}
\| \mathfrak{D}_{2} \\
\vdash, \Delta \vdash C
\end{array}\right)}{\Gamma, \Delta+C}
$$

$$
\leadsto \frac{\begin{array}{c}
\Pi_{\mathfrak{D}_{1}} \\
\begin{array}{l}
\mathbb{D}_{2} \\
\vdash B
\end{array}, B+C
\end{array}}{\frac{\Gamma, \Delta, B \supset B+C}{\Gamma, \Delta \vdash C}} \text { hide }
$$

Composition $=$ Interaction + Hide

Literature approach

Approach we use here

Interaction

Let τ a view over $A \vdash B_{1}$ and ρ a view over $B_{2} \vdash C$.
The interaction of $\tau \operatorname{ad} \rho$ over B is the sequence of moves $\sigma=\tau{ }_{0}^{B} \rho$ starting with $\sigma_{0}=\rho_{0}$ defined as:

$$
\sigma_{i+1}= \begin{cases}\tau_{k+1} & \text { where } \sigma_{i}=\tau_{k} \text { is a move in } A \text { or a o-move in } B_{1} \\ \rho_{k+1} & \text { where } \sigma_{i}=\rho_{k} \text { is a move in } C \text { or a o-move in } B_{2} \\ b^{\perp} & \text { where } \sigma_{i}=b \text { is a •-move in } B_{1} \text { and } b^{\perp} \text { occurs in } \rho \\ b^{\perp} & \text { where } \sigma_{i}=b \text { is a } \bullet \text {-move in } B_{2} \text { and } b^{\perp} \text { occurs in } \tau \\ \text { not defined } & \text { otherwise }\end{cases}
$$

Interaction

$\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$$
\tau \stackrel{B}{\boldsymbol{\circ}} \rho_{1}=b
$$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$$
\tau \stackrel{B}{\circ} \rho_{1}=b b
$$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$$
\tau=b b a a c c
$$

$\tau \stackrel{B}{\circ} \rho_{1}=b b b$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$\tau=b b a a c c$
$\tau \stackrel{B}{\mathrm{O}} \rho_{1}=\mathrm{bbbb}$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$$
\tau=b b a a c c
$$

$\tau \stackrel{B}{\bullet} \rho_{1}=\mathrm{bbbba}$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$\tau=b b a a c c$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$$
\tau=b b a a c c
$$

$\tau \stackrel{B}{\circ} \rho_{1}=$ bbbbaaa

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$$
\tau=b b a a c c
$$

$\tau \stackrel{B}{\circ} \rho_{1}=$ bbbbaaaa

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$$
\tau=b b a a c c
$$

$\tau \stackrel{B}{\circ} \rho_{1}=$ bbbbaaaae

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$$
\tau=b b a a c c
$$

$\tau \stackrel{B}{\mathbf{C}} \rho_{1}=$ bbbbaaaaee

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$\tau=\mathrm{bbaacc}$

$\tau \stackrel{B}{\boldsymbol{\circ}} \rho_{2}=b$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$\tau=b b a a c c$

$\tau \stackrel{B}{\bullet} \rho_{2}=b b$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$\tau=b b a a c c$

$\tau^{\boldsymbol{B}}{ }^{\mathrm{O}} \rho_{2}=\mathrm{bbb}$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$\tau=b b a a c c$

${ }^{\tau} \stackrel{B}{\bullet} \rho_{2}=b b b b$

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$\tau=$ bbaacc

$\underline{\tau} \stackrel{B}{\boldsymbol{@}} \rho_{2}=$ bbbba

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$\tau=$ bbaacc

$\tau^{\boldsymbol{B}} \rho_{2}=$ bbbbaa

Interaction

$$
\llbracket((c \supset a) \supset b) \vdash d \supset(c \supset a) \supset b \rrbracket \| \llbracket d \supset(c \supset a) \supset b, d \vdash((e \supset e) \supset a) \supset b \rrbracket
$$

$\rho_{1}=$ bbaaee

$\underline{\tau} \stackrel{B}{\mathbb{O}} \rho_{2}=$ bbbbaa is a prefix of $\tau^{B}{ }^{B} \rho_{1}=$ bbbbaaaaee

Hide

$\tau \stackrel{B}{\mathrm{~B}} \rho_{1}=$ bbbbaaaaee

Justifiers are defined as in τ and in ρ. If a move is justied by an hidden move, than follow the justification arrow (dotted lines) until reach an unhidden move

Hide

Justifiers are defined as in τ and in ρ. If a move is justied by an hidden move, than follow the justification arrow (dotted lines) until reach an unhidden move

Theorem (Compositionality)

The composition of two WISs is a WIS.

Theorem

There is a one-to-one correspondence between the following sets:

- the set of WISs over $\llbracket F \rrbracket$
- the set of normal derivations of F in Natural deduction
- the set of $\eta \beta$-normal (simply typed) λ-terms (with pairs) of type F
- the set of (cut-free) derivations of F in LI modulo \equiv wis
- the set of morphisms of a (small) Cartesian Closed Category

[^0]: ${ }^{1}$ We ask that the node of this move points (\rightarrow) the node of a justifying move

