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1 Class 1. An Overview on the Proof Equivalence Problem

1.1 Proof theory

First of all, this is a course in proof theory. This is a branch of logic that, broadly speaking, has to do with
understanding (mathematical) proofs. Hilbert was among the first to speak of “proof theory” as a discipline,
in the context of his research programme aiming at establishing the consistency of mathematics. Put in other
words, Hilbert’s goal was to establish the following result

In mathematics there exists no proof of a contradiction.

Proving a result of this kind required a precise, mathematical, definition of what a proof is, and, notably, of
what a proof of a contradiction would be. The situation was not so different from what was happening more
or less in the same years around the notion of computation. In order to establish his famous result, stating
that there exist mathematical functions which are not computable, Turing had to come out with a precise,
mathematical, definition of what a computable function is.

As is well-known, Hilbert’s programme was refuted by Gödel’s incompleteness theorems. Yet, proof theory
survived the failure of its original motivation. Notably, through the work of logicians like Gentzen and Herbrand
(who still reasoned within the perspective of Hilbert’s programme), and, later, of Prawitz, Kreisel, Martin-Löf,
Girard, and many others, proof theory has evolved into a rich discipline concerning the formal representation
and the structural properties of mathematical proofs.

Prawitz introduced in a series of papers [4, 5, 6] the notion of general proof theory to refer to “a study of
proofs in their own right where one is interested in general questions about the nature and structure of proofs
[...]” [6, p. 11], as opposed to reductive proof theory, that is, the study of proof systems aimed at establishing
relative consistency proofs (i.e. Hilbert’s programme after Gödel). Other texts (e.g. [7]) rather use the term
structural proof theory.

1.2 “No entity without identity”

Following Prawitz, among the general questions addressed by general proof theory, we have:

Obvious topics in general proof theory are:
2.1. The basic question of defining the notion of proof, including the question of the distinction
between different kinds of proofs such as constructive proofs and classical proofs.
2.2. Investigation of the structure of (different kinds of) proofs, including e.g. questions concerning
the existence of certain normal forms.
2.3. The representation of proofs by formal derivations. In the same way as one asks when two
formulas define the same set or two sentences express the same proposition, one asks when two
derivations represent the same proof; in other words, one asks for identity criteria for proofs or for
a “synonymity” (or equivalence) relation between derivations. [4, p. 237]

In this course we will be concerned with question 2.3. As we will see, Prawitz not only raised this questions,
but he also proposed a mathematically precise answer to it. For the moment, let us take a closer look at this
problem, that we will call the problem of identity of proofs [1, 11] or proof equivalence (we could also call it
“proof synonymity”, following Prawitz again).

The famous philosopher Quine is well-known for maintaining the view that it makes sense to speak of a
certain class of entities only if we are capable of specifying when two entities of this class are the same. In
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mathematics this is just common view: any well-defined class of mathematical entities (e.g. groups or topological
spaces, etc.) comes with its own notion of identity (group isomorphisms, homeomorphisms, etc.).

Yet, when it comes to considering proofs, things are quite less clear. Mathematicians usually have some
grasp about one proof being “simpler” or “more elegant” than one other. Hilbert himself had considered a 24th
problem to be added to his famous 1900 list of 23 problems for the century, asking to “find criteria of simplicity
or rather prove the greatest simplicity of given proofs.” (see e.g. [10, 8]). However, translating such intuitions
into mathematically precise terms is hard, or maybe just meaningless, and this for at least one important reason:
in (general?) proof theory one will hardly encounter a truly general definition of proof. Rather, one can find
many different definitions of proofs within a certain formal system. In this course we will discuss a few formal
systems: sequent calculus, natural deduction, proof nets, combinatorial proofs, etc. Notably, we will see that,
for a chosen formal system, one can often find different derivations which represent “intuitively”, or “morally”,
the same proof.

When considering a notion of proof equivalence, we have to distinguish between two different situations:
• Proof equivalence within a fixed formal system. For example the following simple argument:

Claim: if “A” holds, and “C implies B” holds, then “C implies A and B” holds.
Proof. Suppose C holds. The validity of “A and B” follows then from the validity of “A” and the
validity of “B”, where the validity of the latter is a consequence of the validity of “C implies B” and the
assumption “C”

can be represented in sequent calculus via two distinct derivations:

ax
A $ A

ax
B $ B

^R
A,B $ A^B

ax
C $ C

ÑL
A,C Ñ B,C $ A^B

ÑR
A,C Ñ B $ C Ñ pA^Bq

ax
A $ A

ax
B $ B

ax
C $ C

ÑL
C Ñ B,C $ B

^R
A,C Ñ B,C $ A^B

ÑR
A,C Ñ B $ C Ñ pA^Bq

(1)

These kind of examples can highlight inessential or “bureaucratic” aspects in some formal system, and
may suggest alternative, more canonical, proof representations.

• Proof equivalence across different formal systems: for instance, the following three derivations (from up
left to right down, in a tableaux system, natural deduction or Coq), taken from [8]:

all represent, intuitively, the same argument showing the validity of the formula

pA^ pAÑ Bq ^ p A_ Cq ^ pC ^B Ñ Dqq Ñ D.

1.3 How Hard is Proof Equivalence?

Understanding if two derivations denote the same proof may be hard. As is well known, computability theory
and complexity theory provide us with several degrees of hardness:
polynomial time a problem may be considered, so to say, “not too hard”, when we can devise an algorithm

that answers the problem within a reasonable (say, a polynomial) amount of time;
decidable, but not polytime a problem is “too hard” when, at least as far as we know, all algorithms what

may answer it require an unreasonable (say, more than polynomial) amount of time to be executed.
undecidable Finally, as mentioned above, Turing proved the existence of problems which are “way too hard”

to solve: no algorithm is capable of answering to them.
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During the course we will meet proof systems for which the proof equivalence problem is “not too hard”, “too
hard” and “way too hard”. How should we react to this? Does it make sense to study a notion of equivalence
between proofs, when there is no reasonable or actual way to establish that this equivalence holds? Notice that
this is more of a philosophical than a mathematical question: to produce an answer to it, much depends on
the kind of philosophical stance we have towards the problem of identity of proof. For instance, under a more
platonist view, we can postulate that proofs exist in some sense as abstract objects, of which mathematicians
have a certain grasp, and that formal derivations are linguistic objects that refer to such objects. Hence,
understanding the identity of proof relations means understanding when two formal derivations refer to the
same proof, just like, say, the numerical expressions 6 ` 5 and p3 ˆ 4q ´ 1 both refer to the same entity, the
number 11. Under this view, the hardness of the problem, although interesting in itself, is not crucial. For
example, understanding equality of real numbers (typically, does x “ π?) is a well-known undecidable problem,
yet mathematicians did not stop doing real analysis just for that!

By contrast, under a more deflationist view, we may remain agnostic as to the existence of proofs as abstract
entities; understanding the identity of proof relation would mean then finding reasonable ways to abstract away
from inessential or “bureaucratic” differences that appear in formal systems, possibly paving the way for the
development of more canonical proof systems. In this sense, whether a notion of proof equivalence is hard
is important, because it is unreasonable that a workable proof system can be produced out of some hardly
computable notion!

2 Class 2. Proof Systems: Natural Deduction and Sequent Calculus

The two most studied proof systems were both introduced by Gentzen in his 1934 PhD thesis. We will briefly
recall these formalisms and discuss how they lead to introduce two different criteria for proof equivalence, that
we call the normalization criterion (NC) and the permutation criterion (PC).

It is useful to start our discussion with some fundamental questions that motivate the work of logicians
around the notion of proof equivalence can be formulated as follows:
Question 1 Are the normalization and permutation criteria equivalent?
Question 2 Is there a mathematical interpretation of proofs such that, whenever two proofs are equivalent (in

one of the two senses above), then their interpretations coincide?
Question 3 Is any of these criteria decidable? Or even decidable in a reasonable time?

Let us fix a standard propositional language L, with formulas defined by the grammar

A ::“ p P P | T | F | A^B | A_B | AÑ B

where P is a denumerable collection of propositional variables. As usual, we define  A :“ AÑ F.

2.1 Natural Deduction and the Normalization Criterion

A derivation in natural deduction is a labeled rooted tree whose leaves are called hypotheses and whose root
is called the conclusion of the tree. We use the notation Π : H1, . . . ,Hn $ C to indicate a derivation Π of
hypotheses H1, . . . ,Hn and conclusion C. More graphically, we may note Π as

H1, . . . ,Hn

Π
C

As a basic example let us consider the following derivation of B Ñ C,AÑ B $ AÑ C:

0

B Ñ C

1

AÑ B
2

A
ÑE

B
ÑE

C
ÑIp2q

AÑ C

Importantly, while a conclusion of a derivation is just a plain formula of L, an hypothesis is a labeled formula
i

A, where A is a formula of L and i is an index taken from N. Hence, the hypothesis
0

A is distinct from the

hypothesis
3

A. This apparently arbitrary notation will be made clear in a moment.
Let us now introduce the system NJ of natural deduction for intuitionistic propositional logic. We define

inductively a notion of pre-derivation via four different operations:

1. An assumption is a derivation of hypothesis
i

A and conclusion A. As explained below, an assumption may
be discharged or undischarged in a derivation Π depending on whether the index i is invoked by some
other rule of Π.
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2. An introduction rule is a rule that combines a finite number of derivations to produce a new one whose
conclusion is either of the form T or of the form A ˝ B, where ˝ is one of the logical operators ^,_,Ñ.
The introduction rules of NJ are defined as follows:

TI
T

A B
^I

A^B
Ai

_IiA_B
pi P t0, 1uq

r
i

As

...
B

ÑIpiq
AÑ B

The rule ÑI requires some explanation: in a derivation there might occur several instances of an as-
sumption A, each with its own index (e.g. one with index 0, two with index 3, three with index 5); the
introduction rule ÑI with index piq discharges all assumptions with index i. In this way it becomes pos-
sible to discharge, by a single rule, a finite number of uses of the assumption A, yet not necessarily all of
them. Notice that, when an assumption is discharged, its premiss no more plays the role of an hypothesis

of the derivation. In other words, given a derivation Π of hypotheses Γ,
i

A and conclusion B, the rule ÑI
produces a derivation Π1 of hypotheses Γ and conclusion AÑ B.
For example, in the following pre-derivations of A Ñ pA Ñ Bq $ A Ñ B, the rule ÑI discharges two
occurrences of an assumption:

0

AÑ pAÑ Bq
1

A
ÑE

AÑ B
1

A
ÑE

B
ÑIp1q

AÑ B

The following two pre-derivations of $ AÑ pAÑ Aq are not equivalent, as their use of indexes is different:

0

A
ÑIp1q

AÑ A
ÑIp0q

AÑ pAÑ Aq

1

A
ÑIp1q

AÑ A
ÑIp0q

AÑ pAÑ Aq

(2)

3. An elimination rule is a rule that combines a pre-derivation whose conclusion is either T or of the form
A ˝ B, with ˝ one of the logical operators ^,_,Ñ, with possibly other derivations, to produce a new
pre-derivation. The elimination rules of NJ are.

F
FE

A
A0 ^A1

^EiAi
pi P t0, 1uq

A_B

i

A
...
C

j

B
...
C
_Epi, jq

C

AÑ B A
ÑE

B

Observe that the rule _E discharges two assumptions.
The use of indexes is important but introduces some sort of “bureaucracy”: in particular, it leads to

distinguish proofs which are “morally” the same. For instance the following two pre-derivations are different,
since they use distinct indexes, but should certainly represent the same proof:

0

A
ÑIp0q

AÑ A

1

A
ÑIp1q

AÑ A

For this reason, we introduce an equivalence relation „ over pre-derivations, where, given two derivations
Π,Π1 with same hypotheses and same conclusion, Π „ Π1 holds when Π1 can be obtained from Π1 by a suitable
renaming of its indexes. We define a derivation of NJ as an equivalence class of pre-derivations modulo the
equivalence „. In this way the two pre-derivations above are instances of the same derivations, while the two
derivations in (2) are not.

The system NK of natural deduction for classical logic can be obtained from NJ simply by adding one new
rule:
• A double negation rule which implements the usual classical tautology   AÑ A:

  A
DN

A
.

Notice, however, that this rule does not belong to the three classes of rules of NJ, and indeed it sensibly alters
the structural properties of the calculus. For this reason, we will for the moment restrict ourselves to NJ.
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Normalization A fundamental discovery of Gentzen was that proofs not only have rules, but they also have
a dynamics: it is possible to define transformations over proofs that may eliminate certain “redundancies”. In
the case of natural deduction, a redundancy, or local peak, is a configuration of the form

...
˝ I

A ˝B
˝ E

...

where a logical operator ˝ is first introduced and then immediately eliminated. Examples of such peaks are

...
A

...
B
^I

A^B
^E1A

i

A
...
B

ÑIpiq
AÑ B

...
A
ÑE

B

In each case the conclusion to be proved had already been attained before introducing (and eliminating) the
redundancy.

The process by which redundancies are eliminated is called normalization and is defined via a finite set of
transformations ù, e.g.:

Π1

A

Π2

B
^I

A^B
^E1A

ù
Π1

A

i

A
Π1

B
ÑIpiq

AÑ B

Π2

A
ÑE

B

ù

Π2

rAs

Π1

B

where in the second rule the square brackets rAs signal the fact that the hypothesis
i

A may occur several times
in Π1, and thus we are attaching a copy of Π2 on top of each of these occurrences. In other words, we are

possibly duplicating Π (if
i

A occurs more than one time) or deleting if (if
i

A does not occur at all).
A derivation is called normal if no transformation can be applied to it. The reflexive and transitive closure

ù˚ of ù defines then a reduction relation between derivation, and the following fundamental result holds:

Theorem 1 (normalization). For any derivation Π of NJ there exists a unique normal derivation nfpΠq such
that Π ù˚ nfpΠq.

We will go back at this result in the following classes. For the moment, it is important to observe that, when
a derivation Π can be transformed in Π1 just by eliminating some “redundant” steps, one might reasonably
think that Π and Π1 should represent the same logical argument, with Π1 representing it in a more direct way.
In particular, one can think of normal derivations as standing in the most direct relation with the corresponding
proofs, and, in view of Theorem 1, of any other derivation as referring to the same proof referred to by its
normal form. This is precisely the view introduced by Prawitz in [4], which leads to

Definition 1 (Normalization Criterion for Proof Equivalence (NC)). Let Π,Π1 be two derivations in NJ with
same hypotheses and same conclusion. Then Π and Π1 are normalization-equivalent (noted Π ”NC Π1) iff
nfpΠq “ nfpΠ1q.

The normalization criterion is probably the most well-studied notion of proof equivalence. It certainly has
the merit of providing a mathematically precise definition of proof equivalence, which can be extended to many
other proof systems beyond NJ.

We will study this criterion for natural deduction derivations in more details in a future lesson. For the
moment, let us mention two of its main weak points:
• Its relies on the fact of having a proof system enjoying existence and unicity of normal form (something

which is not trivial to have in many situations, as we will see).
• Even if normal forms exist, already in NJ the procedure to transform an arbitrary derivation into nor-

mal form needs not be feasible in polynomial time. This means that checking if two derivations are
normalization-equivalent may be “too hard”, in particular, not feasible in polynomial time.
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Identity Group

ax
A $ A

Γ $ A,∆ Γ1, A $ ∆1
cut

Γ,Γ1 $ ∆,∆1

Structural Group

Γ $ ∆
LW

Γ, A $ ∆

Γ, A,A $ ∆
LC

Γ, A $ ∆

Γ $ ∆
RW

Γ $ A,∆

Γ $, A,A∆
RC

Γ $ A,∆

Logical Group

RT
$ T

LF
F $

Γ, Ai $ ∆
L^iΓ, A0 ^A1 $ ∆

Γ, A $ ∆ Γ, B $ ∆
L_

Γ, A_B $ ∆

Γ $ A,∆ Γ $ B,∆
R^

Γ $ A^B,∆

Γ $ Ai,∆
R_iΓ $ A0 _A1,∆

Γ $ A,∆ Γ1, B $ ∆1
LÑ

Γ,Γ1, AÑ B $ ∆,∆1
Γ, A $ B,∆

RÑ
Γ $ AÑ B,∆

Figure 1: Rules of LK.

The Functional Interpretation Another advantage of restricting ourselves to NJ is that derivations in
intuitionistic logic admit an interpretation in terms of functional programs (also known as the Curry-Howard
correspondence). First, it is possible to interpret any formula A of L as a certain type of objects JAK:
• JTK is the type containing precisely one object;
• JFK is the empty type;
• JA^BK is the type of pairs pa, bq, where a P JAK and b P JBK (also called product type);
• JA_BK is the type of pairs pi, cq where either i “ 0 and c P JAK, or i “ 1 and c P JBK (also called disjoint

sum type, or coproduct type);
• JAÑ BK is the type of programs f transforming any object of type JAK into an objet of type JBK.
Now, with any derivation Π : Γ $ A it is possible to associate a certain program

JΠK : JΓK ÝÑ JBK

yielding, for any object a of type JΓK, an object JΠKpaq P JBK. For instance, the two programs associated with
the derivations Π1,Π2 in (2) correspond to the projections π1, π2 : JAKˆ JAK Ñ JAK:

π1 : a, b ÞÑ a π2 : a, b ÞÑ b

We will not enter into more details here, but one can define a precise correspondence between derivations in
NJ and programs in the simply typed λ-calculus. More on this will be discussed in Giulio Guerrieri’s course.

2.2 Sequent Calculus and the Permutation Criterion

We now recall the second formalism introduced by Gentzen. As we observed, most structural properties of
natural deduction (like the normalization theorem) are lost when we consider the system NK for classical logic.
It is precisely with the purpose of managing the inner symmetries of classical reasoning that Gentzen introduced
a different proof system.

A sequent is an expression of the form Γ $ ∆, where Γ,∆ are finite multisets of formulas. A derivation in
sequent calculus is simply a finite tree whose nodes are labeled by sequents. Compared to natural deduction,
sequent calculus derivations involve no additional “bureaucracy” concerning indexes and assumption discharge.

The sequent calculus LK for classical logic is defined by the rules illustrated in Fig. 1.
The first group comprises a basic “axiom” rule as well as the cut rule, probably the most significant rule

of the calculus, as we will see. The second group comprises left and right rules for weakening and contraction,
that is, to handle the possible duplication and erasing of formulas. The third group comprises, for each logical
operator, a left and a right rule, loosely related to the introduction and elimination rules of NJ.

A calculus LJ for intuitionistic logic is defined simply by restricting LK to sequents of the form Γ $ ∆,
where ∆ has at most one formula.
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Cut-elimination The dynamics of sequent calculus focuses on the cut-rule. Indeed, the “redundancies” in
this case can be identified with the occurrences of this rule. Cut-elimination is the process by which an arbitrary
derivation can be transformed into one in which the cut-rule never occurs. Similarly to natural deduction, this
is achieved by defining a class of transformations ù, like for example:

Π1

Γ $ A,∆

Π1

Γ $ B,∆
R^

Γ $ A^B,∆

Σ

Γ1, A $ ∆1
L^

Γ1, A^B $ ∆1
cut

Γ,Γ1 $ ∆,∆1

ù

Π1

Γ $ A,∆

Σ

Γ1, A $ ∆1
cut

Γ,Γ1 $ ∆,∆1

that transforms a cut on the complex formula A^B into a cut on the simpler formula A.
Letting, as before, ù˚ indicate the reflexive-transitive closure of ù, we have the following fundamental

result:

Theorem 2 (Hauptsatz). For any derivation Π of LK there exists a normal derivation Π1 such that Π ù˚ Π1.

Observe that, unlike in the case of NJ, normal forms in LK are not in general unique. In particular, the
algorithm transforming a derivation into a normal is truly non-deterministic. This is one of the reasons that
makes sequent calculus a less ideal candidate than natural deduction for the normalization criterion.

Rule Permutations Beyond the failure of unicity of normal forms, that (NC) is not well-adapted to sequent
calculus is best seen by observing that different derivations in sequent calculus may well correspond to the same
natural deduction derivation.

To see this, let us define a translation from LJ to NJ: to a derivation Π in LJ of conclusion Γ $ ∆, with
7∆ ď 1, we associate a derivation Π˚ : Γ7 $ ∆5 in NJ, where Γ7 contains the formulas in Γ, each with a distinct
index, and ∆5 is ∆ if the latter contains one formula, and is F otherwise. The translation is defined inductively
as follows:

ax
A $ A ÞÑ

i

A

Π1

Γ $ A

Π2

Γ1, A $ ∆
cut

Γ,Γ1 $ ∆1
ÞÑ pΓ1q7

Γ7

Π˚1
rAs

Π˚2

∆5

Π
Γ $ ∆

LW
Γ, A $ ∆

ÞÑ Π˚

Π
Γ, A,A $ ∆

LC
Γ, A $ ∆

ÞÑ
Γ7

i

A
j

A
Π˚

∆5

”

j ÞÑ i
ı

Π
Γ $

RW
Γ $ A

ÞÑ

Γ7

Π˚

F
FE

A

RT
$ T ÞÑ TI

T

LF
F $ ÞÑ i

F

Π
Γ, Ai $ ∆

L^iΓ, A0 ^A1 $ ∆

ÞÑ Γ7

i

A0 ^A1
^EiAi

Π˚

∆5

Π1

Γ, A $ ∆

Π2

Γ, B $ ∆
L_

Γ, A_B $ ∆

ÞÑ i

A_B

Γ7
j

A
Π˚1

∆5

Γ7
k

B
Π˚2

∆5
_Epj, kq

∆5
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Π1

Γ $ A

Π2

Γ $ B
R^

Γ $ A^B,∆

ÞÑ

Γ7

Π˚1
A

Γ7

Π˚2
B
^I

A^B

Π
Γ $ Ai,∆

R_iΓ $ A0 _A1,∆

ÞÑ

Γ7

Π˚

Ai
_IiA0 _A1

Π1

Γ $ A

Π2

Γ1, B $ ∆
LÑ

Γ,Γ1, AÑ B $ ∆

ÞÑ
pΓ1q7

i

AÑ B

Γ7

Π˚1
A
ÑE

rBs

Π˚2

∆5

Π
Γ, A $ B,∆

RÑ
Γ $ AÑ B,∆

ÞÑ

Γ7
i

A
Π˚

B
ÑIpiq

AÑ B

It is important to observe that the transformation has an exponential cost : the size of the translated
derivation Π˚ may be at most exponential in the size of Π. This is due to the translation of the rules cut and
ÑE, in which the sub-derivation Π˚1 is possibly duplicated.

Example 1. The translation of the two distinct LJ-derivations below

Π1 “

ax
A $ A

w
A,B $ A

ax
B $ B

w
A,B $ B

^R
A,B $ A^B

ax
C $ C

ÑL
A,C Ñ B,C $ A^B

Π2 “

ax
A $ A

w
A,C Ñ B,C $ A

ax
B $ B

ax
C $ C

ÑL
C Ñ B,C $ B

^R
A,C Ñ B,C $ A^B

(3)

is the following unique NJ-derivation Π˚1 “ Π˚2 :

i

A

j

C Ñ B
k

C
ÑE

B
^I

A^B

(4)

As this example suggests (and as we will see in more detail in a future class) NJ provides a more canon-
ical representation of intuitionistic proofs than LJ. At the same time, checking proof-equivalence in LJ by
translation into NJ is “too hard”, as it comes with an exponential cost.

The problem with LJ derivations, as shown by the example above, is that one should consider derivations
up to admissible permutations of rules. Even if we restrict to the fragment of LJ with only the connectives ^
and Ñ, we already have a long list of permutations. Indeed, these are of three forms:

1. An exchange between two consecutive rules focusing on distinct formulas, e.g. :

Γ $ A

B,∆, C $ D
RÑ

B,∆ $ C Ñ D
LÑ

Γ, AÑ B,∆ $ C Ñ D

„p

Γ $ A B,∆, C $ D
LÑ

Γ, AÑ B,∆, C $ D
RÑ

Γ, AÑ B,∆ $ C Ñ D

2. Conversions between weakening/contraction and the rules for ^, illustrated in Fig. 2
3. Conversions between weakening/contraction and the rules for Ñ, illustrated in Fig. 3

Remark 1 (Size explosion). Observe that, while in all permutations of type 1. and 2. the size of the two related
derivations is comparable, the permutations of type 3. lead to either a duplication or to the erasure of an entire
sub-derivation. For this reason, a finite number applications of these rules may lead to an exponential growth
of the resulting derivation.

This suggests a second criterion for proof-equivalence:

Definition 2 (Permutation Criterion for Proof Equivalence (PC)). Let Π,Π1 be two derivations in LJ with the
same conclusion. Then Π and Π1 are permutation-equivalent (noted Π ”PC Π1 iff Π „p Π1.
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Γ, A,A,B,B $ C
LC

Γ, A,B,B $ C
LC

Γ, A,B $ C
L^

Γ, A^B $ C

„p

Γ, A,A,B,B $ C
L^

Γ, A^B,A,B $ C
L^

Γ, A^B,A^B $ C
LC

Γ, A^B $ C

Γ $ C
LW

Γ, A $ C
LW

Γ, A,B $ C
L^

Γ, A^B $ C

„p
Γ $ C

LW
Γ, A^B $ C

Γ, A $ B
LW

Γ, A,A $ C
LC

Γ, A $ C

„p Γ, A $ B

Figure 2: ^/C/W-conversions of LJ [9].

Γ $ A

B,B,∆ $ C
LC

B,∆ $ C
LÑ

Γ, AÑ B,∆ $ C

„p
Γ $ A

Γ $ A B,B,∆ $ C
LÑ

B,Γ, AÑ B,∆ $ C
LÑ

Γ, AÑ B,AÑ B,∆ $ C
LC

Γ, AÑ B,∆ $ C

Γ $ A
∆ $ C

LW
B,∆ $ C

LÑ
Γ, AÑ B,∆ $ C

„p
∆ $ C

LW
Γ, AÑ B,∆ $ C

Figure 3: Ñ/C/W-conversions of LJ [9].

In other words, Π is permutation-equivalent to Π1 if it is possible to transform one into the other by applying
a finite number of admissible permutations of rules.

Observe that, in view of Remark 1, checking permutation equivalence needs not be doable in polynomial
time. If we think that complexity must be seriously considered in proof equivalence, it makes sense to study
weaker notions of permutation-equivalence, e.g. by excluding permutations of type 3. We will go back at this.

Remark 2. In the literature (e.g. [1]) one finds another proof equivalence criterion, called generality criterion.
This criterion is tightly related to the permutation criterion. While its proper formulation relies on the language
of category theory (in particular, on the notion of coherence), the fundamental idea behind the notion of gen-
erality (which is due to Lambek’s [2, 3]) can be spelled as follows: given a proof of some formula Arp1, . . . , pns,
depending on propositional variables p1, . . . , pn, we may try to transform the proof by renaming such variables
in a maximal way. For instance, the natural deduction derivation below:

0
p^ p

^ E1p

i
p^ p

^ E2p
^Ip^ p
ÑI(0)

pp^ pq Ñ pp^ pq

can be “generalized” by distinguishing red and blue occurrences of p as follows:

0
p^ p

^ E1p

i
p^ p

^ E2p
^Ip^ p
ÑI(0)

pp^ pq Ñ pp^ pq

Instead, the derivation below
0

p^ p
^ E2p

i
p^ p

^ E1p
^Ip^ p
ÑI(0)

pp^ pq Ñ pp^ pq

yields the distinct coloring
0

p^ p
^ E2p

i
p^ p

^ E1p
^Ip^ p
ÑI(0)

pp^ pq Ñ pp^ pq
9



We can then take the produced coloring, or labeling, of the conclusion, as a way to distinguish between the two
proofs. Two derivations would coincide then precisely when they produce the same coloring of their conclusion.
This is, very roughly, the idea behind the generality criterion, and one can check that generality is invariant
under rule permutations, which means that this criterion subsumes the permutation criterion.
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