
Course Notes

“An Introduction to Proof Equivalence”

Matteo Acclavio and Paolo Pistone

Week 2 - Day 2

1 From Paradise to Hell

1.1 The Paradise of MLL

We consider the set of MLL-fomulas generated from a set of atoms A using
the following syntax.

𝐴, 𝐵 B 𝑎 | 𝑎⊥ | 𝐴O 𝐵 | 𝐴 ⊗ 𝐵 | with 𝑎 ∈ A (1)

We consider formulas up to the following de Morgan laws:

(𝐴⊥)⊥ = 𝐴 (𝐴O 𝐵)⊥ = 𝐴⊥ ⊗ 𝐵⊥ (𝐴 ⊗ 𝐵)⊥ = 𝐴⊥ O 𝐵⊥

We define the linear implication 𝐴 ⊸ 𝐵 B 𝐴⊥ O 𝐵. A sequent is a set of
(distinct) occurrences of formulas.

Example 1. The barbara syllogism “if 𝐴 implies 𝐵 and 𝐵 implies 𝐶, then 𝐴

implies 𝐶” can be represented using the following MLL-fomula:

((𝐴 ⊸ 𝐵) ⊗(𝐵 ⊸ 𝐶)) ⊸ (𝐴 ⊸ 𝐶) = ((𝐴 ⊗ 𝐵⊥) O(𝐵 ⊗𝐶⊥)) O(𝐴⊥ O𝐶)

The multiplicative linear logic is defined by the proof system MLL =

{Ax,O, ⊗} defined by the rules in Figure 1 (the rule cut is admissible, therefore
we do not consider it our definition of MLL).

Example 2. Consider the sequent Γ B 𝐴 ⊗ 𝐵⊥, 𝐵 ⊗𝐶⊥, 𝐶 O 𝐴⊥. It admits only
the two two following derivations in MLL.

Ax
𝐴, 𝐴⊥

Ax
𝐵, 𝐵⊥ Ax

𝐶,𝐶⊥
⊗

𝐵⊥, 𝐵 ⊗𝐶⊥, 𝐶
⊗

𝐴 ⊗ 𝐵⊥, 𝐵 ⊗𝐶⊥, 𝐶, 𝐴⊥
O
𝐴 ⊗ 𝐵⊥, 𝐵 ⊗𝐶⊥, 𝐶 O 𝐴⊥

Ax
𝐴, 𝐴⊥ Ax

𝐵, 𝐵⊥
⊗

𝐴 ⊗ 𝐵⊥, 𝐵, 𝐴⊥ Ax
𝐶,𝐶⊥

⊗
𝐴 ⊗ 𝐵⊥, 𝐵 ⊗𝐶⊥, 𝐶, 𝐴⊥

O
𝐴 ⊗ 𝐵⊥, 𝐵 ⊗𝐶⊥, 𝐶 O 𝐴⊥

1

Ax
𝐴, 𝐴⊥

Γ, 𝐴, 𝐵
O
Γ, 𝐴O 𝐵

Γ, 𝐴 𝐵,Δ
⊗

Γ,Δ

Γ, 𝐴 𝐴⊥,Δ
cut

Γ,Δ

Figure 1: Sequent calculus rules for MLL and the rule cut.

Γ, 𝐴

Δ, 𝐵, 𝐶, 𝐷
O

Δ, 𝐵, 𝐶 O𝐷
⊗

Γ,Δ, 𝐴 ⊗ 𝐵,𝐶 O𝐷

=

Γ, 𝐴 Δ, 𝐵, 𝐶, 𝐷
⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶, 𝐷

⊗
Γ,Δ, 𝐴 ⊗ 𝐵,𝐶 O𝐷

Γ, 𝐴, 𝐵, 𝐶, 𝐷
O
Γ, 𝐴O 𝐵,𝐶, 𝐷

O
Γ, 𝐴O 𝐵,𝐶 O𝐷

=

Γ, 𝐴, 𝐵, 𝐶, 𝐷
O
Γ, 𝐴, 𝐵, 𝐶 O𝐷

O
Γ, 𝐴O 𝐵,𝐶 O𝐷

Γ, 𝐴

Δ, 𝐵, 𝐶 Σ, 𝐷
⊗

Δ, Σ, 𝐵, 𝐶 ⊗ 𝐷
⊗

Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶 ⊗ 𝐷

=

Γ, 𝐴 Δ, 𝐵, 𝐶
⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶 Σ, 𝐷

⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶 ⊗ 𝐷

Figure 2: Rule permutations in MLL.

Note that sequent calculus derivations do not keep track of the complete
order in which rules are applied: in the representation there is no record of
the order in which we applied rules in two distinct branches. However, the
formalism prevent us to similar irrelevant information about rules order as the
order in which the two ⊗-rules are applied in the example above.

We consider the rule permutations in Figure 2 defined whenever two rules
are applied to two distinct formulas of the sequent.

1.2 Getting rid of Bureaucracy

Definition 3. A MLL-proof structure is an hypergraph 𝑆 = ⟨𝑉, 𝐸⟩ whose ver-
tices in 𝑉 are labeled by MLL-fomulas (i.e., 𝑉 is a set of occurrence of MLL-
fomulas) and a whose (hyper)edges in 𝐸 are called gates and respect the fol-
lowing local conditions on the labeling of the vertices:

Gate name Ax-gate O-gate ⊗-gate cut-gate

Shape 𝐴 𝐴⊥
ax

𝐴 𝐵

O

𝐴O 𝐵

𝐴 𝐵

⊗

𝐴 ⊗ 𝐵

𝐴 𝐴⊥

cut

Inputs none 𝐴 and 𝐵 𝐴 and 𝐵 𝐴 and 𝐴⊥

Outputs 𝐴 and 𝐴⊥ 𝐴O 𝐵 𝐴 ⊗ 𝐵 none

(2)

A vertex of a MLL-proof structure which is not the input of any of its gate is
called an output or conclusion.

A MLL-proof net 𝑃 = [[D]]MLL (with conclusion Γ) is a MLL-proof structure
obtained from a derivation D (of a sequent Γ) in MLL using the translation
inductively defined in Figure 3

Example 4. The left-hand side derivation in Example 2 has associated the
following MLL-proof net.

2

[[
Ax

𝐴, 𝐴⊥

]]
MLL

= 𝐴 𝐴⊥
ax

D1

Γ, 𝐴

D2

𝐴⊥,Δ
cut

Γ,Δ

MLL

=
[[D1]]MLL [[D2]]MLL

Γ 𝐴 𝐴⊥ Δ

cut

D1

Γ, 𝐴, 𝐵
O
Γ, 𝐴O 𝐵

MLL

=

[[D1]]MLL

Γ

𝐴 𝐵

O

𝐴O 𝐵

D1

Γ, 𝐴

D2

𝐵,Δ
⊗

Γ, 𝐴 ⊗ 𝐵Δ

MLL

=

[[D1]]MLL [[D2]]MLL

Γ

𝐴 𝐵

⊗

𝐴 ⊗ 𝐵

Δ

Figure 3: Translating a derivation in MLL into a MLL-proof net.

𝐴 𝐵⊥ 𝐵 𝐶⊥ 𝐶 𝐴⊥

⊗ ⊗ O

𝐴 ⊗ 𝐵⊥ 𝐴 ⊗ 𝐵⊥ 𝐴O 𝐵⊥

ax ax

ax

Remark 5. Since both connectives O and ⊗ are binary, their gates have two
inputs and one output. However, their rules have one and two premises respec-
tively. As we will see later, this leads to a different behavior of these two type
of gates when checking if a MLL-proof structure is a MLL-proof net.

Clearly, not all MLL-proof structures are MLL-proof nets. By means of ex-

ample consider the MLL-proof structure
𝐴 𝐴⊥

⊗

𝐴 ⊗ 𝐴⊥

ax

.

It is possible to define a topological characterization of those MLL-proof
structures which are MLL-proof nets

Definition 6. Let 𝑆 be a MLL-proof structure. A switching for 𝑆 is a function
𝜎 selecting exactly one of the inputs of each O-gate. The test associated to a

3

switching 𝜎 is the (hyper)graph 𝜎(𝑆) defined by replacing each O-gate with an
edge connecting its output with the input selected by 𝜎.

The MLL-proof structure 𝑆 is correct if the (hyper)graph 𝜎(𝑆) is connected
and acyclic for any possible switching 𝜎.

Theorem 7. Let 𝑆 be a MLL-proof structure. Then 𝑆 is a MLL-proof net iff 𝑆

is correct.

Proof. If 𝑆 is a MLL-proof net, then there is a derivation D in MLL such that
𝑆 = [[D]]MLL. By the inductive definition of [[·]]MLL, it suffices to check that the
translation of each rule preserve correctness. In particular:

• Ax-rule is translated to a single Ax-gate, which is connected and acyclic;

• O-rule is translated into a O-gate connecting two outputs of a connected
and acyclic MLL-proof net 𝑃1. Therefore connectedness is preserved since
the inputs of the new gate were already connected in 𝑃1, and the output is
connected to one of the two input in any possible test. Moreover, acyclicity
is preserved since each possible switching never connect the two inputs of
a same O-gate;

• ⊗-rule is translated into a ⊗-gate connecting two outputs of two distinct
MLL-proof nets 𝑃1 and 𝑃2. The obtained MLL-proof structure is now
connected via the new ⊗-gate. Moreover, it is acyclic since the existence
of a cycle would imply the existence of two distinct paths connecting the
inputs of the new ⊗-gate. This is impossible since all tests of 𝑃1 and 𝑃2

contain no cycles.

To prove the converse, we define a derivation D in MLL from a correct
MLL-proof structure by induction on the number of gates of 𝑆 with conclusion
Γ.

• if 𝑆 contains exactly one gate, then it must be a Ax-gate and D is made
of a single Ax-rule;

• if 𝑆 contains more than one gate then we consider the gates at the bottom
of 𝑆. Then

– if any such a gate is a O-gate, then, by definition, the MLL-proof
structure 𝑆′ defined by removing such a O-gate from 𝑆 is still correct
and contains strictly less gates than 𝑆. Then D is a derivation ending
with a O-rule and whose premise is the conclusion of a derivation D′

defined inductively from 𝑆′;

– or none of the gates at the bottom of 𝑆 are O-gates. In this case, since
𝑆 has more than one gate, there must be some ⊗-gates at the bottom
of 𝑆. Moreover, the by removing any such a ⊗-gate we obtain two
disconnected MLL-proof structures 𝑆1 and 𝑆2 which are both correct.
Then D is a derivation ending with a ⊗-rule and whose premises
are the conclusion of some derivation D1 and D2 defined inductively
from 𝑆1 and 𝑆2 respectively. □

4

The interest in MLL-proof nets is that they are canonical with respect to the
rule permutations in Figure 2.

Proposition 8. Using the definition provided here, check if a MLL-proof net is
correct requires to check connectedness and acyclicity for 2𝑘 tests where 𝑘 is the
number of O-Gates.

However, more sophisticated correctness criterion allows us to check if a
MLL-proof net is correct in linear time with respect to the number of it gates [1].

Theorem 9. Let D and D′ be two derivations in MLL. Then it is possible
to transform D into D′ using the rule permutations in Figure 2 iff [[D]]MLL =

[[D′]]MLL.

Proof. It suffices to prove that whenever a rule in Figure 2 is applied to a
derivation in MLL, then the associated MLL-proof net does not change. For this
purpose, it suffices to see that the MLL-proof structures associated to both sides
of the equations defining the rule permutations are the same. The result follows
by compositionality of [[·]]MLL.

Γ, 𝐴

𝐵, 𝐶, 𝐷,Δ
O

𝐵,𝐶 O𝐷,Δ
⊗

Γ, 𝐴 ⊗ 𝐵,𝐶 ⊗ 𝐷,Δ

MLL

= Γ

𝐴 𝐵 𝐶 𝐷

⊗ O

𝐴 ⊗ 𝐵 𝐶 O𝐷

Δ =

Γ, 𝐴 𝐵, 𝐶, 𝐷,Δ
⊗
Γ, Σ, 𝐴 ⊗ 𝐵,𝐶, 𝐷,Δ

⊗
Γ, 𝐴 ⊗ 𝐵,𝐶 O𝐷,Δ

MLL

Γ, 𝐴, 𝐵, 𝐶, 𝐷

O
Γ, 𝐴O 𝐵,𝐶, 𝐷

O
Γ, 𝐴O 𝐵,𝐶 O𝐷

MLL

= Γ

𝐴 𝐵 𝐶 𝐷

O O

𝐴O 𝐵 𝐶 O𝐷

Δ =

Γ, 𝐴, 𝐵, 𝐶, 𝐷
O
Γ, 𝐴, 𝐵, 𝐶 O𝐷

O
Γ, 𝐴O 𝐵,𝐶 O𝐷

MLL

Γ, 𝐴
Δ, 𝐵, 𝐶 Σ, 𝐷

⊗
Δ, Σ, 𝐵, 𝐶 ⊗ 𝐷

⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶 ⊗ 𝐷

MLL

= Γ

𝐴 𝐵 𝐶 𝐷

⊗ ⊗

𝐴 ⊗ 𝐵 𝐶 ⊗ 𝐷

Δ =

Γ, 𝐴 Δ, 𝐵, 𝐶
⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶 Σ, 𝐷

⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶 ⊗ 𝐷

MLL

□

Notation 10. Any MLL-proof net can be seen as the formula tree of its con-
clusion plus a decoration of its formulas linking the subformulas introduced by
a same Ax-link.

For this purpose, from now on, we provide a more concise representation of
cut-free MLL-proof nets by simply decorating a sequent Γ with some linkings
pairing of subformulas in Γ which are paired by the Ax-rules. By means of
example, the MLL-proof net in Example 4 can be represented as shown below.

𝐴 ⊗ 𝐵⊥, 𝐵 ⊗𝐶⊥, 𝐶 O 𝐴⊥

1.3 The Forbidden Fruit(s)

1.3.1 Units

What happen if we include logical constants (i.e., units) in our syntax?

5

We now consider MLL-fomulas extended with the units ⊥ and ⊥⊥ = 1.

𝐴, 𝐵 B 𝑎 | 𝑎⊥ | 𝐴O 𝐵 | 𝐴 ⊗ 𝐵 | ⊥ | 1 with 𝑎 ∈ A (3)

The system MLLu = MLL ∪ {⊥, 1} is obtained by extending MLL with the
two following rules:

Γ
⊥
Γ,⊥

and 1
1

(4)

Intuitively, since both rules introduce a new constant in a sequent, they
should both be represented by a gate with no inputs an one output. That is

Gate name 1-gate näıve ⊥-gate

Shape
1

1

⊥

⊥
Inputs none none
Outputs 1 ⊥

However such a näıve encoding prevent us to have an efficient way to recon-
struct a recognize those derivations in MLLu which are proof nets (i.e., represent
the encoding of a correct derivation).

Example 11. An example of two proof nets in MLLu which are both discon-
nected. However, the one on the left correspond to a correct derivation while
the one on the right cannot.

1 ⊥

1 ⊥
and

⊥ ⊥

𝐴 𝐴⊥ ⊗

⊥⊗⊥

ax

In order to recover the possibility of having an efficient correctness criterion
(i.e., the possibility of checking in polynomial time w.r.t. the size of the proof
structure whether it is a proof net), we need to include additional information
in the encoding. This is included by the so-called jumps, some additional edges
connecting a ⊥-gate to another gate of the MLL-proof structure [3].

Gate name 1-gate ⊥-gate (with jump)

Shape
1

1

⊥

⊥
Inputs none none
Outputs 1 ⊥

(5)

6

With those additional edges, we recover a correctness criterion based con-
nectness and acyclicity of the tests (note that switching does not affect jumps)1.

Definition 12. A MLLu-proof net is a proof structure 𝑆 with gates from
Equations (2) and (5) such that all possible tests are connected and acyclic.

Example 13. The two MLLu-proof structures from Example 11 with additional
jumps. The first one admits a unique possible way to assign jumps.

1 ⊥

1 ⊥

However, for the other we have (#⊥-Gates) × (#Gates − 1) possible way to
assign each jumps of the 2 ⊥-gates to one of the (4 − 1) other gates. By means
of example, we have the following possible proof structures with jumps:

⊥ ⊥

𝐴 𝐴⊥ ⊗

⊥⊗⊥

ax

or

⊥ ⊥

𝐴 𝐴⊥ ⊗

⊥⊗⊥

ax

or

⊥ ⊥

𝐴 𝐴⊥ ⊗

⊥⊗⊥

ax

We can extend the notation from Notation 10, depicting jumps as dotted
links connecting an occurrence of ⊥ to a link (representing a jump connecting the
⊥-gate to a Ax-gate), to an occurrence of 1 (representing a jump connecting the
⊥-gate to an 1-gate), or to an occurrence of a connective (representing a jump
connecting the ⊥-gate to the gate introducing the corresponding connective).

Definition 14. The translation [[·]]MLLu
is defined extending the definition the

one provided in Figure 3 by considering the two following cases for the rules 1
and ⊥.

[[
1
1

]]
MLLu

= 1

D1

Γ
O
Γ,⊥

MLL

=

[[D1]]MLL
⊥

Γ ⊥

(6)

where the jump of the ⊥-gate is connected to the gate corresponding to the
bottom-most rule in D1.

Example 15. The four proof nets in Example 13 can be respectively repre-
sented as shown below.

1 ⊥ 𝐴, 𝐴⊥,⊥⊗⊥ 𝐴, 𝐴⊥,⊥⊗⊥ 𝐴, 𝐴⊥,⊥⊗⊥
1Because of cut-elimination, it is better to assign jumps to Ax- and 1-rules.

7

Γ, 𝐴
⊕
Γ, 𝐴 ⊕ 𝐵

Γ, 𝐴
⊕
Γ, 𝐵 ⊕ 𝐴

Γ, 𝐴 𝐵, Γ
⊗

Γ,Δ

Figure 4: Sequent calculus rules for the additive connectives ⊕ and N.

In [2] it has been shown that it is possible to use MLLu-proof nets con-
taining only 1-, ⊥-, O- and ⊗-gates to encode configurations of the constraint
logic machine (a directed weighed graph), and instances of the configuration-
to-configuration problem for these machines can be translated in instances of
proof equivalence for MLLu-proof nets

Theorem 16. Proof equivalence in MLLu is P-Space.

1.3.2 Non-linear rules

What happen if we include rules for logical connectives which are not context-
free?

We now consider MALL-fomulas extending the syntax of MLL-fomulas with
the additive connectives for disjunction (⊕) and conjunction (N). More precisely:

𝐴, 𝐵 B 𝑎 | 𝑎⊥ | 𝐴O 𝐵 | 𝐴 ⊗ 𝐵 |
| 𝐴 ⊕ 𝐵 | 𝐴N 𝐵 | with 𝑎 ∈ A (7)

The multiplicative and additive linear logic is defined by the proof
system MALL = {Ax,O, ⊗, ⊕,N} is defined by the rules in Figures 1 and 4.

When considering the possible independent rules in MALL in the style of the
rule permutation in Figure 2, we observe that the permutation involving the
N-rule would duplicate some rules and sub-derivations.

As for MLL we have proof nets for MALL. To simplify the presentation, we
refer to the formalism for MLL-proof nets introduced in Notation 10.

Definition 17. Let Γ be a sequent of MALL-fomulas. A N-resolution (resp. a
additive resolution) of Γ is a sequent Γ∗ obtained by removing the main con-
nective and exactly one of the two subformulas of each N-subformula (resp. ⊕-
or N-subformula) in Γ.

Example 18. Consider the following sequents and certain of their possible
additive resolutions.

Formula N-Resolution Additive Resolution
𝐴N(𝐵O) 𝐴 (or 𝐵O𝐶) 𝐴 (or 𝐵O𝐶)
𝐶 ⊕ 𝐷 𝐶 ⊕ 𝐷 𝐶 (or 𝐷)

𝐴 ⊗((𝐷 ⊕(𝐸 O 𝐹)) O𝐺) 𝐴 ⊗((𝐸 O 𝐹) O𝐺)
(𝐴N(𝐵O𝐶)) ⊗((𝐷 ⊕(𝐸 O 𝐹)) O𝐺) or or

(𝐵O𝐶) ⊗((𝐷 ⊕(𝐸 O 𝐹)) O𝐺) (𝐵O𝐶) ⊗(𝐷 O𝐺)

Definition 19 ([5]). Let Γ be a sequent of MALL-fomulas. A linking _ for Γ is
a set of pairs of complementary literals in Γ (i.e., an atom and its dual atom).

8

Γ, 𝐴

Δ, 𝐵, 𝐶, 𝐷
O

Δ, 𝐵, 𝐶 O𝐷
⊗

Γ,Δ, 𝐴 ⊗ 𝐵,𝐶 O𝐷

=

Γ, 𝐴 Δ, 𝐵, 𝐶, 𝐷
⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶, 𝐷

O
Γ,Δ, 𝐴 ⊗ 𝐵,𝐶 O𝐷

Γ, 𝐴, 𝐵, 𝐶, 𝐷
O
Γ, 𝐴O 𝐵,𝐶, 𝐷

O
Γ, 𝐴O 𝐵,𝐶 O𝐷

=

Γ, 𝐴, 𝐵, 𝐶, 𝐷
O
Γ, 𝐴, 𝐵, 𝐶 O𝐷

O
Γ, 𝐴O 𝐵,𝐶 O𝐷

Γ, 𝐴

Δ, 𝐵, 𝐶 Σ, 𝐷
⊗

Δ, Σ, 𝐵, 𝐶 ⊗ 𝐷
⊗

Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶 ⊗ 𝐷

=

Γ, 𝐴 Δ, 𝐵, 𝐶
⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶 Σ, 𝐷

⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶 ⊗ 𝐷

Γ, 𝐴

Δ, 𝐵, 𝐶
⊕

Δ, 𝐵, 𝐶 ⊕ 𝐷
⊗

Γ,Δ, 𝐴 ⊗ 𝐵,𝐶 ⊕ 𝐷

=

Γ, 𝐴 Δ, 𝐵, 𝐶
⊗
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶

⊕
Γ,Δ, 𝐴 ⊗ 𝐵,𝐶 ⊕ 𝐷

Γ, 𝐴, 𝐵, 𝐶
O
Γ, 𝐴O 𝐵,𝐶

⊕
Γ, 𝐴 ⊕ 𝐵,𝐶 ⊕ 𝐷

=

Γ, 𝐴, 𝐵, 𝐶
⊕
Γ, 𝐴, 𝐵, 𝐶 ⊕ 𝐷

O
Γ, 𝐴O 𝐵,𝐶 ⊕ 𝐷

Γ, 𝐴, 𝐶 Γ, 𝐴, 𝐷
N

Γ, 𝐴, 𝐶 N𝐷

Γ, 𝐵, 𝐶 Γ, 𝐵, 𝐷
N

Γ, 𝐵, 𝐶 ⊗ 𝐷
N

Γ, 𝐴N 𝐵,𝐶 N𝐷

=

Γ, 𝐴, 𝐶 Γ, 𝐵, 𝐶
N

Γ, 𝐴N 𝐵,𝐶

Γ, 𝐴, 𝐷 Γ, 𝐵, 𝐷
N

Γ𝐴N 𝐵, 𝐷
N

Γ, 𝐴N 𝐵,𝐶 N𝐷

Γ, 𝐴

Γ, 𝐵, 𝐶
⊕

Γ, 𝐵, 𝐶 ⊕ 𝐷
N

Γ, 𝐴 ⊗ 𝐵,𝐶 ⊕ 𝐷

=

Γ, 𝐴 Δ, 𝐵, 𝐶
N
Γ,Δ, Σ, 𝐴 ⊗ 𝐵,𝐶

⊕
Γ,Δ, 𝐴 ⊗ 𝐵,𝐶 ⊕ 𝐷

Γ, 𝐴, 𝐶 Γ, 𝐵, 𝐶
N

Γ, 𝐴N 𝐵,𝐶
⊕
Γ, 𝐴N 𝐵,𝐶 ⊕ 𝐷

=

Γ, 𝐴, 𝐶
⊕

Γ, 𝐴, 𝐶 ⊕ 𝐷

Γ, 𝐵, 𝐶
⊕

Γ, 𝐵, 𝐶 ⊕ 𝐷
N

Γ, 𝐴N 𝐵,𝐶 ⊕ 𝐷

Γ, 𝐴

Δ, 𝐵, 𝐶 Δ, 𝐵, 𝐷
N

Δ, 𝐵, 𝐶 N𝐷
⊗

Γ,Δ, 𝐴 ⊗ 𝐵,𝐶 N𝐷

=

Γ, 𝐴 Δ, 𝐵, 𝐶
⊗
Γ,Δ, 𝐴 ⊗ 𝐵,𝐶

Γ, 𝐴 Δ, 𝐵, 𝐶
⊗
Γ,Δ, 𝐴 ⊗ 𝐵,𝐶

N
Γ,Δ, 𝐴 ⊗ 𝐵,𝐶 N𝐷

Figure 5: Rule permutations in MALL.

A linking is over an additive resolution Γ∗ of Γ if each occurrence of a literal
in _ occurs in Γ∗.

A (MALL) slice net for a sequent Γ is a set of linking Λ over Γ such that,
for each N-resolution Γ∗ of Γ there is a unique linking _ ∈ Λ over Γ∗ and _

identifies a MLL-proof net for an additive resolution Γ★.

Given a derivation in MALL, we can defined a slice net enconding it using
the translation in Figure 6

Proposition 20. It is not possible to check if a set of linking Γ over a sequent
Γ is a slice net in P-Time. More precisely, it requires an exponential number 2𝑘

where 𝑘 is the number of occurrences of the connective N in Γ.

As for MLL-proof nets, we have a canonicity result for slice nets.

Theorem 21. Let D and D′ be two derivations in MALL. Then it is possible
to transform D into D′ using the rule permutations in Figure 5 iff [[D]]Slice =
[[D′]]Slice.

Corollary 22. Compute the conflict net associate to a derivation in MALL
requires an exponential number of steps.

9

[[
ax
𝑎, 𝑎⊥

]]
Slice

=
{{
𝑎, 𝑎⊥

} }

D1

Γ, 𝐴, 𝐵
O
Γ, 𝐴O 𝐵

Slice =

D1

Γ, 𝐴
⊕
Γ, 𝐴 ⊕ 𝐵

Slice =

D1

Γ, 𝐴
⊕
Γ, 𝐵 ⊕ 𝐴

Slice = [[D1]]Slice

D1

Γ, 𝐴

D2

𝐵,Δ
⊗

Γ, 𝐴 ⊗ 𝐵Δ

Slice = {_1 ∪ _2 | _1 ∈ [[D1]]Slice and _2 ∈ [[D2]]Slice}

D1

Γ, 𝐴

D2

Γ, 𝐵
N

Γ, 𝐴N 𝐵

Slice = [[D1]]Slice ∪ [[D2]]Slice

Figure 6: Translating a derivation in MALL into a slice nets.

Theorem 23. Let D and D′ be two derivations in MALL. Then it is possible
to transform D into D′ using the rule permutations in Figure 5 iff [[D]]Slice =
[[D′]]Slice.

We do not enter in the details here, but in conflict nets it is possible to
represent cuts without affecting their efficiency w.r.t. translation. Moreover,
cut-elimination can be performed in polynomial time.

1.3.3 Conflict Nets

It is possible to provide a syntax for MALL-proof nets with an efficient proof
translation, but we show that such a result requires to weaken the proof equiv-
alence captured by the syntax (and preventing an efficient procedure for cut-
elimination).

Definition 24. Let Γ be a sequent (of MALL-fomulas). A link on a sequent Γ
is a sub-sequent of Γ such that each each occurrence of a subformula of Γ can
occur in at most one formula in _.

A cotree on Γ is a tree of #- and ⌢-nodes whose leaves links on Γ. It is
axiomatic if all links are pairs of formulas of the form 𝑎, 𝑎⊥ with 𝑎 ∈ A. It is
in alternating form if it contains no internal nodes with a unique child, and
if it contains no two adjacent nodes which are both #-nodes or ⌢-nodes.

Example 25. Consider the sequent Γ = 𝐴N 𝐵, 𝐵⊥ ⊗𝐶⊥, 𝐶 ⊕ 𝐷. Then we have

10

𝐴
1
, . . . , 𝐴

𝑛
, 𝐵⊕𝐶 ⇝ 𝐴

1
, . . . , 𝐴

𝑛
, 𝐵⊕𝐶

𝐴
1
, . . . , 𝐴

𝑛
, 𝐵⊕𝐶 ⇝ 𝐴

1
, . . . , 𝐴

𝑛
, 𝐵⊕𝐶

𝐴
1
, . . . , 𝐴

𝑛
, 𝐵O𝐶 ⇝ 𝐴

1
, . . . , 𝐴

𝑛
, 𝐵O𝐶

𝐴
1
, . . . , 𝐴

𝑛
, 𝐵⊗𝐶, 𝐷

1
, . . . , 𝐷

𝑚
⇝ 𝐴

1
, . . . , 𝐴

𝑛
, 𝐵⊗𝐶, 𝐷

1
, . . . , 𝐷

𝑚

𝐴
1
, . . . , 𝐴

𝑛
, 𝐵N𝐶 ⇝ 𝐴

1
, . . . , 𝐴

𝑛
, 𝐵N𝐶

Figure 7: Coalescence rules for cotrees (we omitted rules normalizing cotrees in
alternating forms).

the following links:

Link Link representation

𝐴, 𝐵⊥ ⊗𝐶⊥, 𝐶 ⊕ 𝐷 𝐴N 𝐵, 𝐵⊥⊗𝐶⊥, 𝐶⊕ 𝐷

𝐵, 𝐵⊥ 𝐴N 𝐵, 𝐵⊥⊗𝐶⊥, 𝐶⊕ 𝐷

𝐶⊥, 𝐶 𝐴N 𝐵, 𝐵⊥⊗𝐶⊥, 𝐶⊕ 𝐷

𝐵, 𝐵⊥ ⊗𝐶⊥, 𝐷 𝐴N 𝐵, 𝐵⊥⊗𝐶⊥, 𝐶⊕ 𝐷

The following is a cotree over Γ.

𝐵, 𝐵⊥ 𝐶,𝐶⊥

𝐴, 𝐵⊥ ⊗𝐶⊥, 𝐶 ⊕ 𝐷 ⌢ 𝐵, 𝐵⊥ ⊗𝐶⊥, 𝐷

#

which can be also be represented in-line as follows:

#
(
𝐴, 𝐵⊥ ⊗𝐶⊥, 𝐶 ⊕ 𝐷;⌢

(
𝐵, 𝐵⊥;𝐶,𝐶⊥) ; 𝐵, 𝐵⊥ ⊗𝐶⊥, 𝐷;

)
It is possible to translate (in P-Time) a derivation in MALL into an axiomatic

linking using the translation in Figure 8.

Definition 26 ([4]). A conflict net (for Γ) is a cotree Λ on Γ such that Λ⇝ Γ

via the rules in Figure 7.

Proposition 27. It is possible to check in P-Time if a cotree Λ is a conflict net
on a sequent Γ.

Theorem 28. Let D and D′ be two derivations in MALL. Then it is possible
to transform D into D′ using all local rule permutations in Figure 5 (i.e., all
rules except the bottom-most one) iff [[D]]Conflict = [[D′]]Conflict.

11

[[
ax
𝑎, 𝑎⊥

]]
Conflict

=
{{
𝑎, 𝑎⊥

} }

D1

Γ, 𝐴, 𝐵
O
Γ, 𝐴O 𝐵

Conflict =

D1

Γ, 𝐴
⊕
Γ, 𝐴 ⊕ 𝐵

Conflict =

D1

Γ, 𝐴
⊕
Γ, 𝐵 ⊕ 𝐴

Conflict = [[D1]]Conflict

D1

Γ, 𝐴

D2

𝐵,Δ
⊗

Γ, 𝐴 ⊗ 𝐵Δ

Conflict =⌢ ([[D1]]Conflict ; [[D2]]Conflict)

D1

Γ, 𝐴

D2

Γ, 𝐵
N

Γ, 𝐴N 𝐵

Conflict = # ([[D1]]Conflict ; [[D2]]Conflict)

Figure 8: Translating a derivation in MALL into a slice nets.

Proof system Canonical
(i.e., check correctness in P-Time) (i.e., D ≃ D′ iff [[D]] = [[D′]])

MLL ✓ ✓
näıve MLLu X ✓
MLLu (with jumps) ✓ X
MALL slice nets X ✓
MLL conflict nets ✓ ✓ (without N-⊗ permutation)

Figure 9: Brief summary of the results for various proof nets from the literature
discussed here.

References

[1] Stefano Guerrini. Correctness of multiplicative proof nets is linear. In LICS,
pages 454–463, 1999.

[2] Willem Heijltjes and Robin Houston. No proof nets for MLL with units:
proof equivalence in MLL is PSPACE-complete. In Thomas A. Henzinger
and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS
’14, Vienna, Austria, July 14 - 18, 2014, pages 50:1–50:10. ACM, 2014.

[3] Dominic Hughes. Simple multiplicative proof nets with units. Preprint,
2005. URL: http://arxiv.org/abs/math.CT/0507003.

[4] Dominic Hughes and Willem Heijltjes. Conflict nets: Efficient locally canon-
ical mall proof nets. In Proceedings of the 31st Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, pages 437–446, 2016.

12

http://arxiv.org/abs/math.CT/0507003

[5] Dominic J. D. Hughes and Rob J. van Glabbeek. Proof nets for unit-free
multiplicative-additive linear logic. ACM Trans. Comput. Log., 6(4):784–
842, 2005.

13

	From Paradise to Hell
	The Paradise of MLL
	Getting rid of Bureaucracy
	The Forbidden Fruit(s)
	Units
	Non-linear rules
	Conflict Nets

