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1 The Normalization Criterion in Natural Deduction

In the previous classes we introduced two criteria for proof equivalence, the normalization and permutation
criteria. Natural questions concerning them are:

1. Are the two criteria equivalent?

2. Is there a mathematical interpretation of proofs such that equivalent derivations have the same interpre-

tation?

3. Are these criteria decidable? In polynomial time?

Today we focus on the normalization criterion. As we said, this criterion is best suited for natural deduction,
and this in turn is best suited for intuitionistic, rather than classical, logic. So, today we focus on natural
deduction for intuitionistic logic, that is, on the proof system INJ presented on Monday.

1.1 The Paradise of the “Negative” Fragment

In this subsection we present natural deduction at its best. Yesterday, Matteo introduced you to the “paradise”
of multiplicative linear logic with the elegant approach based on proof nets. Yet, he also showed how easy it is
to fall from Heaven. Similarly, today we will see how the “paradise” of a certain fragment of NJ motivates the
approach on which the normalization criterion is based, but this approach falls short as soon as we look outside
of this fragment.

What I call the “negative” fragment of NJ is obtained by simply restricting the language to just two
connectives, namely A and —. The negative language L_, , is thus formed by the formulas belonging to the
following grammar:

Au=p|A—>A|ANA
Incidentally, this language is really the core of the Curry-Howard correspondence with A-calculus that Giulio
Guerrieri is discussing in his course. Just a matter of chance? Not really! Since this is actually the part of logic
for which natural deduction works decently well, as we will see.

The natural deduction proof system for £_, . is just the restriction of NJ containing only the intro- and
elim-rules for the connectives —, A, as well as the two associated reduction rules, that we recall below:
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Furthermore, one usually considers also further ezpansion rules, namely:
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Reductions and expansions can be seen as somehow dual operations. Usually, the reduction rules are explained
via the so-called inversion principle:

The consequences that one can draw from a logically complex propositions are included in the conditions
needed to conclude that such a proposition is true.

The expansion rules can then be explained via the dual stability principle:

The consequences that one can draw from a logically complex propositions include all the conditions needed
to conclude that such a proposition is true.

Together, these principles say that introduction and elimination rules, so to say, perfectly match each other.
Hence, NJ_, . includes four construction rules, plus two reduction and two expansion rules, that’s it.
We already mentioned the fundamental result of NJ, that we recall below:

Theorem 1. For any derivation I1, there exists a unique normal derivation nf(II) such that I v* nf (II).

There is a reason why normal derivations are very important in natural deduction. This is the fact that
these formulas satisfy the so-called sub-formula property:

Proposition 2. In a normal derivation II of NJ_, ., any formula occurring in Il is either a sub-formula of
one of the hypotheses or a sub-formula of the conclusion.

In other words, in a normal derivation we are only working with the “tools” that we were given, i.e. the
hypotheses and the conclusion to prove. Beware that this is not how people prove things, usually: think of
people in number theory, who, in order to prove facts about, say, prime numbers, rely on super-difficult results
from complex analysis! This is indeed the magic of normalization or cut-elimination theorems, indeed: showing
that arbitrary proofs, using concepts from many different areas, can, at least in principle, be transformed into
proofs only using the concepts involved in the statement that are actually proved.

Notice that in Proposition 2] T mentioned derivations in NJ_, . and not in full NJ. This was not for chance:
as we will see to have such a result for full NJ we will have to add new reductions. Indeed, if a normal derivation
does not satisfy the sub-formula, this means that it is not ¢ruly normal: it rather means that some reduction
rule is missing!

As far as we stick to NJ_, . we thus have unicity of normal forms, and these satisfy sub-formulas. At this
point, we might ask ourselves, how canonical is this apparently canonical system?

There are a few important results that suggest that NJ_, . is indeed close to the best that we can expect.
First, we have results from denotational semantics, something that Matteo will discuss later. But let’s anticipate
on this. There are two kinds of standard semantics for NJ:

Set-theoretic semantics : here each formula A is translated into a set [A], so that [A A B] = [A] x [B]
and [A — B] = [B] [Al. each proof II : Ay,...,A, — B is turned then into a set-theoretic function
[I] : [A1] x --- x [An] — [B]. Then we have the following nice result, due to Statman .

Theorem 3 (cf. [2, [§]). For any interpretation [—], for which propositional variables are interpreted as
infinite sets, for any two derivations ILII" of NJ_, ., [II] = [II'] iff nf(II) = nf(IT').

Category-theoretic semantics : this is just for those of you who know something about category theory.
Think of a category as an algebraic axiomatization of the notion of sets and functions. Now, a category
in which it makes sense to talk of the cartesian product of two objects, and of the function space between
two objects is called a cartesian closed category. In any such category C we can interpret each formula A
as an object [A]c in such a way that [A A B]¢ = [A]c x [B]¢ and [A — B]c =¢ ([A]c, [B]c); each proof
IT: Ay,..., A, - B yields then a morphism in this category [I]¢ : [Ai]lc x - -+ % [An]e — [Blc¢- Then
we have the following very strong result.

Theorem 4 (cf. [3]). For any two derivations ILII" of NJ_, .,
(For all cartesian closed category C, [I]¢ = [[H’]]c) iff  nf(Il) = nf(IT').

Beyond denotational methods, there is a way to establish the canonicity of NJ_, , which does not rely on
external interpretations, that is, purely syntactic. To do this, we first need to define a class of well-behaved
equivalences on derivations. These are the equivalences which are stable by substitution, as defined below:

ops T'=A . . . A . . .
Definition 1. Let £ = ( = )ra be a family of equivalence relations, where = is an equivalence over deriva-
tions of hypotheses T' and conclusion A. £ is called a stable equivalence if it satisfies the following conditions:
for all derivations ILII' : T+ A, formula B and propositional variable p,

I=A (T'+A)[B/p]

n = TIB/p] = " W[B/p] (*)
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The trivial equivalence is the one for which any two derivations with same hypotheses and conclusion are
related. This is obviously stable. More interestingly, the equivalences arising from either the normalization of
the permutation criterion are also stable.

An interesting question is whether there exists some intermediate stable equivalence in between normalization-
equivalence and the trivial equivalence. This would mean that we can consistently add new proof equivalences
to normalization-equivalence. The following result shows that this is indeed not possible.

Theorem 5 (Separation or Bshm’s theorem, cf. [7, [I]). Normalization equivalence is o maximum non-trivial
. o . . . TEA
stable equivalence on NJ_, .-derivations. More precisely, for any non-trivial stable equivalence € = ( L )rea

extending normalization-equivalence and any two derivations ILTI : T A,

I'A

II I’

= nf(Il) = nf (IT").

Proof sketch. The core of the proof is showing that if IT "EA T and nf(IT) # nf(IT'), then for any two other
derivations X3, ¥’ : A B, one can find a substitution § = [By/p1,. .., Bx/pr] and derivations O, : A  C;6 (for
any C; in I') and © : Af - B such that:
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[A6] B [A6] B
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This means that, if ever £ strictly extends normalization-equivalence, then we can identify, through £, any two
derivations, and thus £ is the trivial equivalence. Actually, to prove this result it is enough to take as 3, Y’ the
two derivations
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since, for any two other 3,3’ : A I B, one can construct a derivation ¥* : B — (B — B), A B such that
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Indeed, we can let
A
i by A
¥* = B — (B — B) B b
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1.2 Paradise Lost: Full Intuitionistic Logic

Yesterday we have seen that eating a small fruit can make you fall from Heaven...it is enough to add seemingly
harmless operations like the multiplicative units or the additive connectives to undermine the possibility of
having a canonical proof system. We are now going to see that something very similar happens when we extend
the negative fragment with other connectives.

Let us recall the rules for disjunction and the false:

A B
VI, : : %FE
Av B CC C B

Observe that additive conjunction and disjunction in linear logic are very close to conjunction and disjunction
in intuitionistic logic:
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where the &R-rule can be rewritten, dually, as a @L-rule:

IAFA T,B-A
TA®BF A

®E

From what we have seen yesterday, one may expect that by adding disjunction to NJ_, ., something may
go wrong.

Moreover, Matteo yesterday talked about multiplicative units, and he did not even dare to talk about additive
units T and 0, which are even worse to handle. Yet, the additive false 0 is very close to the intuitionistic false,
since it is regulated by the rule:

I'o- 0
which is essentially the same as the rule for F in LJ.
Let us recall reductions and expansions for disjunction:
i J
A4 B [Ad]
Ai vl o
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k N k L \/Il L \/12
Av B Av B Av B Av B VE(i, j)

Av B .

One can actually define a more general notion of expansion, which however is much more problematic and
we will not discuss it here.

Permutative Conversions But first, let us start from the good news. As said before, a normal derivation
should be one which does satisfy the sub-formula property. However, in presence of disjunction, one can
construct derivations without redundancies which do not satisfy this property:

1 2
A A
0 — —
C— A ' C B
A —

This derivation has hypotheses A v A and C, and conclusion A, and has no local peak. Yet, it contains the
formula C' — A which is not a subformula of either an hypothesis or the conclusion. This derivation is not
normal, some new reduction rule is missing. The standard solution is to add so-called permutative conversions,
i.e. new reductions of the form

J
A B
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IT; I, IT; I,
Av B C C o C C (
C vVE(,J) Av B ) }V{E(/, )
D D »J

where R indicates any possible elimination rule of the calculus of which C' occupies the position of major
premiss. We will see in a moment that this restriction is crucial.

With this new reduction, the example above now does contain a redundancy, formed by vE followed by
—E, and thus reduces to the derivation

0
Av A A A

which now contains two more redundancies, and finally reduces to

0 I 2
Av A A A




Permutative conversions can be defined also for the false, via

F
T I
D

Now, Prawitz proved that existence and unicity of normal forms extends to reductions enriched with per-
mutative conversions, and that normal forms do satisfy the sub-formula property.

Theorem 6 (cf. [B]). NJ, with permutative conversions, for any derivation 11 there exists a unique normal
derivation nf(I1), such that II vw* nf (I1). Moreover, nf(I1) enjoys the subformula property.

Beyond Permutative Conversions The restriction to permutations with elimination rules might seem ad-
hoc. Yet, it is enough to grant the subformula property. At the same time, it is unsatisfying both conceptually
and semantically:
e conceptually, it is not clear why a permutation of an elimination rule should not change the proof, while
a permutation of an introduction rule should, like e.g.

1 7 ( J

A B A B
11, 11, 11, I,
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Observe how this example dangerously looks like the problematic conversion in MALL seen yesterday, the
one responsible for an exponential size explosion:

FT,C A HI,C,B & FT,C, A D ® HT,C, B D ®
FT,C, A&B D ® ~ FI,C®D,A FT,C®D,B %
FT,C® D, A&B FT,C® D, A&B
Indeed, via de Morgan duality, one can transform the latter into:
A-T,C FI,C L A-T,C %D@ B-T,C FD@
AeBrT,c 9 _p 5 -~ AFT,C®D B-T.C®D

ADB-T,C®D AeB+T,C®D

which is really alike the generalized conversion in natural deduction.

e Semantically, one can see that the interpretation of NJ-derivations in the appropriate family of models
(called bicartesian closed categories and corresponding to cartesian closed categories having finite coprod-
ucts, i.e. disjunctions) does indeed validate all possible permutations with a vE.

One could thus try to bite the bullet, and consider stronger permutative rules, defined like , but with

R now indicating an arbitrary rule.
At first, this seems the right thing to do, because of the following result:

Theorem 7 (cf. [3]). Let =gr indicate the reflexive, transitive and symmetric closure of v~ with generalized
permutative rules. Then, for any two derivations II,II' of NJ,

(For all bicartesian closed category C, [II]¢ = [[H’]]c) iff II=gpcIl'.

In other words, generalized permutative conversions, together with usual reductions and expansions, precisely
capture the equivalence classes of derivations obtained from categorical semantics. However, it is not by chance
that we formulate the theorem above in terms of the equivalence =ggr rather than in terms of normal forms.
Indeed, such normal forms need not exist!

Proposition 8 (cf. [d]). In presence of generalized permutative rules, reduction is non-terminating.

Proof.
Av B C C
I = AvB C C VE

vE

reduces to

AvB _C C o _AvB C__C g
Av B C v C g v

which in turn reduces to




Observe that, since reduction is non-terminating, it is not a priori clear whether the equivalence =gpc is

even decidable! Indeed, this problem remained open for many years, and was solved in 2017:

Theorem 9 (cf. [6]). =¢pc is decidable and coincides with contextual equivalence (something we will discuss
on Friday).
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