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Abstract

In this paper we provide two new semantics for proofs in the constructive
modal logics CK and CD.

The first semantics is given by extending the syntax of combinatorial proofs for
propositional intuitionistic logic, in which proofs are factorised in a linear fragment
(arena net) and a parallel weakening-contraction fragment (skew fibration). In
particular we provide an encoding of modal formulas by means of directed graphs
(modal arenas), and an encoding of linear proofs as modal arenas equipped with
vertex partitions satisfying topological criteria.

The second semantics is given by means of winning innocent strategies of a
two-player game over modal arenas. This is given by extending the Heijltjes-
Hughes-Straßburger correspondence between intuitionistic combinatorial proofs
and winning innocent strategies in a Hyland-Ong arena. Using our first result,
we provide a characterisation of winning strategies for games on a modal arena
corresponding to proofs with modalities.

1 Introduction
Semantics is the area of logic concerned with specifying the meaning of the logical
constructs. We distinguish between two main kind of semantic approach to logic. The
first, the model-theoretic approach, is concerned with specifying the meaning of formu-
las in terms of truth in some model. The second, the denotational semantic approach,
is concerned with specifying the meaning of proofs of the logic under a compositional
point of view. Proofs are interpreted as mathematical objects called denotation, and the
meaning of composed proofs is obtained by composing denotations.

Modal logics are extensions of classical logic making use of modalities to qualify
the truth of a judgement. According with the interpretation of such modalities, modal
logics find applications, for example, in knowledge representation [40], artificial in-
telligence [33] and verification [21]. More precisely, modal logics are obtained by
extending classical logic with a modality operator � (together with its dual operator
^), which are usually interpreted as necessity (respectively possibility).

When we move from the classical to the intuitionistic setting we are forced to
make some choices since there are many different flavours of “intuitionistic modal
logics” (see, e.g., [15, 36, 35, 37, 9, 13]). This range of possible extensions of the in-
tuitionistic logic depends on the fact that the classical k-axiom �(A ⊃ B) ⊃ (�A ⊃ �B)
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−−−−−−−−− AX
b ` b
−−−−−−−−−−−−−− ⊃R

` b ⊃ b
−−−−−−−−− AX
a ` a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

(b ⊃ b) ⊃ a ` a

−−−−−−−−− AX
b ` b
−−−−−−−−−−−−−− ⊃R

` b ⊃ b
−−−−−−−−− AX
a ` a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

(b ⊃ b) ⊃ a ` a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧R

(b ⊃ b) ⊃ a, (b ⊃ b) ⊃ a ` a ∧ a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− C

(b ⊃ b) ⊃ a ` a ∧ a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− W
c, (b ⊃ b) ⊃ a ` a ∧ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
^c,�((b ⊃ b) ⊃ a) ` ^(a ∧ a)

====================================================================== ⊃R

�(b ⊃ b) ⊃ a) ⊃ (^c ⊃ ^(a ∧ a))

−−−−−−−−− AX
b ` b
−−−−−−−−−−−−−− W
c, b ` b
−−−−−−−−−−−−−−−−−− ⊃R

c ` b ⊃ b

−−−−−−−−− AX
a ` a

−−−−−−−−− AX
a ` a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

a, a ` a ∧ a
−−−−−−−−−−−−−−−−−−−−−−− C
a ` a ∧ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

c, (b ⊃ b) ⊃ a ` a ∧ a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
^c,�((b ⊃ b) ⊃ a) ` ^(a ∧ a)

====================================================================== ⊃R

�(b ⊃ b) ⊃ a) ⊃ (^c ⊃ ^(a ∧ a))

−−−−−−−−− AX
b ` b
−−−−−−−−−−−−−− ⊃R

` b ⊃ b

−−−−−−−−− AX
a ` a

−−−−−−−−− AX
a ` a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

a, a ` a ∧ a
−−−−−−−−−−−−−−−−−−−−−−− C
a ` a ∧ a
−−−−−−−−−−−−−−−−−−−−−−− W
c, a ` a ∧ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

c, (b ⊃ b) ⊃ a ` a ∧ a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
^c,�((b ⊃ b) ⊃ a) ` ^(a ∧ a)

====================================================================== ⊃R

�(b ⊃ b) ⊃ a) ⊃ (^c ⊃ ^(a ∧ a))

b b a a

b b a a

^

� ^c

� ((b ⊃ b) ⊃ a) ⊃ ( ^c ⊃ ^ (a ∧ a ))

b b a a

a a

^

� ^c

� ((b ⊃ b) ⊃ a) ⊃ ( ^c ⊃ ^ (a ∧ a ))

�(( b ⊃b) ⊃a) ⊃ (^c⊃^(a∧a))
◦ a
• a
◦ b
• b

,

�(( b ⊃b) ⊃a) ⊃ (^c⊃^(a∧a))
◦ a
• a
◦ b
• b

,

�(( b ⊃b) ⊃a) ⊃ (^c⊃^(a∧a))
◦ ^

• ^

Figure 1: Above: three derivations of the formula F = �((b ⊃ b) ⊃ a) ⊃ (^c ⊃
^(a ∧ a)) together with their corresponding CK-ICP. Below: the three maximal views
on the modal arena of F in the CK-WIS corresponding to the above proofs.

is no longer sufficient to express the behaviour of the modality ^ as it is no longer the
dual of �. We here consider the minimal approach and only add the axiom �(A ⊃ B) ⊃
(^A ⊃ ^B), leading to what in the literature is now called constructive modal logics
[36, 9, 20, 32, 14, 27].

Both the denotational approach and the model-theoretic approach have been de-
veloped in the literature on constructive modal logics. One of the desired feature of
denotational models is full completeness: in a full complete model every denotation is
the interpretation of some proof. Reasoning about the property of full complete mod-
els allows one to have a syntax-free characterization of the property of proofs. We say
that a denotational model is concrete if its elements are not obtained by the quotient
on proofs induced by cut-elimination. To our knowledge, the only full complete de-
notational model for this logic is not concrete since defined by the quotient of their
λ-calculi with respect to β-reduction [7, 9].

The purpose of this paper is to lay the foundations for a concrete denotational full
complete model in terms of a game semantics [1, 26, 31] for this logic by providing
a definition of proofs denotations. Game semantics is a denotational semantics where
proofs are denoted by winning strategies for a two-player game. In [39] it is shown how
the syntax of intuitionistic combinatorial proofs (or ICPs), a graphical proof system for
propositional intuitionistic logic, provides some intuitive insights about the innocent
winning strategies (or WISs) in a Hyland-Ong arena [26, 34]. In order to define WIS
for constructive modal logics we extend this correspondence. For this, we first provide
the definition ICPs for these logics as shown in Figure 1.

Intuitionistic combinatorial proofs.
The syntax of combinatorial proofs has been introduced to address the problem of
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proof equivalence for classical logic [23, 24]. In the last years this syntax has been
extended to modal logics [5], multiplicative linear logic with exponentials [2], relevant
logics [4, 8], first order logic [25], and intuitionistic propositional logic [39]. Com-
binatorial proofs allow to represent “syntax-free” proofs, that is, to represent proofs
independently from a specific proof system [3, 38]. As consequence, we are able to
identify proofs up to some rules permutations, which is the reason why we also refer
to combinatorial proof as a semantics for proofs.

In the syntax of ICPs, formulas are represented by arenas, which are specific di-
rected acyclic graphs,

~((b ⊃ b) ⊃ a) ⊃ (a ∧ a)� = b1 b0 a1 a2 a0 (1)

and proofs of a formula F are represented as specific graph homomorphisms, called
skew fibrations, from an arena net (i.e. an arena with an equivalence relation ∼ over
vertices satisfying some topological conditions) to the arena of F. In the example
below, we represent the ∼-partitions by dashed edges, the skew fibration by dotted
arrows, and we write the conclusion F as formula on the left and as arena on the right.

b b a a
a a

((b ⊃ b) ⊃ a ) ⊃ (a ∧ a)

b b a a
a a

b b a a a

(2)

But both represent the same ICP.
In order to represent proofs of modal formulas, we define modal arenas (or MAs),

i.e. we characterise labeled dags with two type of edges which can be uniquely asso-
ciated to formulas

~(�(b ⊃ b) ⊃ ^a) ⊃ ^(a ∧ a)� =
� ^ ^

b b a a a
(3)

We then identify the topological conditions which allows us to represent proofs as skew
fibrations from a modal arena net to the MA representing the formula to prove.

b b a a

a a

� ^ ^

�(( b ⊃ b ) ⊃ ^ a ) ⊃ ^ ( a ∧ a)

In particular, each ∼-class (which we represent by linking its vertices by means of
dashed edges) in the partition represent either an axiom pairing two atom-labeled ver-
tices, or a set of modalities introduced by a single application of an axiom k.

Game semantics for constructive modal logic. In intuitionistic propositional
logic, we consider two-players games played on the arena of a formula F (we denote
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the players by ◦ and •, but in the literature they are denoted by O and P, standing for
opponent and proponent).

Each play consists of an alternation of ◦-moves and •-moves, that are vertices of
the arena of F. The first move in a play is a ◦-move selected among the →-roots of the
arena of F. Each subsequent move of a player must be justified by a previous move of
the other player, that is, the selected vertex must→-point a vertex previously played by
the other player. The game terminates when one player has no possible moves, losing
the play.

A winning innocent strategy (for •) is a set of plays which takes into account every
possible ◦-move, while each •-move is uniquely determined (and justified) by one of
the previous ◦-moves.

As shown in [39], the winning strategy over the arena in Equation (1) with maximal
views

a◦0a•1b◦0b•1 and a◦2a•1b◦0b•1

can be seen as the image of specific paths in the arena net by the skew fibration in
the ICP in Equation (2). Such paths are the ones in which the ◦-move is followed by
the unique •-move in the same ∼-class. In this paper we show that a similar corre-
spondence can be established for constructive modal logics, provided some additional
conditions on winning strategies for modal arenas (see Figure 1).

In fact, the presence of modalities requires a new notion of frames in a play: when-
ever ◦ plays a move in the scope of a new modality, that is, a modality whose scope
contains no previous moves of the play, the next •-move must be in the scope of the
same number of modalities. This allows us to establish a relation between the modal-
ities in the modal arena and to group them in frames accordingly. Intuitively, frames
allow to certify the correct application of the modal axioms.

Outcomes of the paper. In this paper we provide the definition of ICPs and WISs
for the constructive modal logics CK and CD. For this purpose, we show a decomposi-
tion theorem allowing to transform proofs of a formula into factorised proofs, that are
proofs consisting of a linear part and a weakening-contraction part. We show sound-
ness and completeness of these semantics and we prove the following full completeness
result: {

factorised proof of F
}
�

{
ICPs of F

}
�

{
WISs on ~F�

}
To our knowledge no game semantics for modal logic are discussed in the literature.
Our game semantics approach paves the way to concrete full-complete denotational
models for modal logics.

Organisation of the paper. In Section 2 we show a decomposition theorem by
providing a polarized sequent calculus [29, 30] which also include some deep inference
rules [18, 10, 16]; in Section 3 we establish a correspondence between certain labeled
directed graphs (modal arenas) and modal formulas; these graphs, enriched with a
partition of their vertices, are used in Section 4 to encode linear proofs; moreover, in
Section 5 we show how to represent structural derivations by means of skew fibrations
between modal arenas; in Section 6 we provide a definition of ICPs for CK and CD,
and in Section 7 we use them to define winning innocent strategies for these logics.
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−−−−−−−−− AX
a ` a

Γ ` A ∆, A ` B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− cut

Γ,∆ ` B

Γ, A, A ` B
−−−−−−−−−−−−−−−−−−−−−− C
Γ, A ` B

Γ ` B
−−−−−−−−−−−−−−−− W
Γ, A ` B

Γ, A ` B
−−−−−−−−−−−−−−−−−−−− ⊃R

Γ ` A ⊃ B

Γ ` A ∆, B ` C
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ,∆, A ⊃ B ` C

Γ ` A ∆ ` B
−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧R

Γ,∆ ` A ∧ B

Γ, A, B ` C
−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

Γ, A ∧ B ` C
Γ ` A
−−−−−−−−−−−−−−−−− K�
�Γ ` �A

A,Γ ` B
−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
^A,�Γ ` ^B

Γ ` A
−−−−−−−−−−−−−−−−−−−−−−−−−−−− K⊥
^⊥,�Γ ` ^A

Γ ` A
−−−−−−−−−−−−−−−−−− D
�Γ ` ^A

IMLL = {AX,⊃R,⊃L,∧L,∧R} LI = IMLL ∪ {C,W}
IMLL-CK = IMLL ∪ {K�,K^,K⊥} LCK = LI ∪ {K�,K^}
IMLL-CD = IMLL ∪ {K�,K^,D} LCD = LI ∪ {K�,K^,D}

Figure 2: Sequent rules and sequent systems for constructive modal logics considered
in this paper

−−−−−−−−−−− ax
a•, a◦

Γ•, A◦
−−−−−−−−−−−−−−−−−−− w•
Γ•, B•, A◦

Γ•, A•, A•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−−−− c•

Γ•, A•B◦

Γ•, A•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−(◦
Γ•, (A( B)◦

Γ•, A◦ ∆•, B•,C◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(•
Γ•,∆•, (A( B)•,C◦

Γ•, A◦ ∆•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− �◦
Γ•,∆•, (A � B)◦

Γ•, A•, B•,C◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− �•
Γ•, (A � B)•,C◦

Γ•, A◦
−−−−−−−−−−−−−−−−−− k�
�Γ•,�A◦

A•,Γ•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k^
^A•,�Γ•,^B◦

Γ•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k⊥
^⊥•,�Γ•,^B◦

Γ•, A◦
−−−−−−−−−−−−−−−−−−− d
�Γ•,^A◦

IMLL = {ax,(◦,(•,�•,�◦} LI = IMLL ∪ {c•,w•}
IMLL-CK = IMLL ∪ {k�, k^, k⊥} LCK = LI ∪ {k�, k^}
IMLL-CD = IMLL ∪ {k�, k^, d} LCD = LI ∪ {k�, k^, d}

Figure 3: Polarised sequent rules and polarised sequent systems for the constructive
modal logics considered in this paper

LI
↓

=

 Γ{^⊥•}
−−−−−−−−−−−−−−− w^

↓Γ{^A•}
,

Γ{A•}
−−−−−−−−−−−−−−−−−−−−− w�

↓Γ{A � B•}
,

Γ{A◦}
−−−−−−−−−−−−−−−−−−−−−− w(

↓Γ{B( A◦}
,

Γ{(A � A)•}
−−−−−−−−−−−−−−−−−−−−−−−− c•

↓Γ{A•}


Figure 4: Deep inference rules for weakening and contraction

2 Preliminaries on Constructive modal logics
In this paper we consider the modal formulas generated by a countable set of (atomic)
propositional variablesA = {a, b, . . . } via the following grammar

A, B ::= a | A ⊃ B | A ∧ B | �A | ^A | ^⊥

and we say that a formula is modality-free if it contains no occurrences of � and ^.
We consider the variant of intuitionistic modal logic CK called constructive modal

logic [6, 9, 32, 41, 28] defined by adding to the intuitionistic propositional logic the
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necessitation rule
If F is provable, then �F is provable

and the two following axiom schemes k1 and k2.

k1 : �(A ⊃ B) ⊃ (�A ⊃ �B) k2 : �(A ⊃ B) ⊃ (^A ⊃ ^B)

A further extension of this logic, denoted CD, can be obtained by adding the fol-
lowing axiom scheme

d : �A ⊃ ^A

In this paper we consider the fragment of CK and CD containing only implication
and conjunction given by the rules and sytems in Figure 2, since these suffice to express
λ-calculi with pairs for these logics.

We remark that the presence of ^⊥ is not standard for the unit-free fragment. In
fact, no rule can introduce this formula in LCK and LCD. However, it plays a special
role in some results in this paper since its purpose is to represent a “placeholder” for a
^-formula which may be introduced by a weakening rule but whose occurrence is not
a negligible information in the proof.

Theorem 1. The sequent system LX is a sound and complete proof system for the
disjunction-free fragment of the logic X for all X ∈ {CK,CD}. Moreover, LX satisfies
cut-elimination property.

Proof. In [28] there are provided sound and complete systems for these logics. These
systems are proven to be analytic, i.e. satisfying cut-elimination property. Thus we can
extract the desired disjunction-free calculi. �

In order to define combinatorial proofs for a given logic, we need to have a de-
composition theorem which lets us factorize proofs in a linear part, capturing the logic
interactions between the components of the proof, and a resource management part,
capturing resources duplication or erasing.

To achieve this decomposition result for the logics considered in this paper, we use
the sound and complete cut-free sequent systems provided in [30] to define new rule
systems in which we make use of deep inference rules [17, 18, 10, 16], that is, rules
which can be applied deep inside a formula in any context. The use of deep inference
rules allows us to push down in a derivation all the occurrences of weakening and
contractions. In particular, as done in [5] for classical modal logic, we consider K and
D as part of the logic interaction of a proof.

Polarized formulas

However, a difficulty arises in applying such permutations in the intuitionistic setting
since weakening and contraction rules may be performed only on the left-hand-side for-
mulas in a sequent. In order to assure the correctness of deep applications of weakening
and contraction rules, we introduce a syntax using polarized formulas (or P-formulas)
to represent a two-sided single-conclusion calculus by a polarized one-sided sequent
calculus, as done in [30]. This allows us to keep track of which subformulas in a
sequent Γ occurred on the left-hand-side of a sequent occurring in a derivation of Γ.
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Γ•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−−− w•
Γ•, A•, B◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k�
�Γ•,�A•,�B◦

 

Γ•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−− k�
�Γ•,�B◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w•
�Γ•,�A•,�B◦

Γ•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−−− w•
Γ•, A•, B◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k^
�Γ•,^A•,^B◦

 

Γ•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k⊥
�Γ•,^⊥•,^B◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w^

↓�Γ•,^A•,^B◦

Γ•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−−− w•
Γ•, A•, B◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− d
�Γ•,�A•,^B◦

 

Γ•, B◦
−−−−−−−−−−−−−−−−−−−−−−−−− d
�Γ•,^B◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w•
�Γ•,�A•,^B◦

Γ•, A•,C◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w•
Γ•, A•, B•,C◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− �•
Γ•, (A � B)•,C◦

 
Γ•, A•,C◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w�
↓Γ•, (A � B)•,C◦

Γ•, A◦
−−−−−−−−−−−−−−−−−−−−−−−−−− w•
Γ•, B•, A◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(◦
Γ•, B( A◦

 
Γ•, A◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w(
↓Γ•, B( A◦

−
D

∥∥∥∥∥∥∥∥∥∥∥∥LX

Γ•, A◦
∆•,C◦

−−−−−−−−−−−−−−−−−−−−−−−−−−− w•
B•,∆•,C◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(•
Γ, A( B,∆ ` C

 
∆•,C◦

===================================================== w•
Γ•, A( B•,∆•,C◦

Figure 5: Rule permutations for w•

We define the set of P-formulas as the set generated by A = {a, b, . . . } using the
following grammar

A◦, B◦::=a◦ | A◦ � B◦ | A• ( B◦ | �A◦ | ^A◦

A•, B•::=a• | A• � B• | A◦ ( B• | �A• | ^A• | ^⊥•

A context is a sequent Γ{} in which one atom occurrence is been replaced by the hole {}.
In order to improve readability, we omit to write polarities on subformulas since

they can be deduced as follows:

• if (A( B)◦, then A• and B◦;

• if (A( B)•, then A◦ and B•;

• if (A � B)◦, then A◦ and B◦;

• if (A � B)•, then A• and B•;

• if �A◦ or ^A◦, then A◦;

• if �A• or ^A•, then A•;

For P-formulas, we define the sequent rules as systems in Figure 3, and deep rules
in Figure 4. In particular, the rules in Figure 3 can be obtained by the ones in Figure 2
by encoding any two sided sequent Γ, B ` A as the one-side sequent Γ•, B•, A◦.

Polarized formulas allow us to restrain the application of the deep rules only to
specific subformulas. In particular, we can apply c•,w^,w• (w() to the formulas which
occurs as a •-formula (respectively ◦-formula) in a sequent occurring in the derivation.

If H is a P-formula, we denote by bHc the formula obtained by removing all po-
larities occurring in H and replacing the � and ( symbols respectively with ∧ and
⊃. This translation induces a correspondence between the systems in Figure 2 and in
Figure 3. However, the interest in introducing the polarized systems depends on the
following result.
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Notation 2. If S is a set of rules, we write F′
S

F if there is a derivation from F′

to F using rules in S . Moreover, we write
S

F if there is a proof of F in S , i.e. a
derivation using rules in S form the empty premise.

Theorem 3. Let X ∈ {CK,CD} and H be a P-formula, then

•
LX

bHc iff
LX

H;

•
IMLL-X

bHc iff
IMLL-X

H.

Theorem 4 (Decomposition). Let X ∈ {K,D} and H be a P-formula. Then
LX

H iff
IMLL-X

H′
LI
↓

H.

Proof. Let us consider an LX -derivation of H. We replace every occurrence of a c•

by a �• followed by a c•
↓
. We then permute every occurrence of w• and rules in LI

↓
by

applying independent rule permutations plus the permutations in Figure 5 replacing a
w• into a w�

↓
, w(
↓

or w^
↓

. Observe since H is a P-formula, then no w•-rule occurs in the
derivation at the end of this procedure. We conclude by permuting all deep-weakening
and deep-contraction rules down in the derivation.

During this process, depending on the presence of k⊥ or d in CX, an occurrence of
a k^ may be replaced in two different ways: either by k⊥ followed by a w^

↓
or by a d

followed by a w• as shown below:
−∥∥∥∥∥∥∥∥∥∥∥∥

B•,C◦
−−−−−−−−−−−−−−−−−−−−−−−−−−− w•
A•, B•,C◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k^
^A•,�B•,^C◦

 

−∥∥∥∥∥∥∥∥∥∥∥∥
B•,C◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− k⊥
^⊥•,�B•,^C◦
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w^

↓^A•,�B•,^C◦

or

−∥∥∥∥∥∥∥∥∥∥∥∥
B•,C◦

−−−−−−−−−−−−−−−−−−−−−−−−−− d
�B•,^C◦

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− w•
^A•,�B•,^C◦

To prove the converse it suffice to revert the previous procedure. �

If F is a formula, we call a factorised proof of F a derivation in IMLL-X ∪ LI
↓

of

the form
IMLL-X

H′
LI
↓

H, for H and H′ P-formulas such that F = bHc.

3 Modal arenas
In this section we establish a correspondence between modal formulas and a family of
labeled directed graphs we call modal arenas. These are employed in this paper in the
definition of intuitionistic combinatorial proofs and games.

A directed graph G = 〈VG,
G
→〉 is given by a set of vertices VG and a set of direct

edges
G
→ ⊆ VG × VG. If V ′ ⊂ VG, we say that 〈V ′,→ ∩ (V ′ × V ′)〉 is the subgraph of G

induced by V ′. We write u
G
→v, u 6

G
→v, u

G
←v and u

G
→←v if respectively uv ∈

G
→, uv <

G
→,

vu ∈
G
→ and uv ∈

G
→ ∪

G
←. A vertex v is a

G
→-root, denoted v 6→ if there is no vertex w

such that v
G
→w. We call

→

RG= {v | v 6→} the set of
G
→-roots of G.
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A path from v to w of length n is a sequence of vertices x0 . . . xn such that v = x0,

w = xn and xi
G
→xi+1 for i ∈ {0, . . . , n − 1}. We write v

G
→∗w (v

G
→nw) if there is a path

(respectively a path of length n) from v to w. A directed acyclic graph (or dag for

short) is a direct graph such that v
G
→nv implies n = 0 for all v ∈ V.

A two-color directed acyclic graph (or 2-dag for short) G = 〈VG,
G
→,

G
 〉 is given

by a set of vertices VG and two disjoint sets of edges
G
→ and

G
 such that the graph

〈VG,
G
→ ∪

G
 〉 is acyclic. We denote

G
→← =

G
→ ∪

G
← and

G
! =

G
 ∪

G
f. We omit the

superscript when clear from context.
If L is a set, a 2-dag is L-labeled if a label `(v) ∈ L is associated to each vertex

v ∈ V . In this paper we fix the set of labels to be the set L = A ∪ {�,^}, where A is
the set of propositional variables occurring in formulas.

Definition 5. Let G and H be 2-dags, we denote by RG
H

the set of edges from the

→-roots of G to the →-roots ofH , that is RG
H

= {(u, v) | u ∈
→

RG, v ∈
→

RH }.
We define the following operations on 2-dags:

G +H=〈 VG ∪ VH ,
G
→ ∪

H
→ ,

G
 ∪

H
 〉

G−BH=〈 VG ∪ VH ,
G
→ ∪

H
→ ∪ RG

H
,
G
 ∪

H
 〉

G∼BH=〈 VG ∪ VH ,
G
→ ∪

H
→ ,

G
 ∪

H
 ∪ RG

H
〉

which can be pictured as follows, with I representing the →-roots of each graph.

G +H G−BH G∼BH

G
I

I

H
I

I

G
I

I

H
I

I

G
I

I

H
I

I

We use the notation a, � and � for the graph consisting of a single vertex labeled
respectively by a, � and ^. If F is a formula, we define a L-labeled 2-dag ~F� induc-
tively as follows:

~a� = a
~A ⊃ B� = ~A�−B~B�
~A ∧ B� = ~A� + ~B�

~^⊥� = �

~�A� = � ∼B~A�
~^A� = � ∼B~A�

(4)

Using the same notation, if H is a P-formula and F the formula such that F = bHc, we
denote by ~H� the 2-dag ~F�.

In order to characterize those 2-dags that are encoding of formulas, we require
some additional definitions.

Definition 6. A L-labeled dag G = 〈VG,
G
→〉 is a arena if VG , ∅ and if it is

• L-free: if a→u and a→w→v then u→v;

9



• Σ-free: if a→v, a→w, b→w and b→u then a→u or b→v;

That is, the following induced subgraphs are forbidden.

L-free Σ-free
w

a v
u

a v
w

b u

We recall some results from [39] on arenas and modality-free formulas.

Lemma 7 ([39]). In an arena, if v→ny and w→my, then {v→n} ⊆ {w→m} or {w→m} ⊆

{v→n} where {u→k} = {x | u→k x}.

Theorem 8 ([39]). A graph G is an arena iff there is a modality-free formula F such
that G = ~F�.

Definition 9. A modal arena (or MA) G = 〈VG,
G
→,

G
 〉 is an L-labeled 2-dag such

that

• 〈V,→〉 is an arena;

•  is modal, that is:

– if v w and w u, then v u (transitivity);

– if v w and u w, then u!v;

– if v w and v u, then u 6→w;

– if v w and u→v, then u→w;

– if v w and v→u, then w→u;

– if v w and w→u, then v→u;

• G is properly labeled:

– if v w, then `(v) ∈ {�,^};

– if `(v) = �, then there is a w such that v w.

We denote by VA
G

, V�
G

and V�
G

the subsets of vertices of Gwith labels respectively in
A, {�} and {^}. We call atomic the vertices in VA

G
and modal the ones in V��

G
= V�

G
∪V�
G

.

From Lemma 7 we can prove the following:

Lemma 10. Let G be a MA and u, v,w ∈ VG. If v w then:

• v is a →-root iff w is a →-root;

• v→nu iff w→nu;

• if u→nv then u→nw.
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Proof. The first statement follows the fact that in a MA if v w, then v→u iff w→u.
The second statement is proven using the same argument, proceeding by induction on
n making use of Lemma 7. The third statement is also proven using Lemma 7 and the
fact that in a MA if v w and u→v, then u→w. �

Lemma 11. If F is a formula, then the L-labeled 2-dag ~F� is an MA.

Proof. The right-to-left implication is proven by induction over the number of con-
nectives and modalities of a formula. It suffices to remark that the graph operations
+ and −B cannot introduce forbidden MA configurations. Similarly, the operation ∼B
introduces no forbidden configurations whenever G = G1∼BG2 with G1 a single vertex
graph of the form � or �. �

For proving the converse, we need the following concept. If v ∈ V�� is a vertex in a
MA, then we define the -cone of v as the set of vertices

 
C(v) = {w | there is u such that v u, w→∗u and w 6→∗v}

Intuitively, the cone of a modal vertex delimits the subformula in the scope of the
corresponding modality.

Example 12. Consider the formula F =
(
a ⊃ �(b ∧ (c ⊃ ^d))

)
⊃ ^(e ⊃ f ) and its MA

~F� =

a � ^
′

^ f

b c d e

The � modality has subformula b ∧ (c ⊃ ^d), the first ^ has subformula d and the
second ^ (denoted ^′ on the graph) has subformula e ⊃ f . The corresponding  -
cones are

 
C(�) = {b, c,^, d},

 
C(^) = {d} and

 
C(^′) = {e, f }.

If v is a vertex of a MA G, we call the principal modal vertex of v the unique1 vertex
v̂ such that v ∈

 
C(v̂) and for all m , v̂ such that v ∈

 
C(m), then v̂ ∈

 
C(m). We write v = v̂

if there is no m such that m v. To have an intuition consider a formula F, the MA
G = ~F� and the formula tree TF . If v̂ , v, then the vertex v̂ corresponds to the root
of the smaller subtree of F with root labeled by a modality which contains the node
corresponding to v. If v̂ = v, then such a node does not exist. By means of example,
in Example 12 we have â = a, ˆ̂ = b̂ = ĉ = �, d̂ = ^ and ê = f̂ = ^′, �̂ = � and
ˆ̂ ′ = ^′.

Theorem 13. Let G be aL-labeled 2-dag. If G is a MA, then there is a formula F such
that G = ~F�.

Proof. We proceed by induction on the size of G. If |VG| = 1 then if `(v) ∈ A, then

F = a ∈ A, if `(v) = ^ then F = ^⊥. Otherwise, since 〈VG,
G
→〉 is a arena, we

conclude by Lemma 7 (see [39]) that
1Its uniqueness follows by definition of MA.
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1. either every vertex in VG\
→

RG has a →-paths to all roots in
→

RG,

2. or
→

RG admits a partition
→

RG= R1]R2 such that any vertex in G has→-paths only
to roots in one of the two sets.

If 1 holds, then we define G2 as the MA obtained from G taking the vertices in

V2 =
→

RG ∪
( ⋃

v∈
→
RG

 
C(v)

)
and G1 as the MA over the remaining vertices V1 = VG \V2. Since each vertex in G has
a path to all the roots in

→

RG, then there is a → from any root of G1 to any root of G2.
Since by definition

→

RG2=
→

RG, then we have that G = G1−BG2.
If 2 holds and

→

RG= R1 ] R2 with R1 and R2 non-empty sets. Since is modal, we
have the following possibilities:

(a) if R1 = {v} and v w for all w ∈ R2, then there is no u such that u→v. Otherwise
u→v and u→w for all w such that v w, that is for all w ∈ R2. This implies that
u w for all w ∈

→

RG, which contradicts the hypothesis 2. Thus we conclude that
G = v∼BG′ where G′ is the MA with vertices

 
C(v);

(b) if there are no  -edges between R1 and R2, then G = G1 + G2 where G1 and
G2 are the the MAs with vertices V1 = {v | v→∗w for a w ∈ R1} and V2 = {v |
v→∗w for a w ∈ R2}. In fact by definition there are no →-edges between vertices
in V1 and V2 otherwise by Lemma 7 we should have R1 = R2. Similarly there are
no  -edges between vertices in V1 and V2 since there are no  -edges between
R1 and R2 (by hypothesis) and if there is v ∈ V1 \ R1 and w ∈ V2 such that v w,
then by Lemma 10 w < R2 and we should have again R1 = R2;

(c) otherwise, we pick a v ∈
→

RG ∩
 
RG and define R1 = {v} ∪ {w | v w} and R2 =

→

RG
\R1. If there is no u ∈

→

RG such that v 6 u, then R1 =
→

RG and we conclude by (a). If
R2 , ∅, then we define V1 = {v | v→∗w for a w ∈ R1} and V2 = {v | v→∗w for a w ∈
R2} and we conclude by (b).

�

As result of Lemma 11 and Theorem 13, we have the following correspondence
between formulas and MAs:

Theorem 14. AL-labeled 2-dag G is a MA iff there is a formula F such that G = ~F�.

We define the formula isomorphism as the equivalence relation over formulas f
∼

generated by the following relations:

A ∧ B f
∼ B ∧ A A ∧ (B ∧C) f

∼ (A ∧ B) ∧C
(A ∧ B) ⊃ C f

∼ A ⊃ (B ⊃ C)
(5)
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Proposition 15. If F and G are two formulas and f
∼ the equivalence relation defined

in Equation (5) then
F f
∼ G ⇐⇒ ~F� = ~G�

Proof. By induction using the definition of the MAs operations +, −B and ∼B. �

4 Modal Arena Nets
In this section we show the correspondence between (linear) proofs in IMLL-CK and
IMLL-CD, and respectively CK- and CD-arena nets, that are, modal arenas equipped
with a an equivalence relation over vertices satisfying specific topological conditions.

Definition 16. A partitioned modal arena G = 〈VG,
G
→,

G
 ,

G
∼〉 is given by a MA

〈VG,
G
→,

G
 〉 together with an equivalence relation G∼ over vertices such that:

• if v ∈ VA
G

and vG∼w, then w ∈ VA
G

and `(v) = `(w);

• if v ∈ VA
G

, then vG∼w for a unique w ∈ VA
G

.

In a partitioned modal arena we represent the equivalence relation ∼ by drawing
a (dashed non-oriented blue) edge v w between two distinct vertices in the same ∼-
class. For better readability, we only represent a minimal subset of these edges relying
on the fact that ∼ is an equivalence relation. By means of example, if {u, v,w} is an
∼-class, we may represent u v w omitting the edge between u and w.

We say that a formula (or P-formula) F is associated to G if ~F� = 〈VG,
G
→,

G
 〉.

Remark 17. If v and w are vertices in a partitioned modal arena G such that vG∼w, then
v ∈ V��

G
iff w ∈ V��

G
.

If G is an arena, we define d(v) as the length of the longest →-paths from v to a
root w ∈

→

RG. The parity of a vertex v is the parity of d(v). We denote by v◦ and v• if the
parity of v is respectively even or odd.

Remark 18. In a arena G, if v and w are vertices such that d(v) = n > 0 and v
G
→∗w

and w ∈
→

RG, then v
G
→nw.

The parity of a →-edge v→w is the parity of d(w). We say that an edge v→w is
a chord if there is a vertex u such that either v→u and u w; or u→w and u v. By
means of example, in the following MAs the edges a→b are chords.

a �

b

� b

a

We denote by
G
→• the set of odd edges which are not chords.
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Moreover, we define the set of edges

G
 ∂ = {vw | either v◦ and w = v̂ or w• and w = v̂}

Note that v• ∂w• implies v• w•, while v◦ ∂w◦ implies w◦ v◦. That is, if �A is
right-hand side formula of a sequent (i.e., �A◦), then we have a  ∂ from the vertex �

to all the→-roots of ~A�; while if �A is left-hand side formula of a sequent (i.e., �A•),
then we have a ∂ from the →-roots of ~A� to the vertex �.

Definition 19. A partitioned modal arena G is linked if every G
∼-class is of the form

{v•1, . . . , v
•
n,w

◦}. This induces the set directed edges
G
⇀ = {(v,w) | v• G∼w◦}. The linking

graph
y

G of a modal arena is the direct graph with vertices VG and edges
G
→•∪

G
 ∂∪

G
⇀.

We say that path in
y

G is checked if it starts from a vertex in
→

RG ∩
 
RG and it contains

no ⇀ with source v with
 
C(v) , ∅.

A CK-arena net is a non-empty linked modal arena which satisfies conditions 1-5
below:

1.
y

G is acyclic: every checked path is acyclic;

2.
y

G is functional: every checked path in
y

G from a vertex v• to a root includes a
vertex w◦ such that v→w;

3. G is functorial: if v w and w∼w′ then there is v′ such that v∼v′ and v′ w′;

4. G has almost all non-empty modalities 2: if v ∈ V��
G

and there is no w ∈ VG such
that v w, then v ∈ V�

G
;

5. G is CK-correct: if {v•1, v
•
2, . . . , v

•
n,w

◦} ⊂ V�
G
∪ V�

G
is a ∼-class, then either

v1, v2, . . . , vn,w ∈ V�
G

or there is a unique i such that vi,w ∈ V�
G

.

A modal arena is a CD-arena net if it satisfies Conditions 1-3 plus the following:

6. G has all non-empty modalities: if v ∈ V��
G

, then there is w ∈ VG such that v w;

7. G is CD-correct: if {v•1, v
•
2, . . . , v

•
n,w

◦} ⊂ V�
G
∪ V�

G
is a ∼-class, then either

v1, v2, . . . , vn,w ∈ V�
G

or w ∈ V�
G

there is at most one i ∈ {1, . . . , n} such that
vi ∈ V�

G
.

A modal arena net is either a CK- or a CD-arena net. An arena net is a modal arena
net with V�� = ∅. Note that in this case Conditions 3, 4, 5, 6 and 7 are vacuous.

The intuition for Conditions 5 and 7 is that ∼-classes represent either atoms paired
by an AX, or the set of modalities introduced by a same K�, K^, K⊥ or D-rule. Following
this intuition, if c = {v0, v1, . . . , vn} ⊂ V��

G
is a ∼-class, then the modal arena with

vertices
⋃

v∈c
 
C(v) corresponds the sub-proof of the premise of any such rule.

2The only empty modality admitted is a ^•, that is, the � which corresponds to a ^⊥• introduced by a
K⊥-rule.
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−−−−−−−−−−−−−−−−− ax
a a

F ,G ` H
−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R
F ` G−BH

F ` G J ,K ` H
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L
F ,J ,G−BK ` H

F ` G I ` J
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧R
F ,I ` G +J

F ,J ,I ` K
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L
F ,J + I ` K

〈G1, . . . ,Gn ` H |
G
∼〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K�
〈�∼BG1, . . . , �∼BGn ` �∼BH |

G
∼ ∪

ν
∼〉

〈G1, . . . ,Gn ` H |
G
∼〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
〈�∼BG1, . . . , �∼BGi, . . . , �∼BGn ` �∼BH |

G
∼ ∪

ν
∼〉

〈G1, . . . ,Gn ` H |
G
∼〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K⊥
〈�, �∼BG1, . . . , �∼BGn ` �∼BH |

G
∼ ∪

ν
∼〉

〈G1, . . . ,Gn ` H |
G
∼〉

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− D
〈�∼BG1, . . . , �∼BGn ` �∼BH |

G
∼ ∪

ν
∼〉

where ν
∼ = {{x, y} | x and y vertices in the rule conclusion not occurring in the premise}

Figure 6: Translation of the sequent rules in IMLL-CK and IMLL-CD into modal arena
nets rules

c b

c �1 �0 b

a a

∂
 

c b

c �
out
1 �

in
1 �

in
0 �

out
0 b

a a

m m

−−−−−−−−−−−−−−−−− AX
c ` c

−−−−−−−−−−−−−−−−−−− AX
a ` a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K�
�a ` �a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

c, c ⊃ �a ` �a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R

c ` (c ⊃ �a) ⊃ �a
−−−−−−−−−−−−−−−−−−− AX
b ` b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

c, ((c ⊃ �a) ⊃ �a) ⊃ b ` b

∂
 −−−−−−−−−−−−−−−−− AX

c ` c

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− AX
�in

1 ` �
out
1

−−−−−−−−−−−−−−−−−−− AX
a ` a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

�out
1 ,�in

1 ⊃ a ` a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− AX
�in

0 ` �
out
0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

�out
1 ,�in

1 ( a, a( �in
0 ` �

out
0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

�out
1 , (�in

1 ⊃ a) ∧ (a ⊃ �in
0 ) ` �out

0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

c, c ⊃ �out
1 , (�in

1 ⊃ a) ∧ (a ⊃ �in
0 ) ` �out

0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R

c, (�in
1 ⊃ a) ∧ (a ⊃ �in

0 ) ` (c ⊃ �out
1 ) ⊃ �out

0

−−−−−−−−−−−−−−−−−−− ax
b ` b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

c, (�in
1 ⊃ a) ∧ (a ⊃ �in

0 ), ((c ⊃ �out
1 ) ⊃ �out

0 ) ⊃ b ` b

Figure 7: A K-arena net G with associated formula (c ∧ ((c ⊃ �a) ⊃ �a) ⊃ b) ⊃ b, its
corresponding arena ∂(G), the derivations associated to G and ∂(G)

Lemma 20. Let X ∈ {CK,CD}. If
IMLL-X

F, then there is a X-arena netG = 〈VG,
G
→,

G
 ,

G
∼〉

such that ~F� = 〈VG,
G
→,

G
 〉.

Proof. Let π be a derivation of F in IMLL-X. We proceed by induction translating
the derivation π of the formula F in a derivation of a modal arena G (with associated
formula F) in the system described by the rules in Figure 6.

By definition, each rule in IMLL-X preserves X-arena net conditions, that is, if the
premises of a rule are X-arena nets, then the conclusion is. In particular, Condition 5
fails for the rule D. Similarly, each rule except K⊥ preserves the CD-arena net condi-
tions. �

Lemma 21. Let X ∈ {CK,CD} and G a modal arena with associated formula F. If G

is a X-arena net, then
IMLL-X

F.

Proof. We prove the theorem for CK-arena nets.
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To prove this theorem we define from the CK-arena net G, with associated formula
F, an arena net ∂(G) with associated formula ∂(F). We then use use of the result in [39]
on (non-modal) arena nets to produce an IMLL-derivation of ∂(F). Then we conclude
by showing how to define a IMLL-X-derivation of F using the IMLL-derivation of ∂(F).

Step 1: definition of ∂(G). If G = 〈VG,
G
→,

G
 ,

G
∼〉 is a CK-arena net, we write v ↓∼w

either if v̂∼ŵ, or if v = v̂ and w = ŵ, that is, v ↓∼w iff both v and w belongs to the scope
of a same modality or in the scope of no modality.

We define the arena ∂(G) by removing all  -edges in G and keeping only the →
between vertices v,w ∈ VG such that v ↓∼w. Then we replace each modal vertex v by
a pair of ⇀-linked vertices vin, vout in such a way that the vertex vin keeps track of the
subformulas of the modality, while vout is a placeholder to keep track of the interaction
of the subformulas with the context.

Formally we define ∂(G) = 〈∂(VG), ∂(
G
→ ∪

G
 ), ∂(G)

∼ 〉 by:

• ∂(VG) = VA
G
∪ {vin, vout | v ∈ V��

G
}

• ∂(
G
→ ∪

G
 ) is the union of the following sets where we assume u, v ∈ VA

G
and

l•, r◦,m, n, p ∈ V��
G

:

{(u, v) | u ↓∼v and u→v}
{(lout, rout) | l⇀r}
{(u, rin), (lin, v) | l = v̂, r = û}
{(u,mout), (mout, v) | u→m→v,m ↓∼u ↓∼v}
{(mout, nout), (nout, pout) | m→n→p,m ↓∼n ↓∼p}

•
∂(G)
∼ is defined as:

v∂(G)
∼ w if v,w ∈ VA

G
⊂ ∂(VG) and vG∼w

vin∂(G)
∼ vout for each v ∈ V��

G

See the first line of Figures 7 and 8 for running examples.
We observe that if {v◦0, v

•
1, . . . , v

•
n} is a G∼-class of modal vertices, then a P-formula

associated to G is of the form

H = H{`(v0)A◦0}{`(v1)A•1} · · · {`(vn)A•n}

for an (n + 1)-ary context H{} · · · {}. In this case, a P-formula associated to the arena
∂(G) is of the form

∂(H) = ∂(H){vout
0
◦
}{vout

1
•
} · · · {vout

n
•
}{H•c }

with ∂(H){} · · · {} is an (n + 2)-ary context, vin
i , v

out
i are fresh propositional variables for

all i ∈ {0, . . . , n} and

H•c =
(((

vin
1 ( ∂(A•1) � · · ·� vin

n ( ∂(A•n)
)
⊃ ∂(A◦0)

)
( vin

0

)•
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Step 2: prove that ∂(G) is an arena net.

We observe that, by definition of ∂(G), every path ∂(p) in
y

∂(G) can be constructed

from a checked path p in
y

G by induction:

• the empty path is a path in both
y

G and
y

∂(G);

• if p = v · p′ then

– if v ∈ VA
G

, then ∂(p) = v · ∂(p)′;

– if v• ∈ V��
G

, then ∂(p) = vout · vin · ∂(p)′;

– if v◦ ∈ V��
G

, then ∂(p) = vin · vout · ∂(p)′;

We remark that the parity of atomic vertices is preserved by ∂, while the parity of a
modal vertex v ∈ VG is the same of the corresponding vertex vout ∈ V∂(G). Since if v•

then vout⇀vin, and if v◦ then vin⇀vout, then we have that in ∂(G) an even (odd) vertex

may occur only in a even (odd) position in a path in
y

G. We conclude since from any

path in
y

∂(G) we obtain a path in
y

G by replacing every subpath vout⇀vin and vin⇀vout

by a the corresponding modal vertex v in G.

By this correspondence between checked paths in
y

G and paths in
y

∂(G) we conclude

that
y

∂(G) is acyclic and functional. That is, ∂(G) is an arena net.
Step 3: construct the derivation associated to ∂(G). Since ∂(G) is an arena net,

then we apply the result in [39] to produce a derivation in IMLL of the formula ∂(F). In
such a derivation, by functionality and functoriality of G, whenever v and w are modal

vertices such that v
G
⇀w, then if a path in

y

∂(G) contains vin, then it also contains vout,

win, wout. This means that if c = {v◦0, v
•
1, . . . , v

•
n} is an G∼-class of vertices in

G
 , then any

derivation of ∂(F) in IMLL contains a subderivation of the sequent vout
1 , . . . , vout

n , bH•c c `
vout

0 of the following form

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− AX
vout

1 ` vout
1

· · · −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− AX
vout

n ` vout
n

−∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥IMLL

∂(A1), . . . , ∂(An), ` ∂(A0)
======================================================================================================================================================================================================================================================================================================= ⊃L

vout
1 , . . . , vout

n , vin
1 ⊃ ∂(A1), . . . , vin

n ⊃ ∂(An) ` ∂(A0)
======================================================================================================================================================================================================================================== ∧L

vout
1 , . . . , vout

n ,
∧n

i=1(vin
i ⊃ ∂(Ai)) ` ∂(A0)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R

vout
1 , . . . , vout

n `
∧n

i=1(vin
i ⊃ ∂(Ai)) ⊃ ∂(A0)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ax
vin

0 ` vout
0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(•
vout

1 , . . . , vout
n ,

(∧n
i=1(vin

i ⊃ ∂(Ai)) ⊃ ∂(A0)
)
⊃ vin

0 ` vout
0

In order to construct a derivation in IMLL-X of the formula F it suffices to proceed
by induction over the number of G∼-classes of modal vertices. Starting from the top
of the derivation, we replace every such subderivation in the derivation of ∂(F) with
an application of a K�-, K^- or K⊥-rule, we remove all the occurrences of the formula
bHcc =

(∧n
i=1(vin

i ⊃ ∂(Ai)) ⊃ ∂(A0)
)
⊃ vin

0 in the derivation, and we replace for each
i ∈ {0, . . . , n} the atom vin

i with the corresponding formula `(vi)Ai as shown in Figure 9.
For some example, refer to the lower line of Figures 7 and 8.

The proof for CD-arena nets is similar by considering the rule D instead of K⊥. �
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�1
�2 �0

a a
b b

∂
 

�
out
1 �

out
0

�
in
1 �

out
2 �

in
2 �

in
0

a a
b b

m m

−−−−−−−−−−−−−−−−−−−− AX
a, ` a

−−−−−−−−−−−−−−−−−−−− AX
b, ` b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

a ⊃ b, a ` a
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K�
�(a( b),�a ` �b

∂
 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− AX
�out

1 ` �in
1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− AX
�out

2 ` �in
2

−−−−−−−−−−−−−−−−−−− AX
a ` a

−−−−−−−−−−−−−−−−−−− AX
b ` b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

a ⊃ b, a ` a
==================================================================================================================================================================================================================================================================== ⊃L

�out
1 ,�out

2 ,�in
1 ⊃ (a( b),�in

2 ⊃ a ` b
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∧L

�out
1 ,�out

2 , (�in
1 ( (a ⊃ b)) ∧ (�in

2 ⊃ a) ` b
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃R

�out
1 ,�out

2 `
(
(�in

1 ⊃ (a( b)) ∧ (�in
2 ⊃ a)

)
⊃ b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− AX
�in

0 ` �
out
0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

�out
1 ,�out

2 ,
((

(�in
1 ( (a ⊃ b)) ∧ (�in

2 ⊃ a)
)
⊃ b

)
⊃ �in

0 ` �
out
0

Figure 8: A K-arena net G with associated formula �(a ⊃ b) ⊃ (�a ⊃ �b) (the axiom
k1), its corresponding arena ∂(G), the derivations associated to G and ∂(G)

−
D′′

∥∥∥∥∥∥∥IMLL

A1, . . . , An, ` A0
∂(D′)

∥∥∥∥∥∥∥IMLL

�out
1 , . . . ,�out

n , bHcc ` �
out
0

D{�out
0 }{�

out
1 }···{�

out
n }{bHcc}

∥∥∥∥∥∥∥IMLL

∂(F){�out
0 }{�

out
1 } · · · {�

out
n }{bHcc}

 

−
D′′

∥∥∥∥∥∥∥IMLL-X

A1, . . . , An ` A0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K�
�A1, . . . ,�An ` �A0

D{�A0}{�A1}···{�An}{∅}
∥∥∥∥∥∥∥IMLL-X

F{�0A0}{�1A1} · · · {�nAn}

Figure 9: An example of the construction of the derivation of F from the derivation of
∂(F) assuming that in G there is only one ∼-class of the form {�0, . . . ,�n}

We summarize the results of this section (Lemmas 20 and 21) by the following

Theorem 22. Let X ∈ {CK,CD} and G be a modal arena with associated formula F,
then

G is a X-arena net ⇐⇒
IMLL-X

F

5 Skew fibrations
In this section we define specific maps between MAs to model the application of the
deep inference rules in Figure 4.

If v,w are two vertices in an MA, a meeting point of v and w is a vertex u such that
v→∗u and w→∗u, and such that if there is u′ such that v→∗u′ and w→∗u′, then u→∗u′.
The meeting depth of v and w is the minimum of the depth of their meeting point or
−1 if no such vertex exists. Two distinct vertices v and w are conjunct, denoted v f w
if their meeting depth is odd; they are disjunct, denoted v g w if their meeting depth is
even.
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Definition 23 (Skew Fibration). An arena homomorphism is either a map ∅G : ∅ → G
from the empty 2-dag to an MA G, or a map f : H → G between two MAs H and G
mapping VH to VG in such a way it preserves:

→ : if v
H
→w then f (v)

G
→ f (w);

 : if v
H
 w then f (v)

G
 f (w);

d : d(v) = d( f (v));
` : `(v) = `( f (v)).

An arena homomorphism is modal whenever:

• if f (v)
G
 f (u), then w

H
 u and f (v) = f (w) for a w ∈ VG.

An (even) skew fibration is a modal arena homomorphism f : H → G which:

• preserves f: if v fH w then f (v) fG f (w);

• is a skew lifting: if f (v) fG w, then there exists u with v fH u and f (u) 6fGw;

An odd skew fibration is either a map ∅G : ∅ → G, or a modal arena homomorphism
f : H → G which:

• preserves g: if v gH w then f (v) gG f (w);

• is a odd skew lifting: if f (v)gG w, then there exists u with vgH u and f (u) 6gGw;

Remark 24. In [39] the definition of skew fibration only demands the weaker root
preserving condition (that is, if v ∈

→

RH then f (v) ∈
→

RG) instead of the depth preserving
condition we propose here. However, in the same paper it is proven that root preserving
is equivalent to the depth preserving for even and odd skew fibrations between arenas.

In order to prove the results in this section, it is useful to highlight the correla-
tions between mutual position of nodes in the formula tree TF of a formula F and the
presence of →- or -edges between the corresponding vertices in ~F�.

Definition 25. If F is a formula, the formula tree of F is the tree TF with nodes labeled
by ⊃, ∧ or ⊥ symbols, atoms, and modalities occurring in F. It is defined inductively
as follows:

• if F = a, then TF is the with a single node labeled by a;

• if F = A ⊃ B (respectively F = A ∧ B), then TF is the tree with root labeled by
⊃ (respectively ∧) with children the roots of TA and TB;

• If F = �A (F = ^A) for a formula A, then TF is the tree with root labeled by �
(respectively ^) which has as one child the root of TA;

• If F = ^⊥, then TF is the tree with root labeled by ^ and a single child labeled
by ⊥;
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Example 26. Let F = �(^⊥ ⊃ (a∧ b)) ⊃ ((c ⊃ d)∧ e) be a formula. The formula tree
TF is the following

⊃

� ∧

⊃ ⊃ e
^ ∧ c d

⊥ a b

Definition 27. In a formula tree TF , we call a node the left-hand side child (right-hand
side child) of a ⊃-node if it corresponds to the root of the left-hand side (respectively
the right-hand side) subformula formula of the implication.

If v is a node of a formula tree TF , we say that a node w is a rightmost descendant
of v if there is a path from v to w in TF containing no left-hand side child of any ⊃-
node. If v is a ⊃-node of a formula tree TF , we say that a node w is a second-rightmost
descendant of v if it is a rightmost descendant of its left-hand side child.

By means of example, consider the formula tree of F = (�(^⊥ ⊃ (a ∧ b))) ⊃
((c ⊃ d) ∧ e) given in Example 26. The left-hand side child of the root of TF is the
root of T�(^⊥⊃(a∧b)) while its the right-hand side child is the root of T(c⊃d)∧e. The set of
rightmost and second-rightmost nodes of the root ⊃ are respectively {d, e} and {�, a, b}.

Remark 28. Let F be a formula and TF the formula tree of F. If we identify the
atom or modality x occurring in F with the corresponding the node of TF and with the
unique x-labeled vertex x in ~F�, then we have the following correspondence:

• a
~F�
→ b iff the least common ancestor of a and b in TF is a ⊃, and a and b are

respectively a second-rightmost descendant and a rightmost descendant of the
least common ancestor;

• m
~F�
 x with iff x is a rightmost descendant of m ∈ {�,^}.

Moreover, d(x) is equal to the number of left-hand side children of ⊃-nodes occurring
in the path from the root of TF to the node v.

Lemma 29. The composition of two skew fibrations is a skew fibration.

Proof. By definition of skew fibration (see ??). �

Proof. By definition, the composition of two modal skew fibrations preserves →, ,
∼ and d. Then the preservation of f and the skew lifting condition of the composition
are guaranteed as consequence of the preservation of d and →. Similarly, the modal
condition of the composition is guaranteed as consequence of the preservation of  .

�

Remark 30. Note that the proof of Lemma 29 makes crucial use of the fact that we
talk about arena homomorphisms, and an arena is always associated to a formula. In
classical logic [23, 5] a skew fibration is defined as a homomorphism between arbitrary
graphs, and the composition of skew fibrations is only a skew fibration if those graphs
are associated to formulas.
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We are now able to prove the correspondence between LI
↓

derivations from a P-
formula H′ to H′ and skew fibrations between their corresponding arenas.

Lemma 31. For any P-formulas H′ and H, if H′
LI
↓

H, then there is a skew fibration
f : ~H′�→ ~H�.

Proof. If we prove that for all ρ ∈ {w^
↓
,w�
↓
,w(
↓
, c•
↓
} if

H′
−−−− ρ
H

then there is a skew fibra-

tion f : ~H′�→ ~H�, we can conclude by Lemma 29. We proceed by case analysis.
If ρ = w�

↓
, then H′ = Γ{A•} and H = Γ{A � B•}. In particular, we can obtain

TH from TH′ by removing the formula subtree TA and replace its root with a �-node
with children the roots of TA and TB. After Remark 28, the arena homomorphism
f : ~H′� → ~H� preserves →, , ∼, d and f by definition. Moreover, since the map
is injective, modal condition is trivially satisfied, while the skew lifting immediately
follow by the fact that the roots of ~A•� have odd depth in ~H�. Thus f is a skew
fibration.

If ρ = w(
↓

, conclude by a similar reasoning. In this case, we obtain TH from TH′

by removing the formula subtree TA and replace its root with a(-node with left-hand
side child the root of TB and right-hand side child the root of TA. Since the root of TA

is the right-hand side child of a (, arena homomorphism f : ~H′� → ~H� is a skew
fibration since it is injective and no new → or  are added between the vertices in
~H� image of vertices in f .

If ρ = w^
↓

, conclude by a similar reasoning. In particular, it suffices to replace in
T ′H a leaf labeled by a ⊥ with the tree of the weakened formula.

If ρ = c•
↓
, then H′ = Γ{(A1 � A2)•} and H = Γ{A•}, that is, and T ′H has the two

identical subtrees TF and their roots are children of a same node labeled by �. Thus
TH can be obtained from T ′H by removing the node labeled by � and replace it with
the root of TF . After Remark 28, the arena homomorphism f : ~H′�→ ~H� preserves
→,  , ∼ and d. Moreover f is surjective, then it is a skew lifting and preserves f.
Moreover f is modal since it is injective on Γ{} and whenever f (v) f (u), then either v
and u are both vertices in ~A1� or in ~A2�, or we have v′ and u′ such that f (v) = f (v′),

f (u) = f (u′), v
~Ai�
 u′, v

~A j�
 v with i, j ∈ {1, 2}, i , j. We conclude that f is a skew

fibration. �

In order to prove the converse result, we need some additional lemmas.

Lemma 32. If f : H → G is an arena homomorphism and G = G1 + G2, then f =

f 1 + f 2 with f 1 : H1 → G1 and f 2 : H2 → G2 arena homomorphisms for someH1,H2
such thatH = H1 +H2.

Proof. Since f preserves →, then if v→∗w for a w ∈
→

RG then f (v)→∗ f (w). Thus if
G = G1 + G2, then there is a partition3 →RG=

→

RG1 ]
→

RG2 . Then we can define VH1 and
VH2 as the sets of vertices ofH which images by f admit a →-path to a vertex in

→

RG1

3As remarked in the proof of Theorem 14, in construction such partition, because of  -coherence,
whenever v w then v and w belong to the same subset.
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and
→

RG2 respectively. The MAsH1 andH2 are defined fromH by the sets VH1 and VH2

respectively. �

Lemma 33. Let f : H → G is a even or odd skew fibration, with G = G1−BG2 and G1
MAs. If there are two MAs H ′ and H ′′ such that H = H ′−BH ′′ and H ′′ cannot be
written as −B of two MAs, then f (v) ∈ VG2 for all v ∈ VH ′′ .

Proof. Let v ∈ H ′′ such that f (v) ∈ G1. Since f preserves d, then v <
→

RH . Thus H ′′

cannot be a single-vertex MA. IfH ′′ is a + of two MAs, then there is z ∈
→

RH ′′ such that
v 6→∗z, hence vf z inH but f (v) 6f f (z) in G. Therefore f is not an even skew fibration.
Let f (z) = w. Then f (v) g w because f (v) ∈ G1 and w ∈

→

RG. If there is a u with v g u
inH then there is x ∈ VH such that u→x◦ and v→x◦. Since x→∗w we have f (u) g w,
which means that f cannot be an odd skew fibration either. Then H ′′ has to be of the
shape w∼BH ′′2 and f (w) ∈ G2 because v ∈

→

RH . We can conclude as for the previous
case that f is not an even or odd skew fibration. Contradiction. �

Lemma 34. Let f : H → G is a even or odd skew fibration, with G = G1−BG2 for an
MA G1. If there is an MAH ′ such thatH = H ′−BH ′′, then there areH1 andH2 such
thatH = H1−BH2 and f = f 1−B f 2 where f 1 : H1 → G1 and f 2 : H2 → G2 are modal
arena homomorphisms.

Proof. By hypothesis, we can assume thatH is of the formH = H ′−BH ′′ whereH ′′

is not a −B of two MAs. We conclude by Lemma 33 that f (v) ∈ VG2 for any v ∈ VH ′′ .
If VG2 = f (VH ′′ ), then we conclude that H1 = H ′ and H2 = H ′′. Otherwise, let
H ′ = H ′1 + · · ·+H ′n such thatH ′i is a + of two MAs for no i ∈ {1, . . . , n}. If v,w ∈ VH ′ ,
then there is a (→← ∪!)-path from v to w in VH ′ iff there is i ∈ {1, . . . , n} such that
v,w ∈ VH ′i . Since

→

RG⊂ f (VH ′′ ), this implies that if there is i ∈ {1, . . . , n} such that

v,w ∈ VH ′i , then there is (→←∪!)-path from f (v) to f (w) in VG\
→

RG. That is, f (VH ′i ) is
either a subset of VG1 or a subset of VG2 for all i ∈ {1, . . . , n}. Without loss of generality
we assume there is j such that that f (VH ′i ) ⊂ VG1 for all i ≤ j. We conclude that
H1 = H ′1 + · · · +H ′j andH2 = (H ′j+1 + · · · +H ′n)−BH ′′. �

Lemma 35. Let f : H → G be a modal arena homomorphism and G = v∼BG′. If f is
an even skew fibration then,H = w∼BH ′ and f = 1w∼B f ′ with f ′ : H ′ → G′ an even
skew fibration. If f is odd skew fibration, then

• eitherH = w∼BH2 and f = 1w∼B f 2 with f 2 : H2 → G2 an odd skew fibration;

• or H = (w∼BH1) + H2 and f = [ f 1, f 2] with f 1 : (w∼BH1) → (v∼BG2) and
f 2 : H2 → (v∼BG2).

Proof. If f is an even skew fibration, then to conclude it suffices to remark there is a
unique w such that f (w) = v since v ∈

→

RG.
If f is an odd skew fibration, let w such that f (w) = v. If VH \ {w} =

 
C (w),

then we can conclude. Otherwise we conclude with H2 be the MA with vertices in
VH \ ({w}∪

 
C(w)). �
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In order to prove the converse of the previous theorem we give some additional
definitions and useful lemmas.

Definition 36. If f 1 : H1 → G1 and f 2 : H2 → G2 are modal arena homomorphisms,
we define the following modal arena homomorphisms:

1v = 1 : v → v
f 1 + f 2 = f 1 ∪ f 2 : H1 +H2→G1 + G2
f 1−B f 2 = f 1 ∪ f 2 : H1−BH2→G1−BG2 (H1,G1 , ∅)
f 1∼B f 2 = f 1 ∪ f 2 : H1∼BH2→G1∼BG2
[ f 1, f 2] = f 1 ∪ f 2 : H1 +H2→ G (G1 = G2 = G)

Lemma 37. Every (even) skew fibration is of the form

1G f ◦ + g◦ f •−Bg◦ 1v∼Bg◦

and every odd skew fibration is of the form

1G [ f •, g•] f • + g• f ◦−Bg• 1v∼Bg• ∅G

where f ◦ and g◦ are even skew fibrations, f • and g• are odd skew fibrations, v ∈ V��~H�,
and G can be any MA.

Proof. By case analysis, let f : H → G be a modal arena homomorphism, remarking
that for any MA G, the identity map 1G is by definition an even and an odd skew
fibration.

If f ◦ : H → G is an even skew fibration, then

• if G is a single-vertex MA, then H cannot be either of the shape H1 + H2 or
H1∼BH2 otherwise f would not preserve f, or of the shapeH1−BH2 otherwise
it would not preserve d. Then f = 1v with v the unique vertex in VH = VG.

• ifG = G1+G2, then by Lemma 32 we have that f ◦ = f 1+ f 2 with f 1 and f 2 arena
homomorphisms. Since f ◦ is an even skew fibration, it follows by definition of
+ that f 1 and f 2 are even skew fibrations;

• if G = G1−BG2, then we define V1 = {v ∈ VH | f (v) ∈ G1} and V2 = {v ∈
VH | f (v) ∈ G2}. We have that V2 , ∅ since f preserve d. If V1 = ∅, then f =

∅G1−B f 2 with f 2 : H → G2. Otherwise, V1 , ∅ andH cannot be a single vertex.
Similarly, H cannot be of the shape H1 + H2 otherwise f would not preserve
f, nor of the shape v∼BH2 otherwise f would not be modal. We conclude by
Lemma 34 that f = f 1−B f 2. Moreover, since f is an even skew fibration if
follows that f 2 also preserves f and satisfies skew lifting while f 1 preserve g
and satisfies odd skew lifting.

• if G = v∼BG2, we conclude by Lemma 35.

If f • : H → G is an odd skew fibration, then we proceed similarly. If G is a single-
vertex MA, thenH cannot be of the shapeH1∼BH2 otherwise f it would not be modal,
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or of the shape H1−BH2 otherwise it would not preserve d. Let H = H1 +H2 such
that H1 , H

′
1 + H ′′1 . Since f • preserve d and  , then H1 is a single-vertex MAs.

Moreover, f 2 : H2 → G2 is an odd skew fibration by definition. Then f = [1v, f 2] with
v the unique vertex in VH = VG;

If G = G1 + G2, G = G1−BG2 or G = v∼BG2 we apply a similar reasoning of the
case of f even skew fibration. �

Theorem 38. Let H and H′ be P-formulas. If there is a skew fibration f : ~H′�→ ~H�,

then H′
LI
↓

H.

Proof. By Lemma 37 we can decompose any skew fibration using the operations in
Definition 36. In particular, each ∅G occurring in the decomposition corresponds to
an application of a w^

↓
, w�
↓

or w(
↓

, while each occurrence of [−,−] corresponds to
an application of a c•

↓
. We conclude by reconstructing a derivation in LI

↓
using this

decomposition and the correspondence between P-formulas and MAs (Theorem 14).
�

6 Combinatorial proof
Using the results of the previous sections, we are able to define combinatorial proofs
for the logics CK and CD and prove sound and completeness results for them.

Definition 39. Let F be a formula and X ∈ {CK,CD}.
An X-intuitionistic combinatorial proof (or X-ICP) is a skew fibration f : G → ~F�

from an X-arena net G to the modal arena of a formula F containing no occurrences of
^⊥.

In particular, intuitionistic combinatorial proofs (or ICPs) from [39] are the special
cases where no modalities occur, that is, an ICP is a skew fibration f : G → ~F� from
an arena net G to the arena of a modality-free formula F.

Theorem 40. Let F be a formula and X ∈ {CK,CD}. Then
LX

F ⇐⇒ there is an X-ICP f : G → ~F�

Proof. By Theorem 4 there is a P-formula H such that F = bHc and
LX

F iff
IMLL-X

H′
LI
↓

H for a P-formula H′. By Theorem 38 we have that H′
LI
↓

H iff there is a skew
fibration f : ~H ′′�→ ~H�. We conclude by Theorem 22 since by Theorem 3 we have
IMLL-CK

H′ iff
IMLL-X

bH′c. �

Lemma 41. Let X ∈ {CK,CD}. If H and G are 2-dags and f : VH → VG, then it can
be checked in polynomial time (in the size ofH ∪ G) if f is a X-ICP.

Proof. All the following checks can be done in polynomial time: that a 2-dag G is an
MA; that an MA is a K- or D-arena net; and that a map between two MAs is a skew
fibration. �

Corollary 42. Let X ∈ {CK,CD}. Then the X-ICPs form a sound and complete proof
system in the sense of Cook and Reckhow [11].
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7 Winning Strategies
In this section we provide the definition of winning strategies for a two-player game on
a modal arena ~F�, and we show the correspondence between these strategies and CK
and CD proofs of F.

Definition 43. Let G be a MA. A move is a vertex of G. Let p = p0, . . . , pn be a
sequence of distinct moves (we denote by ε the empty sequence). If v and w are two

moves in p, we say that a vertex w justifies v whenever v
G
→w. We call a move pi in

p a ◦-move or •-move if i is respectively even or odd. We say that p is a view if the
following conditions are fulfilled:

p is a play: if p , ε, then p0 ∈
→

RG;
p is justified: if i > 0, then pi→p j for some j < i;
p is ◦-shortsighted: if p◦i+1 and p•i , then pi+1→pi;
p is •-uniform: if p•i+1 and p◦i , then `(pi+1) = `(pi).
p is modal: pi ∈ VA ∪ V�.
The predecessor of a non-empty view p is the sequence obtained by removing the

last move in p. The successor is the converse relation. A winning innocent strategy (or
WIS) on G is a finite predecessor-closed set S of views in G such that:

• S and ◦-complete: if p ∈ S has even length, then every successor of p is in S;

• S is deterministic and total: if p ∈ S has odd length, then exactly one successors
of p is in S;

• S is ^-complete: if v◦ ∈ V�
G

occurs in S, then
 
C (v) , ∅ and each w such that

v w occurs in S.

We say that a WIS S is atomic if pi ∈ VA
G

for every p ∈ S.

Remark 44. Our definition of WIS restricted to (non-modal) arenas is the same as the
one in the literature, or simply a reformulation in our setting (see e.g. [34] or [39]).

By means of example consider the strategy with maximal views shown in Figure 1.
We remark that the totality and ◦-completeness of this strategy is guaranteed by the
fact that the modal arena net is linked.

Definition 45. Let X ∈ {CK,CD} and G be an X-arena net. A framed abstract view of

G is a reverse checked path on
y

G.
We denote by bbpcc the sequence of moves in G obtained by removing from a play

p all modal vertices. For example if p = �uv�^w, then bbpcc = uvw.
An abstract view p̃ in G is a sequence of atomic vertices in G defined as follows:

• either p̃ = bbpcc for a framed abstract view p of G;

• or p̃ = bbs1ccv1w1bbs3cc . . . bbs2k−1ccvkwkbbs2k+1cc for a framed abstract view p =

s1v1s2w1s3 . . . s2k−1vk s2kwk p2k+1 of G with vi,wi ∈ V� such that vi⇀wi for all
i ∈ {0, . . . , k};
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Note that by definition, an abstract view of a non-modal arena net is a reverse path in
G.

We recall the result on ICPs from [39] which we aim to extend CK-ICPs and CD-
ICPs in this section.

Theorem 46 ([39]). If f : G → ~F� is an ICP of a modality-free formula F, then the
set of images of all abstract views of G is a WIS on ~F�.

For this purpose, we define frames as equivalence classes of modal vertices in the
arena induced by the views. They are meant to reconstruct the information about the
applications of modal axioms, that are, the ∼-equivalence classes of the modal arena
net of the ICP. This information allows us to “de-contract” the formula F in such a
way to obtain a formula F′ which admits a linear derivation.

Let G = ~F� be a MA. The address of a vertex in v ∈ VG is the unique (possible
empty) sequence of modal vertices addv = m1 · · ·mk such that m0 = v and mi = ˆmi−1 ,
mi−1 for each i ∈ {1, . . . , k}. Intuitively, the address of a vertex v is the list of the
modalities in the path the node corresponding to v to the root of the formula tree TF .
We denote by hv = |addv| and addh

v the hth element mh in addv. If p is a view, we write
hp = max{hv | v ∈ p}. Moreover, if S is a strategy on G, we say that v ∈ VG is involved
in S if either v ∈ p or if v ∈ addpi for a view p ∈ S.

Definition 47. Let p = p1 · · · pn be a view on a MA G.
We say that p is well-framed if |addp2k | = |addp2k+1 | for every even 2k ∈ {0, . . . , n−1}.

A strategy is well-framed if each view in it is.
If p is well-framed, then we define its framed view as the hp × n matrix F (p) =(

F (p)0, . . . ,F (p)n
)

with elements in VG ∪ {ε} such that each column F (p)i is defined
as follows:

F (p)i =



F (p)hp
i = add

hpi
pi

...

F (p)hi+1
i = add1

pi

F (p)hi
i = ε

...

F (p)1
i = ε

F (p)0
i = pi


where a hi ∈ {0, . . . , hp} defined for each i ∈ {0, . . . , n}.

Moreover, each F (p) induces an equivalence relation
Gp
∼ over VG given by the sym-

metric, transitive, and reflexive closure of the following relations:

u
Gp
∼ 1w iff

u = F (p)h
2k and w = F (p)h

2k+1
for a 2k < n and a h ≤ hp

We write addv
Gp
∼addw if v and w are involved in p and addk

v
Gp
∼addk

w for all k.

Lemma 48. Let G be a MA, p be a well-framed view on G, and v,w ∈ VG. If v
Gp
∼w,

then there are some i, j ∈ {0, . . . , n} and a k ∈ {0, . . . , hp} such that v = F (p)k
i and

w = F (p)k
j. Moreover, for any h > k we have F (p)h

i
Gp
∼F (p)h

j .
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Proof. Let us write ∼ instead of
Gp
∼ . If v∼w, then by definition there are i, j, k ∈ N

such that v = F (p)k
i and w = F (p)k

j. To prove that F (p)h
i ∼F (p)h

j for all h ≥ k, we
assume w.l.o.g. that j ≥ i and we proceed by induction on n = j − i. If n = 0, then the
statement trivially holds since i = j and ∼ is reflexive. If n > 0, we make case analysis
on the parity of j. If j is odd, then F (p)h

j∼F (p)h
j−1 for all h ≥ k by definition of ∼. By

transitivity of ∼ we have F (p)h
j−1∼F (p)h

i . We conclude by inductive hypothesis since
( j − 1) − i < n. If j is even, then F (p)k

j∼F (p)k
j−1 if and only if either F (p)k

j = F (p)k
j−1

or F (p)k
j∼F (p)k

j+m for a m > 0 such that F (p)k
j+m = F (p)k

j′ for a j′ < j. In the first
case we conclude by inductive hypothesis since F (p)h

j = F (p)h
j−1 for all h > k, and

therefore F (p)h
j∼F (p)h

j−1. In the second case we conclude by inductive hypothesis
since j′ < j. �

Definition 49. Let S be a well-framed strategy on a MA G. We say that S is linked

if for every p ∈ S the
Gp
∼ -classes are of the shape {v•1, . . . , v

•
n,w

◦}. This induces an

edge-relation u
GS
⇀w = {u•

Gp
∼w◦ | p ∈ S}.

A CK-framed strategy on a MA G is a well-framed linked strategy S such that for
each w◦ ∈ V��

G
involved in S the following conditions are fulfilled:

1. if w ∈ V�
G

, then v ∈ V�
G

for any v
GS
⇀w;

2. if w ∈ V�
G

, then v ∈ V�
G

for a unique v such that v
GS
⇀w.

A CD-framed strategy on a MA G is a well-framed linked atomic strategy S such that
for each w◦ ∈ V��

G
involved in S, it satisfies Condition 1 plus the following

3. if w ∈ V�
G

, then v ∈ V�
G

for at most one v such that v
GS
⇀w.

For X ∈ {CK,CD}, we say that S is a X-WIS if it is a X-framed WIS.

Example 50. Let us consider the two non CK-provable formulas F = �a1 ⊃ a0 and
F′ = (�a2 ⊃ �b1) ⊃ �(a3 ⊃ b0) where we enumerate occurrences of the same atom to
improve readability.

The unique view on ~F� is a◦0a•1. Since adda0 = ε and |adda1 | = 1, we conclude
that any strategy on ~F� is not be well-framed.

Similarly, the unique maximal view on ~F′� is b◦0b•1a◦2a•3. This view is well-framed.
However its frame contains all three modalities of the formula, two of which are ◦;
Hence any strategy on ~F′� would not be CK-framed

As consequence of Lemma 48 we have the following result

Corollary 51 (Functoriality). Let S is a well-framed strategy on a MA G. If v,w ∈ VG
and v

Gp
∼w, then addv

Gp
∼addw.

The rest of this section is devoted to show how to use X-ICP to expose the cor-
respondence between X-WISs and proof in CX for X ∈ {CK,CD}. Since X-ICPs are
sound and complete (see Theorem 40), it is easy to show that we can associate to any
proof a X-WIS using the following lemma:
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Lemma 52. Let X ∈ {CK,CD}. If f : G → ~F� is a X-ICP of a formula F, then the
image by f of all abstract views of G is a X-WIS on ~F�.

Proof. The image by f of an abstract view is a play and it is ◦-shortsighted since f

preserves d and if v,w ∈ VA
G

, then v→w in
y

G only if v→•w. Moreover, in a modal

arena if vG∼w and v,w ∈ VA
G

, then `(v) = `(w). We deduce that f is •-uniform since f
also preserves `. Hence the image by f of an abstract views on G is a view on ~F�.

Since for any abstract view p on G we have that p2k+1 = v2k+1
G
∼v2k = p2k, then by

functoriality of G (Condition 3 in Definition 19), we have v̂2k+1
G
∼v̂2k. This allows us to

conclude by induction that hv2k = hv2k+1 in G, i.e., p is well-framed view since since f is
modal and preserves .

The ◦-completeness follows by definition of→•∪ ∂. Determinism of the strategy

follows by the fact that
y

G is X-correct, then

• if X = CK, then for every w◦ ∈ VA ∪ V� there is a unique vertex4 v• such that
v•⇀w◦. Moreover in this case ^-completeness follows the non-empty modali-
ties Conditions 4;

• and if X = CD, then S is atomic and atomic vertices are paired in ∼-classes.
Moreover in this case ^-completeness is valid since no ^ occurs in S.

We conclude since by definition
y

G is linked and X-correct; thereby S is X-framed.
�

To prove that each X-WIS correspond to a proof in CX, we give a procedure to
define an X-ICP f : G → ~F� using the information provided by the arena ~F� and the
strategy S. Using the property of being well-framed, we are able to reconstruct some
paths on ~F�which should be the images by the skew fibration f of the framed abstract
views in the modal arena net G.

Definition 53. Let p be a well-framed view on a MA G of length n . We define the
pre-view of p as the sequence of vertices in G

p̃ = p̃0, p̃2, p̃4, . . . , p̃2k if n is even
p̃ = p̃0, p̃2, p̃4, . . . , p̃2k, p̃2k+1 if n is odd

where for all i ∈ {1, . . . , k} we have

p̃0 = F (p)hp

0 , . . . ,F (p)0
0

p̃2i = F (p)0
2i−1 . . . ,F (p)hi

2i−1F (p)hi
2i . . .F (p)0

2i

p̃2k+1= F (p)0
2k+1, . . . ,F (p)hp

2k+1

for a hi = max{h | F (p)h
2i−1

GS
∼F (p)h

2i} if addp2i+1

GS
/ addp2i and hi = 0 otherwise. We

denote by S̃ the set of the pre-views of all the views in S, that is, S̃ = {p̃ | p ∈ S}.
A unchecked prefix of a p̃ ∈ S̃ is a sequence of vertices s� obtained by replacing in

a prefix s of p̃ each subsequence of the form vrw with vw whenever vGS∼w.
4Observe that this is not true for �-vertices.
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Example 54. Let us consider the maximal views on the modal arena of �1(b1 ⊃ b0) ⊃
a1) ⊃ (^1c ⊃ ^0(a2 ∧ a0)) from Figure 1. From the leftmost and central views we
respectively define the pre-views ^◦0a◦0a•1b◦0b•1�

•
1 and ^◦0a◦2a•1b◦0b•1�

•
1. In particular, the

sequence ^0�1 is the unique unchecked prefix associated to these two sequences.

Given an arena ~F� and a X-WIS S and following this intuition, we reconstruct
a partitioned modal arena GS and a map f S from its vertices to the ones in ~F� as
follows.

Definition 55. Let X ∈ {CK,CD} and S be a X-WIS on ~F�. We define an arena

GS = 〈VG,
G
→,

G
 ,

G
∼〉 and a map f S = f : VG → ~F� as follows:

• in VG there is one vertex for each non-empty unchecked prefix s� of a pre-view
p̃ ∈ S̃ (whose label is the same of the last vertex in s�). That is,

VG = {vs | s is a non-empty unchecked prefix of a p̃ ∈ S̃} (6)

`(vs′w) = `(w) (7)

• by definition every vertex is of the form vs for a non-empty sequence s of vertices
in V~F�. We define the map f : VG → V~F� in such a way it maps each vs ∈ VG
to the last vertex of s = s′w. That is,

f (vs′w) = w (8)

• there is an edge v
G
→w whenever f (v)

~F�
→ f (w), and the images of v and w occur

in the addresses or are respectively some vertices x and y such that either x◦ and
y• occur in a same view in S, or there is s ∈ S such that sy◦ and suv• occur in S.
That is,

G
→ =

v→w
f (v)→ f (w) and there are x, y ∈ V~F� such that
f (v) = x or f (v) ∈ addx, f (w) = y or f (w) ∈ addy

and either sy•x◦, or both sy◦ and sux• are in S

 (9)

• there is an edge v
G
 w whenever f (v)

~F�
 f (w), and v and w occur in a same pre-

view in S̃. That is,

G
 = {v w | f (v)

~F�
 f (w) and f (v), f (w) ∈ p̃ for a p ∈ S} (10)

• we define vG∼w as the symmetric and transitive closure of the edge-relation
~F�S
⇀ .

That is,
G
∼ = {v⇀w | f (v)

~F�p
↽⇀ ∗ f (w) for a p ∈ S} (11)
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Remark 56. By definition ~F�S∼ =
⋃

p∈S
~F�p
∼ is not an equivalence relation over ~F�.

In fact in ~F� we may have some vertices u,v and w such that u
~F�S
⇀ v and u

~F�S
⇀ w and

v
~F�S
/ w.

If we additionally assume that S is linked, then we conclude that u
~F�p1
∼ v and

u
~F�p2
∼ w for two distinct p1, p2 ∈ S. Hence, the vertex u in ~F� admits at least two

different pre-images in G. Then we conclude, as the homonymy suggests, that GS is a
linked modal arena.

Remark 57. By definition of  , we have that v
GS
 ∂w iff v

GS
!w and v = p̃i and w =

p̃ j for a i > j. That is, any pre-view is a reverse cautious path on
y

GS, that is, a framed
abstract view. It follows that the abstract view which can be extract from a pre-view
p̃ of a p ∈ S is exactly the view p. In other words, the function mapping a view in
its pre-view is the left adjoint of the function mapping a framed abstract view to its
associated abstract view.

Hence, by proving that f S is an X-ICPs we can prove that we can associate a proof
in CX to any X-WIS.

Lemma 58. Let X ∈ {CK,CD} If F is a formula and S a X-WIS on ~F�, then there is
a X-ICP f : G → ~F�.

Proof. We only prove the result for CK since the proof for CD is similar but easier
since CD-WISs are atomic.

We use Definition 55 to define an X-ICP f S : GS → ~F� form S and ~F�. That
is, we prove that the map f S and the modal arena GS defined in Definition 55 are
respectively a skew fibration and, whenever S is CX-framed, an X-arena net.

The arena G is linked by definition of G∼ as remarked in Remark 56. To conclude
that G is a CK-arena net we have to check the following conditions:

1.
y

G is acyclic: if a checked path contains a cycle, then we can define a framed
abstract view for any number of iterations of this cycle. Then S should contains
infinite views corresponding of the image through f of infinite abstract views on
G. Absurd.

2.
y

G is functional: for any p̃•i there is a k ≤ i such that p̃k = ph occurs in p and either

k = i or p̃i
G
 p̃k. Since p is justified, then there is l < h such that ph→pl. Then

there is j < i such that p̃ j = pl. By the fact that  is modal (see Definition 9),

we conclude that p̃i
G
→p̃ j.

3.
y

G is functorial: it follows Corollary 51;

4.
y

G has almost all non-empty modalities: let v ∈ V��
G

such that v = vs for a prefix
s = s′F (p)h

2k of a p̃ ∈ S̃. If v ∈ V�, then h > 0 (since no � occurs in a abstract

view) and there is w = ws′′ such that v
G
 w such that either s′′ = s′F (p)h

2kF (p)h−1
2k

if v◦, or s′′ = s′ if v• ∈ V�
G

. If v◦ ∈ V�, then we conclude by ^-completeness.
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5.
y

G is CK-correct: it follows from the fact that S is CK-framed and that, by defi-

nition,
G
⇀ =

GS
⇀.

The map f is a skew fibration we have to check the following conditions:

• f preserves `, →, and : by definition;

• f preserves d: since f preserves
G
→, then d(v) ≥ d( f (v)). If d(v) > d( f (v)) then

there should be a w such that f (v)→w and d(w) ≥ d( f (v)) which by Lemma 7,
implies that ~F� is not L-free. Contradiction;

• f is modal: if f (v) f (w), then by definition there is a k such that addk
f (w) = f (v).

We conclude by letting v′ = addk
w.

• f preserves f: it follows from the fact that f preserves → and d;

• f has the skew lifting property: we let w ∈ V~F� such that w f f (v) for a v ∈ VG
and we prove that there is always a u such that v f u and f (u) 6fw.

If there is no meeting point of w and f (v), then we conclude by letting u ∈
→

RG
such that u f v and w→∗ f (u).

Otherwise, we let x• (hence x <
→

R~F�) be a meeting point of w and f (v). By
Lemma 10 can assume w.l.o.g. that x ∈ VA~F�. Moreover, we can also assume
that x is in the image of f . In fact, since the meeting point exists, then there is a
r◦ (at least one r ∈

→

R~F�) such that w→nr and f (v)→mr; we can assume r ∈ VA

and by determinism of S we have a z ∈ VA in the image of f such that z→r; thus
by Lemma 7 either z is the meeting point, or for all r′ ∈ VA such that r′→z, r′ is
in the image of f since S is total and ◦-complete; we conclude by induction.

We can deduce that sx ∈ S for a s ∈ S. We now let y such that w→∗y→x. Since
sx ∈ S and x•, then by ◦-completeness we have sxy ∈ S for every y ∈ VA such
that y→x; thus f (u) = y for a u = vsxy ∈ VG. We conclude since the meeting
point of w and f (u) is f (u) = y◦ and the meeting point of f (u) and f (v) is x•.

�

We are able to prove a soundness and completeness result for X-WISs.

Theorem 59. Let F be a formula and X ∈ {CK,CD}.

F is provable in CX ⇐⇒ there is a X-WIS on ~F�.

Proof. By Theorem 40 we know that X-ICPs are a sound and complete proof system
for LX. We conclude the proof using Lemmas 52 and 58 which state the correspondence
between X-ICPs of a formula F and X-WIS on ~F�. �
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8 Conclusions and Future Works
In this paper we present two semantics for proofs of the disjunction-free and unit-free
fragment of the constructive modal logics CK and CD.

The first semantics is given by extending the syntax of ICPs from [39] by reshaping
some techniques from the previous work on combinatorial proofs for modal logic [5] to
fit with the syntax required to capture intuitionistic logic. We define MAs which extend
the syntax of a Hyland-Ong arena [34] in order to represent modal formulas by finite
directed graphs, and we define modal arena nets which are MAs equipped with a vertex
partition capturing axioms in CK and CD. Then we prove that skew fibrations from a
modal arena net to the arena of a formula are sound and complete with respect to the
logics CK and CD.

The second semantics is given in terms of winning innocent strategies over modal
arenas. It has been designed by extending the relation between ICPs and winning
strategies shown in [39]: the set of paths in the linking graph of the arena net of the
ICP is mapped by the skew fibration to a winning innocent strategy on the formula
arena. This relation has been further refined by showing that for CK and CD it is
possible to restrict this set of paths to specific ones passing on atoms and diamonds
only.

We get the following result for our two new semantics:

Theorem 60 (Full completeness). Let F be a formula and X ∈ {CK,CD}. Then

1. There is a surjection from the set of factorised proofs of F and the set X-ICPs of
F.

2. There is a surjection from the set of X-ICPs of F and the set of X-WISs on ~F�.

3. There is a surjection from the set of LX-derivations of F and the set of X-WISs
on ~F�.

Proof. 1. The proofs of Theorem 22 and Theorem 38 allow to establish full maps
respectively from IMLL-X-derivations to X-arena nets, and from LI

↓
-derivations

to skew fibrations. We conclude by composing these maps.

2. The proof of Lemma 52 establishes a map from the set of X-ICPs of F to the set
of X-WISs on ~F�. The proof of Lemma 58 associates an X-ICP to an X-WIS S.
As remarked in Remark 57, the image by f S of the abstract views on the linking
graph of the modal arena net GS defined in Definition 55 is exactly initial X-WIS
S. We conclude since every X-WIS S on ~F� is the image by f of the framed
abstract views in the X-ICP f S : GS → ~F�.

3. Direct consequence of 1 and 2. �

We conclude by presenting some lines of inquiry that have been initiated by the
content of this paper.

Game semantics for CK and CD.
We are currently investigating the compositionality of CK-WISs and CD-WISs in

order to define the game semantics for these logics. It seems natural that the standard
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definitions of canonical strategies of game semantics (e.g., copy-cat, projections and
evaluation) can be employed in our framework. However, the additional condition on
frames requires a careful investigation which goes beyond the scope of this paper.

Relation between λ-terms and winning strategies. For propositional intuitionis-
tic logic the relation between λ-terms and WISs is well-known [26, 12, 22] The exact
correspondence between our WISs and λ-terms for CK and CD [9] is under investiga-
tion, but out of the scope of this paper.

Proof equivalence in constructive modal logics.
Both ICPs and WISs induce a proof equivalence between proofs defined as “two

derivations are equivalent iff they are represented by the same semantic object”.
We conjecture that, as proven in [39] for the intuitionistic combinatorial proofs for

the logic LI, the combinatorial proofs presented in this paper capture the proof equiva-
lence defined on sequent calculus by independent rules permutations, weakening/contraction-
comonad, and excising, i.e., the permutation of weakening which removes subproofs
shown below (see the permutation in the bottom-right corner of Figure 5).

−
D

∥∥∥∥∥∥∥
Γ ` A

∆, ` C
−−−−−−−−−−−−−−−−− W
B,∆ ` C

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ⊃L

Γ, A ⊃ B,∆ ` C

e
 

∆, ` C
================================ W
Γ, A ⊃ B,∆ ` C

We also conjecture that the full completeness results can be stated with respect to all
proofs of a formula, and not only the factorised ones.

However, in the presence of modalities, the proof of these results is much more
involved (see Figure 5), and would go beyond the scope of this paper. Although, it is
easy to see that whenever two sequent proofs are equivalent modulo rule permutations,
they are mapped to the same combinatorial proof, the converse is far from trivial, in
particular, it is not true in the classical case.

Moreover, an additional problem seems to arise for CK which is similar to the
well-known “jump-problem” for multiplicative linear logic proof nets with units [19]:
permutations of W may re-assign which ^ is introduced by a specific K^ as in the
following example.

−−−−−−−−− AX
a ` a
−−−−−−−−−−−−−− ⊃R

` a ⊃ a
−−−−−−−−−−−−−−−−−−− W
B ` a ⊃ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
^B ` ^(a ⊃ a)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− W
^B,^C ` ^(a ⊃ a)

;

−−−−−−−−− AX
a ` a
−−−−−−−−−−−−−− ⊃R

` a ⊃ a
−−−−−−−−−−−−−−−−−−−− W
C ` a ⊃ a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− K^
^C ` ^(a ⊃ a)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− W
^B,^C ` ^(a ⊃ a)

Winning strategies for linear logic
We foresee no difficulties in defining WISs for elementary and light linear logic

adapting the techniques used for defining CPs for multiplicative and exponential linear
logic in [2].

We can envisage an encoding of !A of the form v∼B~A� for vertex v such that
`(v) = !. This would avoid the need of defining the arena of !A as the tensor of infinitely
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many copies of A, that is !A = A � A � · · · , preventing the need of a quotient on WISs
required to capture the natural isomorphism between the copies of A.

In particular, to recover the results of Murawski-Ong for light linear logic [34], it
suffices to consider the modalities ! and § as instances of �, to define a frame condition
simplifying the one of CK-frames (since there are no ^), and restrain skew-fibration
allowing deep weakening and deep contraction only to !-formulas using techniques
similar to the ones in [2].
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