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Abstract. In this paper we provide the first game semantics for the constructive
modal logic CK. We first define arenas encoding modal formulas, we then define
winning innocent strategies for games on these arenas, and finally we character-
ize the winning strategies corresponding to proofs in the logic CK. To prove the
full-completeness of our semantics, we provide a sequentialization procedure of
winning strategies. We conclude the paper by proving their compositionality and
showing how our results can be extend to the constructive modal logic CD.

1 Introduction

Modal logics are extensions of classical logic making use of modalities to qualify the
truth of a judgement. According to the interpretation of such modalities, modal log-
ics find applications, for example, in knowledge representation [28], artificial intelli-
gence [19] and formal verification [10]. More precisely, modal logics are obtained by
extending classical logic with a modality operator � (together with its dual operator ^),
which are usually interpreted as necessity (respectively possibility).

When we move from the classical to the intuitionistic setting, the modality ^ is
no longer the dual of the modality � and by consequence the the classical k-axiom
�(A ⊃ B) ⊃ (�A ⊃ �B) is no longer sufficient to express the behavior of the modality
^. Depending on the chosen axioms, it is possible to define different flavors of “in-
tuitionistic modal logics” (see, e.g., [8,23,22,24,4,6]). In this paper we consider the
minimal approach obtained by adding only the axiom �(A ⊃ B) ⊃ (^A ⊃ ^B), leading
to what in the literature is now called constructive modal logic CK [23,4,9,18,7,13].

The study of the semantics of proofs in this logic is still rough and the only full
complete denotational model for this logic is defined by the quotient of its λ-calculus
with respect to β-reduction [3,4]. The purpose of this paper is to provide a full complete
denotational semantics for CK in terms of a game semantics [1,11,17]. Thereby we
provide a concrete denotational model for this logic, that is, a model whose elements
are not obtained by the quotient on proofs induced by cut-elimination.

In game semantics proofs are denoted by winning strategies for two-player games
played on a graph, called modal arena, that encodes a modal formula. We denote the
players by ◦ (white) and • (black). In the literature the white player is called opponent
(denoted by O) and the black player is called proponent (denoted by P). The motivations
of our choices is due to the correspondence between players’ moves, the parity of the
depth in the corresponding vertex in the modal arena (◦ for even and • for odd), and the
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−−−−−−−−−−−−−−− AX
a ` a0
−−−−−−−−−−−−−−−−−−−−−−−−− K�
�a ` �a0

−−−−−−−−−−−−−−− AX
a ` a2

−−−−−−−−−−−−− AX
b ` b
−−−−−−−−−−−−−−−−−−−−−− K�
�b ` �b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

a, a2 ⊃ �b ` �b
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
^(a2 ⊃ �b),�a ` ^�b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

�a0 ⊃ ^(a2 ⊃ �b),�a,�a ` ^�b
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− C
�a0 ⊃ ^(a2 ⊃ �b),�a ` ^�b
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− W
�a0 ⊃ ^(a2 ⊃ �b),�a, c ` ^�b

============================================================================================================================ ⊃R

` (((�a0 ⊃ ^(a2 ⊃ �b)) ⊃ �a) ⊃ c) ⊃ ^�b

◦ • ◦

� ^

a0 �
^

a2 b
� �

a b
c


^ ^ � �
� � ε ε

b b a0 a


^ ^ ^ �
� � ε ε

b b a2 a

(
ε ε � �
^ ^ a0 a

)

Fig. 1. A derivation D of the formula F = (((�a0 ⊃ ^(a2 ⊃ �b)) ⊃ �a) ⊃ c) ⊃ ^�b, the
modal arena ~F�, and the maximal batched views in the CK-WIS {{D}} of F. We indexed some
occurrences of the atom a to avoid ambiguity in the views.

polarities of the corresponding atoms in a polarized sequent calculus [15,16,2] where ◦
and • are usually used respectively for the positive and negative polarities.

Each play consists of an alternation of ◦-moves and •-moves, that is, a play is repre-
sented by a list of occurrences of the vertices in the modal arena. The first move in a play
is a ◦-move selected among the →-roots of the modal arena. Each subsequent move of
a player must be justified by a previous move of the other player, that is, the selected
vertex must be the source of a →-edge with target a vertex previously played by the
other player. The game terminates when one player has no possible moves, losing the
play. A winning innocent strategy (for •) is a set of plays which takes into account every
possible ◦-move, while each •-move is uniquely determined (and justified) by one of
the previous ◦-moves. Intuitively, a winning strategy is a complete description of all the
the possible plays always leading to the victory of •. The adjective innocent is referred
to the play-style of ◦ which chooses each of its non-initial moves only according with
the previous •-move in the play.

In [26] it is shown how the syntax of intuitionistic combinatorial proofs, a graphical
proof system for propositional intuitionistic logic, provides intuitive insights about the
winning innocent strategies (or WISs) in a Hyland-Ong arena [11,21]. Following this
intuition, in [2] we developed the syntax of intuitionistic combinatorial proofs for con-
structive modal logics allowing us to characterize the winning innocent strategies for
this logic by extending this correspondence (see Figure 1).

De facto, the presence of the modal axioms leads to the need of a new notion of
batches4 in a play in order to characterize winning innocent strategies corresponding to
proofs in the constructive modal logic CK. By means of example consider the formulas
�a ⊃ a and (�a ⊃ �b) ⊃ (�(a ⊃ b)) which are not provable in CK. Their corre-
sponding modal arenas are pictured below together with the unique maximal view in
their winning innocent strategies. Instead of representing these views, we represent the
corresponding batched views, which are matrices containing the view together with a
decoration of each move given by the modalities in whose scope they occur.

4 Batches can be interpreted as the nesting of a nested sequent calculi [5,25].
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) • ◦

� ^

a a

(
^ �
a a

)
(1)

The strategies containing these views cannot be considered satisfactory since the modal-
ities are not “properly batched” with respect to the modal rules in the sequent calculus
for CK. In fact, the WIS containing these maximal views correspond to correct proofs
in the intuitionistic propositional logic of the formulas obtained by removing the modal-
ities, that is, a ⊃ a and (a ⊃ b) ⊃ (a ⊃ b).

In order to recover the correspondence between winning strategies and proofs, it
suffices to consider two additional constraints on the accepted •-moves. We observe
that each modality has a parity (the same of the corresponding node in the modal arena)
and a height (defined as the number of the modalities in whose scope it belongs). The
first constraint demands that each •-move must be in the scope of the same number
of modalities of the previous ◦-move, ruling out the leftmost example in Equation (1).
This constraint allows us to define sub-plays (corresponding to sub-proofs): whenever a
◦-move is in the scope of a new ◦-modality, that is, a modality whose scope contains no
previous moves of the play, then the successive moves are played in a same sub-play.
A sub-play ends when a ◦-move is in the scope of no modalities or in the scope of a
new ◦-modality with equal or smaller height with respect to the previous •-move. Note
that sub-plays can be nested. This allows us to gather modalities having the same height
and in whose scope there are moves of a sub-play into batches. The second constraint
demands that these batches have a specific shape, that is, the same of the modalities in
the rules of the sequent calculus: only one ◦ modality occurs, and either all modalities
are boxes or there is exactly one •-diamond and one ◦-diamond. These conditions rule
out the existence of winning strategies for the formulas from Equation (1): in the first
one the •-move has not the same height of the previous ◦-move, in the second one all
the modalities are batched in the same set, which includes two ◦-modalities, in the third
one the ^◦ does not have the corresponding ^• in its batch.

Contribution of the paper. In this paper we show a direct correspondence between
the sequent system for CK and our winning innocent strategies (CK-WIS). In particular,
we show that the CK-WISs form a full-complete semantics for this logic. We then
conclude the paper by showing that CK-WISs are a denotational semantics by proving
their compositionality.

Organisation of the paper. In Section 2 we recall the definition of the constructive
modal logic CK, its sound and complete sequent calculus and we recall the results from
[2] on the encoding of modal arenas. In Section 3 we recall characterization of winning
strategies encoding CK-proofs from [2] by providing a new detailed sequentialization
procedure assuring the full-completeness of our model. In Section 4 we prove that our
winning strategies compose. In Section 5 we collect the results allowing us to prove
that we indeed define a full-complete denotational semantics for CK and we conclude
in section Section 6 where we discuss related works and some future research directions.
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−−−−−−−−−−−−− AX
a ` a

Γ, B ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R

Γ ` B ⊃ A

Γ, B,C ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

Γ, B ∧C ` A

Γ ` A ∆ ` B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧R

Γ, ∆ ` A ∧ B

Γ ` A ∆, B ` C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ, ∆, A ⊃ B ` C

Γ ` A ∆, A ` B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆ ` B

−−−−−−− 1
` 1

Γ, B, B ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− C
Γ, B ` A

Γ ` A
−−−−−−−−−−−−−−−−−−−−−− W
Γ, B ` A

Γ ` A
−−−−−−−−−−−−−−−−−−−−−−−− K�
�Γ ` �A

B, Γ ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
^B,�Γ ` ^A

Fig. 2. The rules for the sequent system LCK and the cut-rule

2 Background

In this section we recall some basic definition for the constructive modal logic CK
together with some extensions of the definition from [2] allowing to encode formulas
by means of specific directed graphs we call modal arenas.

2.1 Constructive modal logic

We consider the (modal) formulas generated by a countable set of (atomic) proposi-
tional variablesA = {a, b, . . . } and the following grammar

A, B ::= a | 1 | A ⊃ B | A ∧ B | �A | ^A

We define the size ‖A‖ of a formula A as the number of connectives and modalities
in A and if Γ = A1, . . . , An then ‖Γ‖ =

∑n
i=1 ‖Ai‖. We say that a formula is modality-

free (respectively unit-free) if it contains no occurrences of � and ^ (respectively no
occurrences of 1). A formula is a ⊃-formula (resp. a ∧-formula) if it is a formula of the
form A ⊃ B (resp. A ∧ B).

We define the formula isomorphism as the equivalence relation f
∼ over formulas

generated by the following relations:

A ∧ 1 f
∼ A A ⊃ 1 f

∼ 1 1 ⊃ A f
∼ A �1 f

∼ 1
A ∧ B f

∼ B ∧ A A ∧ (B ∧C) f
∼ (A ∧ B) ∧C (A ∧ B) ⊃ C f

∼ A ⊃ (B ⊃ C)
(2)

The constructive modal logic CK is obtained by extending the propositional intu-
itionistic logic [27] with the necessitation rule: “if F is provable, then so is �F”, and
the the following two modal axioms:

k1 : �(A ⊃ B) ⊃ (�A ⊃ �B) k2 : �(A ⊃ B) ⊃ (^A ⊃ ^B)

The sequent system LCK, given in Figure 2, is a sound and complete proof system for

the logic CK [14]. We write
LCK

F whenever ` F is provable in LCK.

Theorem 2.1. A formula F is provable in LCK ∪ {cut} iff is provable in LCK.

2.2 Modal Arenas

A directed graph G = 〈VG,
G
→〉 is given by a set of vertices VG and a set of direct edges

G
→ ⊆ VG × VG. A vertex v is a

G
→-root, denoted v 6→ if there is no vertex w such that



Game Semantics for Constructive Modal Logic 5

v
G
→w. We denote by

→

RG the set of
G
→-roots of G. A path from v to w of length n is a

sequence of vertices x0 . . . xn such that v = x0, w = xn and xi
G
→xi+1 for i ∈ {0, . . . , n−1}.

We write v
G
→nw if there is a path from v to w of length n. A directed acyclic graph (or

dag for short) is a direct graph such that v
G
→nv implies n = 0 for all v ∈ V.

A two-color directed acyclic graph (or 2-dag for short) G = 〈VG,
G
→,

G
 〉 is given

by a set of vertices VG and two disjoint sets of edges
G
→ and

G
 such that the graph

〈VG,
G
→ ∪

G
 〉 is acyclic. We omit the superscript when clear from context and we

denote by ∅ the empty 2-dag.
If L is a set, a 2-dag is L-labeled if a label `(v) ∈ L is associated to each vertex

v ∈ V . In this paper we fix the set of labels to be the set L = A∪ {�,^}, whereA is the
set of propositional variables occurring in formulas. We use the notation a, � and ^ to
denote the graphs consisting of a single vertex labeled respectively by a, � and ^, and
we denote by VA

G
, V�
G

and V^
G

the set of vertices of a graph G with labels respectively in
A, {�} and {^}.

Definition 2.2. Let G,H and F , ∅ be 2-dags, we denote by RG
F

the set of edges from

the →-roots of G to the →-roots of F , that is RG
F

= {(u, v) | u ∈
→

RG, v ∈
→

RF }.
We define the following operations on 2-dags:

G+H =〈 VG ∪ VH ,
G
→ ∪

H
→ ,

G
 ∪

H
 〉

G−.F=〈 VG ∪ VF ,
G
→ ∪

F
→ ∪ RG

F
,
G
 ∪

F
 〉

G∼.F =〈 VG ∪ VF ,
G
→ ∪

F
→ ,

G
 ∪

F
 ∪ RG

F
〉

G−.∅ = ∅ �∼.∅ = ∅ ^∼.∅ = ^

which can be pictured as follows, with I representing the →-roots of each graph.

G+H G−.F G∼.F G−.∅ = �∼.∅ ^∼.∅

G
I
I

H
I
I

G
I
I

F
I
I

G
I
I

F
I
I

∅ ^

We can associate to each formula F a L-labeled 2-dag ~F� as follows:

~a� = a ~A ⊃ B� = ~A�−.~B� ~A ∧ B� = ~A�+~B� ~1� = ∅

~�A� = � ∼.~A� ~^A� = ^ ∼.~A� (3)

Moreover, if Γ ` A is a sequent, we denote by ~Γ ` A� the modal arena ~(
∧

B∈Γ B) ⊃ A�.

Definition 2.3. A modal arena is a L-labeled 2-dag G such that G = ~F� for a modal
formula F5.

5 A geometrical characterization of the L-labeled 2-dags which are modal arenas is out of the
scope of this paper and can be found in [2].
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In this paper we may say that a vertex in ~F� corresponds to an occurrence of atom
or modality in a formula F, or we may identify them. An atomic vertex is a vertex
corresponding to an atom, and a modal vertex in a vertex corresponding to a modality.

Definition 2.4. Let G = ~F� be a modal arena and v ∈ VG. The address of v is the
unique sequence of modal vertices addv = m1, . . . ,mh in VG which corresponds to the
sequence of modalities in the path in the formula tree of F connecting the node of v to
the root of F. If addv = m1, . . . ,mh, we denote by addk

v = mk its kth element and we
call hv = |addv| the heigh of v, that is, the length of addv.

Example 2.5. Consider the modal arena and the formula tree of
(
a ⊃ �(b ∧ (c ⊃

^1d))
)
⊃ ^2(e ⊃ f ), then

^2

a �

e f

b

c ^1

d

⊃

⊃ ^2

a � ⊃

∧ e f
b ⊃

c ^1

d

adda =ε
add� =ε
addb =�
addc =�
add^1=�
addd =^1�
add^2=ε
adde =^2
add f =^2

If G is a modal arena and v ∈ VG, we define d(v) as the length of the →-paths from
v to a →-root w ∈

→

RG. Note that the property that all paths in a modal arena from a
vertex to any root have the same length is not trivial, but the proof can be found in [26,
Lemma 9]. The parity of a vertex v is the parity of d(v), which can be either even or
odd. We denote by v◦ and v• if the parity of v is respectively even or odd. Note that the
players ◦ and • can only play vertices of the corresponding parity, but the parity of the
modalities in which the vertex belongs may not be the same as the parity of the move.
By means of example, consider the atom a2 in Figure 1 which is ◦ but it is in the scope
of two •-modalities.

We conclude the section by remarking that modal arenas identify formulas modulo
the formula isomorphism f

∼ defined by the relations in Equation (2).

Proposition 2.6. If F and G are two formulas, then F f
∼ G ⇐⇒ ~F� = ~G�.

Proof. If follows form the definition of the modal arenas operations +, −. and ∼.. ut

3 Winning Strategies for CK

In this section we recall the definition of winning innocent strategy and we characterize
the ones corresponding to correct CK-proofs. We then provide a direct proof of the
correspondence between our winning innocent strategies and LCK-proofs by giving a
desequentialization and a sequentialization procedure. The first procedure describes
how to inductively define a winning strategy from a sequent calculus derivation. The
second procedure defines a method to reconstruct a derivation in sequent calculus using
the information contained in the winning strategy (and the proven formula).
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Definition 3.1. Let F be a formula. A move is a vertex of ~F�. Let p = p0 · · · pn be a
sequence of distinct moves (we denote by ε the empty sequence). If v and w are two

moves in p, we say that w justifies v whenever v
~F�
→w. We call a move pi in p a ◦-move

or •-move if i is respectively even or odd.
We say that p is a view in ~F� if the following conditions are fulfilled:

1. p is a play: if p , ε, then p0 ∈
→

R~F�;

2. p is justified: if i > 0, then pi
~F�
→pi−(2k+1) for a k ∈ N;

3. p is ◦-shortsighted: if p◦i+1 and p•i , then pi+1
~F�
→pi;

4. p is •-uniform: if p•i+1 and p◦i , then `(pi+1) = `(pi);
5. p is modal: pi ∈ VA~F� ∪ V^~F�.

Moreover, if p is a view, we say that

6. p is well-batched: |addp2k | = |addp2k+1 | for every 2k ∈ {0, . . . , n − 1}.

The predecessor of a non-empty view p is the sequence obtained by removing the last
move in p. The successor is the converse relation. A winning innocent strategy (or WIS
for short) for F (or over ~F�) is a finite non-empty set S of views in ~F� such that:

a. S is predecessor-closed: if p · v ∈ S then p ∈ S;
b. S is ◦-complete: if p ∈ S has even length, then every successor of p is in S;
c. S is •-deterministic and •-total: if p ∈ S has odd length, then exactly one successor

of p is in S.

A view is maximal in S if it is not prefix of any other view in S. We say that a WIS S
is trivial if S = {ε} and it is well-batched if all its views are.

Note that our definition of WIS on arenas of modality-free formulas is the same
of the one given in [11,21,26] where the modal condition trivially holds. Moreover, it
follows by definition of view (by the fact that is a play, justified and ◦-shortsighted) that
◦-moves and •-moves can only be vertices with the corresponding parity.

Remark 3.2. If G is a non-empty modal arena, then a WIS S on G must contain all
views of the form v with v ∈

→

RG, that is, S is non-trivial.

Definition 3.3. Let p = p0 · · · pn−1 be a view on a modal arena G. We write hp =
max{hv | v ∈ p} and we define the batched view of p as the hp × n matrix F (p) =(
F (p)0, . . . ,F (p)n

)
with elements in VG ∪ {ε} such that each column F (p)i is defined as

follows:

F (p)i =



F (p)hp
i = add

hpi
pi

...

F (p)hi+1
i = add1

pi

F (p)hi
i = ε

...

F (p)1
i = ε

F (p)0
i = pi
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−−−−−−−−−−−−− AX

a ` a


 = {a◦a•}


−−−−−−− 1
` 1


 = {ε}




−∥∥∥∥∥∥∥∥∥∥∥∥D1

Γ ` A

−∥∥∥∥∥∥∥∥∥∥∥∥D2

∆ ` B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧R

Γ, ∆ ` A ∧ B


 = {{D1}} ∪ {{D2}}


−∥∥∥∥∥∥∥∥∥∥∥∥D′

Γ, B ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R

Γ ` B ⊃ A


 = {{D′}}




−∥∥∥∥∥∥∥∥∥∥∥∥D′
Γ, B,C ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

Γ, B ∧C ` A


 = {{D′}}




−∥∥∥∥∥∥∥∥∥∥∥∥D′
Γ ` A
−−−−−−−−−−−−−−−−−−−−−− W
Γ, B ` A


 = {{D′}}


−∥∥∥∥∥∥∥∥∥∥∥∥D1

Γ ` A

−∥∥∥∥∥∥∥∥∥∥∥∥D2

B, ∆ ` C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ, A ⊃ B, ∆ ` C


 = {{D2}} ∪

{
ρ · τ | ρ = ρ′b• ∈ {{D2}}, τ = aτ′ ∈ {{D1}}, a→b

}



−∥∥∥∥∥∥∥∥∥∥∥∥D′
Γ, B, B ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− C
Γ, B ` A


 =

{
f (σ) | σ ∈ {{D′}} and f : V~Γ,B,B`A� → V~Γ,B`A� identifies the vertices on the B’s

}



−∥∥∥∥∥∥∥∥∥∥∥∥D′
Γ ` A
−−−−−−−−−−−−−−−−−−−−−−−− K�
�Γ ` �A


 = {{D′}}




−∥∥∥∥∥∥∥∥∥∥∥∥D′
Γ, B ` A

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K�
�Γ,^•B ` ^◦A


 = {{D′}} ∪ {^◦^•}

Fig. 3. How to desequentialize a LCK-derivation of Γ ` A into a CK-WIS for Γ ` A.

where hi = hp − hpi for each i ∈ {0, . . . , n}.

Each view p induces an equivalence relation
Gp
∼ over VG generated by the relation:

u
Gp
∼ 1w iff

u = F (p)h
2k and w = F (p)h

2k+1
for a 2k < n − 1 and a h ≤ hp

Figure 1 and Equation (1) show four examples of batched views.

Definition 3.4. Let S be a strategy on a modal arena G. We say that S is linked if it is

well-batched and for every p ∈ S the
Gp
∼ -classes are of the shape {v•1, . . . , v

•
n,w

◦}. This

induces the edge-relation u
Gp
⇀w iff u•

Gp
∼w◦.

We say that S is CK-batched if it is linked and if for each modal vertex w◦ occurring
in the address of a move in S the following conditions are fulfilled:

i. if w◦ ∈ V�
G

and v
Gp
⇀w for a p ∈ S, then v ∈ V�

G
;

ii. if w◦ ∈ V^
G

, then there is a unique u ∈ V^
G

in the set {v ∈ VG | v
Gp
⇀w for a p ∈ S}.

We call a CK-batched WIS a CK-winning innocent strategy (CK-WIS for short).

We can prove that CK-WIS are complete with respect to CK.

Lemma 3.5. If a formula F is provable in LCK, then there is a CK-WIS for F.

Proof. For each LCK-derivationD of F we define the CK-WIS {{D}} by induction over
D according to the rules in Figure 3. In fact, for each rule if its premise D′ or both
premisesD1 andD2 are CK-WISs, then alsoD is. ut

In order to provide sequentialization we prove three preliminary lemmas. The first
two lemmas give a way to sequentialize the CK-WISs when a ∧ in the right-hand side
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of the sequent or a ⊃ in the left-hand side of the sequent occurs. In the sequent cal-
culus LCK these connective require the use of rules splitting the context. In order to
avoid to reprove the splitting lemmas from [21], we adopt a simpler approach relying
on the presence of W and C in the sequent system. The third result proves that the pres-
ence of the two rules K� and K^ can be easily recognized and sequentialized by only
considering the shape of the conclusion sequent and the CK-framing conditions.

Lemma 3.6. Let Γ ` A1 ∧ A2 such that Γ does not contain ∧-formulas. If S is a CK-
WIS for Γ ` A1 ∧ A2, then there are CK-WISs S1 and S2 for Γ ` A1 and Γ ` A2.

Proof. For i ∈ {1, 2} we let Si be the set of views in S starting form a move in Ai plus
the empty view, that is, Si = {p ∈ S | p0 ∈

→

R~Ai�} ∪ {ε}. By definition of the arena
~Γ ` A1 ∧ A2� no move in Ai may occur in a view in S j whenever i , j. Hence S1 and
S2 are CK-WISs for Γ ` A1 and Γ ` A2 respectively. ut

Lemma 3.7. Let S be a CK-WIS for Γ′ ` c◦, hence c◦c• ∈ S. If Γ′ contains no ∧-
formulas and Γ′ , Γ, c•, then Γ′ = Γ, A ⊃ B{c•} for a formula A ⊃ B{c•} , c•

containing the occurrence c• of the atom c. Moreover there is a CK-WIS T for Γ ` A
and a CK-WIS R for Γ, A ⊃ B{c}, B{c} ` c.

Proof. By •-determinism and •-totality, there is a uniquely determined vertex c• such
that c◦c• ∈ S. Since Γ′ , Γ, c• does not contain ∧-formulas, then Γ′ contains a formula
A ⊃ B{c•} and, by definition of WIS, there is a view c◦c•v ∈ S for any v ∈

→

R~A�.

We first show that for a v ∈
→

R~A� there is a maximal σ ∈ S such that v = σ2k and σi

is not a move in B{c•} for any i > 2k. If k = 1 the property holds. Otherwise, let i > 2k
such that σi is the first move in B{c•}, hence σi ∈

→

R~B{c•}�. By ◦-completeness, there is a
σ′ ∈ S such that σ′ = σ0 · · ·σiv. By iterating this reasoning S should contain a view of
infinite length. Hence the property holds.

Now observe that a σv with the previous property exists for a given v ∈
→

R~A�. Thus,
by ◦-completeness, for each w ∈

→

R~A� there is a σw with the same property and such that
σv

0 · · ·σ
v
2k−1 = σw

0 · · ·σ
w
2k−1. We define SplitA

S
to be the set containing such a view σw

for each w ∈
→

R~A�. All the σw share the same prefix. We use this SplitA
S

to define

T =
{
τ | there are σ and τ′ such that σττ′ ∈ SplitA

S

}
R =

{
ρ | there is no σ such that ρσ ∈ SplitA

S

}
By definition, T is a CK-WIS for Γ ` A and R is a CK-WIS for Γ, A ⊃ B{c}, B{c} ` c
strictly smaller than S. ut

Lemma 3.8. Let S be a CK-WISs for Γ′ ` A′ such that Γ′ contains no ∧-formulas and
at least one move from each formula in Γ′ occurs in a view in S.

– If A′ = �A, then Γ′ ` A′ is of the form �Γ ` �A and S is also a CK-WIS for Γ ` A.
– If A′ = ^A, then Γ′ ` A′ is of the form �Γ,^•B ` ^◦A and S = S′ ∪ {^◦,^◦^•}

where S′ is a CK-WIS for Γ ` A.
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Sequent Shape of S Shape ofDS

` 1 S = {ε} −−−−−−− 1
` 1

a ` a S = {ε, a, aa} −−−−−−−−−−−−− AX
a ` a

Γ, B ∧C ` A any

−
DS

∥∥∥∥∥∥∥∥∥∥∥∥
Γ, B,C ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

Γ, B ∧C ` A

Γ ` B ⊃ A any

−
DS

∥∥∥∥∥∥∥∥∥∥∥∥
Γ, B ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R

Γ ` B ⊃ A

Γ ` A1 ∧ A2

Γ contains no ∧-formula

S = T ∪ R

T =
{
τ ∈ S | τ contains no moves in A2

}
R =

{
ρ ∈ S | ρ contains no moves in A1

}
−

DT

∥∥∥∥∥∥∥∥∥∥∥∥
Γ ` A1

−
DR

∥∥∥∥∥∥∥∥∥∥∥∥
Γ ` A2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧R

Γ, Γ ` A1 ∧ A2
======================================== C
Γ ` A1 ∧ A2

Γ, A ⊃ B{c•} ` c◦

c atomic and A ⊃ B{c•} , c•

B{c•} contains the atom c•

Γ contains no ∧-formulas

c◦c• ∈ S
T =

{
τ | there are σ and τ′ such that σττ′ ∈ SplitA

S

}
R =

{
ρ | there is no σ such that ρσ ∈ SplitA

S

}
−

DT

∥∥∥∥∥∥∥∥∥∥∥∥
Γ ` A

−
DR

∥∥∥∥∥∥∥∥∥∥∥∥
Γ, A ⊃ B{c•}, B{c•} ` c◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ, Γ, A ⊃ B{c•}, A ⊃ B{c•} ` c◦
======================================================================================= C

Γ, A ⊃ B{c•} ` c◦

Γ, B ` A S contains no moves in B

−
DS

∥∥∥∥∥∥∥∥∥∥∥∥
Γ ` A
−−−−−−−−−−−−−−−−−−−−−− W
Γ, B ` A

�Γ ` �A
at least one move of each formula

in �Γ occurs in S

−
DS

∥∥∥∥∥∥∥∥∥∥∥∥
Γ ` A
−−−−−−−−−−−−−−−−−−−−−−−− K�
�Γ ` �A

�Γ,^•B ` ^◦A
at least one move of each formula

in �Γ,^•B occurs in S

−
DS\{^◦ ,^◦^•}

∥∥∥∥∥∥∥∥∥∥∥∥
Γ, B ` A

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
�Γ,^B ` ^A

Fig. 4. Sequentialization procedure

Proof. By the CK-batched condition, if at least one move from each formula in Γ′

occurs in a view in S, then each principal modality of a formula in Γ′ must occur in
the first row of a batched view of a p ∈ S. Moreover, all the principal modalities of the

formulas in Γ′ must be in
Gp
⇀-relation with the principal modality of A′ for a p ∈ S.

Hence Γ′ ` A′ is either of the form �Γ ` �A or �Γ,^B ` ^A. In the first case, we
conclude by remarking that if we remove the first row in any batched view F (p) with
p ∈ S, then we obtain a batched view of the same p, but in Γ ` A. The second case is
similar, but we here have to consider that the strategy also contains the two views ^◦

and ^◦^•. ut

We can now prove the following correspondence between CK-proofs and CK-WISs.

Theorem 3.9. Let F be a formula. We have
LCK

F iff there exists a CK-WIS for F.

Proof. ItD is a LCK-derivation of F, we can define a CK-WISSD for F as in Lemma 3.5.
To prove the converse, we define a LCK-derivation DΓ`A

S
for the sequent Γ ` A by in-

duction on the lexicographic order on the triple 〈|S|, ‖A‖, ‖Γ‖〉. We remark that if in no
view in a CK-WIS S for Γ, B ` A contains moves in B, then S is a CK-WIS also for
Γ ` A. Observe that in case of ^-formulas occurring in Γ, we may have that only one
of these ^s occurring in a view. In this case, we expect to observe in the final derivation
a K^-rule preceded (bottom-up) by a W-rule.
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Moreover, since ~Γ, B ∧C ` A� = ~Γ, B,C ` A�, then each CK-WIS for the first
sequent is a CK-WIS for the second one, but the size of the lhs sequent decreases. A
similar reasoning applies to the sequents Γ ` B ⊃ C and Γ, B ` C. We conclude by
Lemmas 3.6, 3.7 and 3.8.

In Figure 4 we give a table resuming the sequentialization step to apply according
to the shape of the sequent and the shape of the CK-WIS. The conditions on the sequent
(first column) can be checked in the given order, triggering the corresponding sequen-
tialization step. ut

4 Compositionality of Winning Strategies

In order to simplify the presentation of our compositionality result, we propose a slightly
different approach to the proof of winning strategies compositionality with respect to
the one normally used in the literature, e.g. [11,17], where proofs are given by rea-
soning on specific sequences6 over the arena ~A ⊃ (B ⊃ C)� f

∼ ~A, B ` C�, such that
these views can be projected on views over the arenas of A ` B and B ` C. Instead,
we here reason directly over (non ◦-shortsighted) views over the arena ~A, B ⊃ B ` C�.
This allows us to preserve the parities of vertices when performing the projections.

To obtain an intuition behind the idea, consider the additional rule hide removing
a formula of the shape B ⊃ B occurring in the left-hand side of a sequent in order to
simulate the cut as shown below.

Γ ` B ∆, B ` C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ, ∆ ` C
 

Γ ` B B, ∆ ` C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ, ∆, B ⊃ B ` C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− hide

Γ, ∆ ` C

This approach complies with the slogan “interaction + hide” often mentioned in the lit-
erature, e.g., [1,17]. Here the interaction is represented by the ⊃L-rule, while the hiding
is performed by erasing the formula A ⊃ A using the hide-rule.

In terms of views, our interaction is defined by composing views from the two
corresponding strategies by “gluing” them using a copycat strategy on the cut-formula
while the hiding consist of ignoring the moves in the hidden formulas.

Notation 4.1. If ∆ is a list (of occurrences) of formulas in Γ ` A and p is a sequence
of moves in ~Γ ` A�, we denote by p|∆ the projection of p on ∆, that is, the sequence
obtained by erasing from p any move not in ∆. By means of example, if A = a ⊃ e,
B = b ∧ d and C = c, then baadcebda|A,C = aacea.

Whenever we consider two distinct occurrences B1 and B2 of the same formula B,
we assume ·⊥ to be the bijection between the vertices in V~B1� and in V~B2� correspond-
ing to the same occurrence of the atom or modality in B. Note that b is a ◦-move (resp.
•-move) in B1 iff b⊥ is an •-move (resp. ◦-move) in B2.

Definition 4.2. Let T and R be WISs respectively for A ` B1 and B2 ` C such that B1
and B2 are occurrences of the same formula B, and let τ ∈ T and ρ ∈ R.7

6 Note that these sequences are not views.
7 Note that a CK-WIS for Γ, A ` B is also a CK-WIS for A ` (

∧
Γ) ⊃ B. This allows us to

consider only CK-WISs for sequents of the shape A ` B.
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We define the interaction of τ ad ρ over B as the sequence of moves σ = τ
B
ρ over

~A, B1 ⊃ B2 ` C� following ρ (resp. τ) until a •-move b in B2 (resp. B1) is reached; then
it switches to the corresponding ◦-move b⊥ in τ (resp. ρ), if it exists. That is,

σ0=ρ0 and σi+1=



τk+1 where σi = τk is a move in A or a ◦-move in B1

ρk+1 where σi = ρk is a move in C or a ◦-move in B2

b⊥ where σi = b is a •-move in B1 and b⊥ occurs in ρ
b⊥ where σi = b is a •-move in B2 and b⊥ occurs in τ
not defined otherwise

We define the composition τ
B
∗ ρ of τ and ρ over B as the projection of τ B

ρ over A

and C, that is, τ
B
∗ ρ = (τ B

ρ)|A,C . We define the composition of T and R over B as the
following set of sequences over ~A ` C�

T
B
∗ R = {τ

B
∗ ρ | τ ∈ T , ρ ∈ R}

Intuitively, when defining the interaction , the player ◦ changes way to play: when-
ever the player • plays a move b in B1 (or B2), its successive ◦-move is the correspond-
ing b⊥ in B2 (resp. B1) instead of playing according to ◦-shortsightedness. By definition
(τ B

ρ)|A,B1 = τ and (τ B
ρ)|B2,C = ρ, hence (τ B

ρ) is always finite. The rest of this

section is devoted to prove that if T and R are CK-WISs, then also is T
B
∗ R.

Example 4.3. Consider the sequents A ` B1 = (c ⊃ a) ⊃ b ` (d ∧ (c ⊃ a)) ⊃ b and
B2 ` C = (d ∧ (c ⊃ a)) ⊃ b ` (d ∧ ((e ⊃ e) ⊃ a)) ⊃ b and the view τ = bbaacc on
~A ` B1� and the views ρ1 = bbaaee and ρ2 = bbdd on ~B2 ` C�. Note that these views
are the unique maximal views in the unique WISs for these sequents. Then we can

picture the construction of τ
B
∗ ρ1 as follows, where on the left-hand side we highlight

the two occurrences of ~B� on which the views interact, and the black arrows identify
the sequences of moves on the arenas.

τ
B
ρ1 = bbbbaaaaee τ

B
∗ ρ1 = bbaaee

c a b
d b

c a

d b
c a b

d
e e a

projection
 

c a b
d b

e e a

Similarly τ B
ρ2 = bbbbaa and τ

B
∗ ρ2 = bba. Note that in this case the definition of

τ
B
ρ2 stops because the successive should be a⊥ but it does not occur in ρ.

Remark 4.4. If A, B1, B2 and C are formulas with B1 and B2 occurrences of the
same formula B, then atoms and modalities in these formulas have the same parity
in ~A, B1 ⊃ B2 ` C� and in ~A ` B1� and ~B2 ` C�.

Our definitions allow us to show that the composition of well-batched WISs is a
well-batched WIS.
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Lemma 4.5. Let T and R be well-batched WIS for respectively A ` B1 and B2 ` C

such that B = B1 = B2. Then S = T
B
∗ R is a well-batched WIS for A ` C.

Proof. We first prove that that for each τ ∈ T and ρ ∈ R we have that τ
B
∗ ρ is a

well-batched view over ~A ` C� since it verifies all conditions in Definition 3.1. For
any σ = τ

B
∗ ρ we have that

1. σ is a play: since σ0 ∈
→

R~B`C� and
→

R~B`C�=
→

R~C�=
→

R~A`C�.
2. σ is justified: if a move in ~A� is justified in τ by a move in ~A� or if a move in ~C�

is justified in ρ by a move in ~C�, then we can conclude. By definition of ~B ` C�
no move in ~C� can be justified in ρ by a move in B. We conclude by remarking
that if a move in ~A� is justified in τ by a move in ~B�, then this move must be a

root of ~A�, and then v
~A`C�
→ σ0 since u

~A`C�
→ w for all u ∈

→

R~A� and w ∈
→

R~C�.
3. σ is ◦-shortsighted: by definition of σ we must have that both σ2k+1 and σ2k+2 are

either in ~A� or in ~C�. We conclude by hypothesis on ρ and τ.
4. σ is •-uniform: by induction using the •-uniformity of τ and ρ and the fact that

`(v) = `(v⊥). In fact, let σ̃ = τ
B
ρ. If σ̃i is a move in A (in C), σ̃i+1 · · · σ̃i+k−1 are

moves over B1 and B2, and σ̃i+k is a move in C (respectively in A), then we can
prove by induction that `(σ̃i) = `(σ̃i+ j) for all j ∈ {1, . . . , k}.

5. σ is modal: follows by the fact that no move in τ or ρ is a �-vertex.
6. σ is well-batched: it suffices to remark that if addv = m1 · · ·mk, then addv⊥ =

m⊥1 · · ·m
⊥
k . We can conclude similarly to the proof of •-uniformity since in τ B

ρ in
all moves in a subsequence in B1 and B2 have constant height.

To conclude we show that that S is

a. predecessor-closed: it follows by the fact that T B
R = {τ

B
ρ | τ ∈ T , ρ ∈ R} is

predecessor closed.
b. ◦-complete: if σv• ∈ S then v• appears in a view τ ∈ T or in a view ρ ∈ R as an
•-move. We conclude by the definition of the composition ∗ and by the fact that S
and R are WIS.

c. •-deterministic and •-total: by induction on the length of τ B
ρ we can prove that

each v◦ ∈ τ B
ρ is followed by a unique •-move since T and R are •-deterministic

and each v⊥ ∈ ~B1� and w⊥ ∈ ~B2� is uniquely determined respectively by a v ∈
~B2� and a w ∈ ~B1�. If •-totality does not hold, then there should be a maximal
view in S of odd length. That is, there should be τ ∈ T and ρ ∈ R such that τ B

ρ = σ̃ = σ̃′v◦s for a v◦ move in A or C, and a sequence s of moves in B1 or in
B2. By •-totality of T and R we can assume that σ̃ terminates with an •-move σ̃n.
Moreover, σ̃n would be justified by a ◦-move σ̃h in B1 or B2 such that σ̃h−1 = σ̃⊥h .

Thus we could find τ′ ∈ T and ρ′ ∈ R such that τ′ B
ρ′ = σ̃1 . . . σ̃nσ̃

⊥
n , contradicting

the maximality of σ̃. ut

We can now prove that the composition of CK-WISs is a CK-WIS.

Theorem 4.6. Let T and R be CK-WIS for respectively A ` B1 and B2 ` C such that

B1 and B2 are occurrences of the same formula B. Then S = T
B
∗ R is a CK-WIS.
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Proof. After Lemma 4.5 it suffices to prove that S is CK-batched8. To improve read-

ability we write τ
∼, ρ
∼,

τ
⇀, and

ρ
⇀ instead of ~A`B1�τ

∼ ,
~B2`C�ρ
∼ ,

~A`B1�τ
⇀ and

~B2`C�ρ
⇀ respectively.

For this purpose we define for each σ = τ ∗ ρ the relation
τ ρ
⇀ on the vertices in

~A, B1 ⊃ B2 ` C� as the transitive closure of the following relation

v
τ ρ
⇀ 1w ⇐⇒ v•

τ
⇀w◦ or v•

ρ
⇀w◦ or v = w or v◦ = (w•)⊥

where we write w
⊥
↼v if v◦ = (w•)⊥.

We use
τ ρ
⇀ to prove the properties of σ

∼. In particular, if v τ
∼1w in V~A� or v ρ

∼1w in
V~C�, then vσ∼1w. Observe that if T and R are linked, then

τ
⇀ and

ρ
⇀ can be considered

as functions associating a vertex v• a unique vertex w◦. Then also
τ ρ
⇀ can be considered

as a function since
⊥
↼ is a bijection.

If a σ
∼-class contains only vertices either in A or in C, then we can conclude by

hypothesis on T and R. Otherwise, we only prove the case when v
τ ρ
⇀w with v ∈ V~A�

and w ∈ V~C� since the case with v ∈ V~C� and w ∈ V~A� is proven symmetrically.

By definition of v
τ ρ
⇀w we have τ ρ = γ0 · · · γiβ0 · · · βkα0 · · ·α j with w = addh

γi
and

v = addh
α0

, and b1 . . . , bn ∈ V~B2� such that in the batched view of τ ρ we have the
columns below, where at the bottom of each column we annotated the player playing
the move and the formula in which the move and the vertices in its address belong.

addh
move w◦

ρ
↼ b•1

⊥
↼ b⊥1

τ
∼ b⊥2

⊥
↼ b2

ρ
∼ b3

⊥
↼ b⊥4

τ
∼ · · ·

ρ
∼ bn

⊥
↼ (b⊥n )◦

τ
↼ v•

...
...

...
...

...
...

...
...

...
...

move γi ← β0
⊥
↼ β1 β2

⊥
↼ β3 β4

⊥
↼ β5 · · · βk−1

⊥
↼ βk ← α0

Player ◦ • ◦ • ◦ • ◦ · · · • ◦ •

Arena of C B2 B1 B1 B2 B2 B1 · · · B2 B1 A

(4)

The proof that Conditions i and ii from Definition 3.4 hold follows by a similar

reasoning on
τ ρ
⇀ using the fact thatT andR are CK-batched. More precisely, if `(v) = ^

or `(w) = �, then we have `(v) = `(bi) = `(b⊥i ) = `(w) for each i ∈ {1, . . . , n}. ut

Lemma 4.7. Let A, B,C and D formulas. If S is a CK-WIS for A ` B and T is a

CK-WIS for B ` C and R is a CK-WIS for C ` D, then (S
B
∗ T )

C
∗ R = S

B
∗ (T

C
∗ R).

Proof. The operation is associative by Definition 4.2. Moreover, for any ∆ and Σ
sequences of formulas, the projections on ∆ and Σ permute, that is, (s|∆)|Σ = s|∆,Σ =

(s|Σ)|∆. We conclude by observing that for any σ ∈ S, τ ∈ T and ρ ∈ R we have

σ
B
∗ (τ

C
∗ ρ) = (σ A (τ

B
∗ ρ))|A,D = (σ B ((τ C

ρ)|B,D))|A,D =

= (σ B (τ C
ρ))|A,D = ((σ B

τ) C
ρ)|A,D =

= (((σ B
τ)|A,C) C

ρ)|A,D = ((σ
B
∗ τ) C

ρ)|A,D = (σ
B
∗ τ)

C
∗ ρ

ut

8 This proof is similar to the one in [20].
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5 Game Semantics for Constructive Modal Logic

In the previous sections, we provide various results on the correspondence between
proofs in CK and CK-WISs, as well as the compositionality properties of the latter.
This allows us to formally state our full completeness result.

Theorem 5.1. The CK-WISs form a full-complete denotational semantics for CK.

Proof. Let us consider the well-defined map

{{·}} :
{
LCK-derivations of F

}
→

{
CK-WISs for F

}
from the proof of Lemma 3.5. After Theorem 3.9 we know that there is a map

DF
(·) :

{
CK-WISs for F

}
→

{
LCK-derivations of F

}
which guarantees that each CK-WIS is the image of a LCK-derivation. In particular
we have that {{DF

S
}} = S, i.e., the map {{·}} is the left-adjoint of DF

(·). In Theorem 4.6
we prove that CK-WISs compose. Moreover, by Lemma 4.7 composition is associative
with neutral element the trivial strategy. ut

5.1 Game semantics for CD

The results presented in this paper can be straightforwardly extended to the constructive
modal logic CD, which is obtained by extending CK with the modal axiom d shown
below left:

d : �A ⊃ ^A
Γ ` A

−−−−−−−−−−−−−−−−−− D
�Γ ` ^A

A sound and complete (cut-free) sequent system for this logic can be obtained by adding
the sequent rule above on the right to the sequent system for CK.

In order to define WIS capturing proofs in CD we need some additional definitions.

Definition 5.2. Let S be a WIS over an arena G. We say that S is CD-batched if it
is atomic, that is, the views in S contains only atomic vertices, linked, and if for each
modal vertex w◦ occurring in the address of a move in S the following conditions are
fulfilled:

i. if w◦ ∈ V�
G

and v
Gp
⇀w for a p ∈ S, then v ∈ V�

G
;

ii. if w◦ ∈ V^
G

, then there is at most a u ∈ V^
G

in the set {v ∈ VG | v
Gp
⇀w for a p ∈ S}.

Note that the first condition is the same first condition from Definition 3.4. The reason
why we do not need the information about the diamonds in the strategies for CD de-
pends on a property of the logic (see [2, Theorem 2]). The idea is that an instance of
weakening can permute below K^-rules, transforming it into a an instance of the D-rule,
as shown below (while in CK the information about the left-hand side diamond must be
kept in some way):
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−
D

∥∥∥∥∥∥∥∥∥∥∥∥
Γ ` A
−−−−−−−−−−−−−−−−−−−−−− W
B, Γ ` A

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
^B,�Γ ` ^A

 

−
D

∥∥∥∥∥∥∥∥∥∥∥∥
Γ ` A

−−−−−−−−−−−−−−−−−−−−−−−−− D
�Γ ` ^A

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− W
^B,�Γ ` ^A

We then define a CD-WIS as a CD-batched WIS. This allows to extend Theo-
rems 3.9 and 4.6 with no effort, that is

Theorem 5.3. The CD-WISs form a full-complete denotational semantics for CK.

6 Conclusion and Future Work

In this paper we have defined a game semantics for the constructive modal logic CK and
have shown how it can be extended for the logic CD. We have proved full completeness
and compositionality of our winning strategies, and thus have shown that our model
provides a full complete denotational semantics for CK and CD.

We are currently investigating the possibility of extending our semantics to the log-
ics CT and CS4, that are obtained by adding the modal axioms

T : (A ⊃ ^A) ∧ (�A ⊃ A) and 4 : (^^A ⊃ ^A) ∧ (�A ⊃ ��A)

However, the problem that arises is that for these logics also the � should be allowed
as move in order to keep track of the rules for T and 4. However, the •-determinism of
winning strategies depends on the fact that atoms and diamonds are paired by the rules
which introduce them. This means that when boxes are allowed as moves, determinism
cannot hold. We have to leave this issue for future work.

It is worth noticing that our result is strongly related to the game semantics for light
linear logic as defined in [21]. In future work we will investigate the relation between
our approach and this latter in order to provide a game semantics for elementary and
light linear logic.

Finally, we conjecture the existence of a one-to-one correspondence between our
CK-WISs and the λ-calculi for constructive modal logics [3,4,12]. This investigation
will also be object of future research.

Acknowledgements We would like to thank Christian Fermüller, Robert Freiman, Yoni
Zohar, and anonymous referees for the useful feedback which helped us to improve the
final version of the manuscript.

References

1. Abramsky, S., Malacaria, P., Jagadeesan, R.: Full abstraction for pcf. In: International Sym-
posium on Theoretical Aspects of Computer Software. pp. 1–15. Springer (1994)

2. Acclavio, M., Catta, D., Straßburger, L.: Towards a Denotational Semantics for Proofs
in Constructive Modal Logic (Apr 2021), https://hal.archives-ouvertes.fr/
hal-03201439, preprint

https://hal.archives-ouvertes.fr/hal-03201439
https://hal.archives-ouvertes.fr/hal-03201439


Game Semantics for Constructive Modal Logic 17

3. Bellin, G., De Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a basic con-
structive modal logic. In: In Proceedings of Methods for Modalities (05 2001)

4. Bierman, G.M., de Paiva, V.C.: On an intuitionistic modal logic. Studia Logica 65(3), 383–
416 (2000)
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