Proof Equivalences in Constructive Modal Logic

Matteo Acclavio

University of Southern Denmark

VILLUM FONDEN

"X-IDF: Explainable Internet Data Flows"
Barcellona 13/07/2023
Based on joint works with Davide Catta ${ }^{1,3}$, Federico Olimpieri ${ }^{3}$, and Lutz Straßburger ${ }^{1,2}$

$$
1=[\text { Tableaux2021] } \quad 2=[\text { AiML2022] } \quad 3=[A r X i v 2023]
$$

(1) What is a proof?
(2) The intuitionisitc logic case
(3) Game Semantics for Intuitionistic Logic
(4) Proof equivalence in LI
(5) Constructive modal Logic
(Combinatorial Proofs and Game Semantics)
(6) Proof equivalence in Constructive Modal Logic

What is a proof?

A proof is...

- A sequence of instructions

A proof is...

- A sequence of instructions
- A strategy to win an argumentation

A proof is...

- A sequence of instructions
- A strategy to win an argumentation
- The sound relations between the components of a statement

When two proofs are the same?

- Normalization: $\pi_{1}=\pi_{2} \Longleftrightarrow \exists \hat{\pi}$ s.t. $\pi_{1} \leadsto \Rightarrow \hat{\pi}$ and $\pi_{2} \rightsquigarrow \hat{\pi}$
- Normalization may forget information (see classical logic);
- This approach is used to define categorical semantics and denotational semantics (including game semantics);
- Curry-Howard correspondence: two programs are the same if they compute the same function;
- Generality: $\pi_{1}=\pi_{2} \Longleftrightarrow \llbracket \pi_{1} \rrbracket=\llbracket \pi_{2} \rrbracket$
- two proofs are equivalent if we can associate both a same mathematical object;
- No normalization is involved: two programs computing a same function can still be different.

Come to ESSLLI 2023!

- An Introduction to Proof Equivalence (Matteo Acclavio and Paolo Pistone)

Come to ESSLLI 2023!

- An Introduction to Proof Equivalence (Matteo Acclavio and Paolo Pistone)

- Proof theory of arithmetic (Anupam Das)

Come to ESSLLI 2023!

- An Introduction to Proof Equivalence (Matteo Acclavio and Paolo Pistone)

- Proof theory of arithmetic (Anupam Das)

Come to ESSLLI 2023!

- An Introduction to Proof Equivalence (Matteo Acclavio and Paolo Pistone)

- Proof theory of arithmetic (Anupam Das)

Come to ESSLLI 2023!

- An Introduction to Proof Equivalence (Matteo Acclavio and Paolo Pistone)

- Proof theory of arithmetic (Anupam Das)

Come to ESSLLI 2023!

- An Introduction to Proof Equivalence (Matteo Acclavio and Paolo Pistone)

- Proof theory of arithmetic (Anupam Das)

Come to ESSLLI 2023!

- An Introduction to Proof Equivalence (Matteo Acclavio and Paolo Pistone)

- Proof theory of arithmetic (Anupam Das)

- The lambda-calculus: from simple types to non-idempotent intersection types (Giulio Guerrieri)

Come to ESSLLI 2023!

- An Introduction to Proof Equivalence (Matteo Acclavio and Paolo Pistone)

- Proof theory of arithmetic (Anupam Das)

- The lambda-calculus: from simple types to non-idempotent intersection types (Giulio Guerrieri)
- ... Many others!

Come to ESSLLI 2023!

- An Introduction to Proof Equivalence (Matteo Acclavio and Paolo Pistone)

- Proof theory of arithmetic (Anupam Das)

- The lambda-calculus: from simple types to non-idempotent intersection types (Giulio Guerrieri)
- ... Many others!

Come to ESSLLI 2023!

The intuitionisitc logic case

Crash course on (disjunction free) intuitionistic Logic

$$
A, B::=1|a| A \supset B \mid A \wedge B
$$

Sequent Calulus

$$
\begin{aligned}
& \overline{a \vdash a} \mathrm{AX} \\
& \frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset^{\mathrm{R}} \frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \supset B \vdash C} \supset^{\mathrm{L}} \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge^{\mathrm{R}} \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} \wedge^{\mathrm{L}} \\
& \bar{\vdash}^{\mathrm{L}} \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} \mathrm{C}
\end{aligned}
$$

Game Semantics for Intuitionistic Logic

Arenas:

$$
\llbracket a \rrbracket=a \quad \llbracket 1 \rrbracket=\emptyset \quad \llbracket A \wedge B \rrbracket=\llbracket A \rrbracket+\llbracket B \rrbracket \quad \llbracket A \supset B \rrbracket=\llbracket A \rrbracket-\triangleright \llbracket B \rrbracket
$$

Arenas:

$$
\llbracket a \rrbracket=a \quad \llbracket 1 \rrbracket=\emptyset \quad \llbracket A \wedge B \rrbracket=\llbracket A \rrbracket+\llbracket B \rrbracket \quad \llbracket A \supset B \rrbracket=\llbracket A \rrbracket \rightarrow \llbracket B \rrbracket
$$

Examples:

$$
\begin{gathered}
\llbracket\left(\left(b_{1} \supset b_{0}\right) \supset a_{1}\right) \supset\left(a_{2} \wedge a_{0}\right) \rrbracket=b_{1}^{\longrightarrow} b_{0} \rightarrow a_{\underset{\wedge}{ } a_{2} \rightarrow a_{0}}^{\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket=a \wedge a \rightarrow b, a \longrightarrow b}
\end{gathered}
$$

How to play:

- Two-players game (o and •)
- o starts on a root
- each non initial move is justified (\rightarrow) by one previous move
- each •-move must "reply" to the previous o-move
- o-moves are justified by the previous •-move (o is shortsighted)
- a player wins when the other is out of moves

How to play:

- Two-players game (o and •)
- o starts on a root
- each non initial move is justified (\rightarrow) by one previous move
- each •-move must "reply" to the previous o-move
- o-moves are justified by the previous •-move (o is shortsighted)
- a player wins when the other is out of moves

"A strategy to win an argument on the truthful of a statement"
- Play: sequence of moves
- Winning strategy: set of plays considering every possible o-move
- Innocent: each •-move is determined by one previous o-move.

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is o's turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is •'s turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
\\
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is o's turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\bullet} \\
\\
\\
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is •'s turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
\\
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is o's turn
\section*{PLAYER • WINS!}

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\bullet}
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is o's turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\bullet}
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is •'s turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\bullet}
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is o's turn

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\circ} a_{2}^{\circ}
\end{array}\right\}
$$

Let's play on $\llbracket((a \wedge a) \supset b) \supset(a \supset b) \rrbracket$

It is •'s turn
\section*{PLAYER •WINS!}

$$
\mathcal{S}=\left\{\begin{array}{l}
\epsilon \\
b_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{0}^{\circ} a_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\circ} a_{2}^{\circ} \\
b_{0}^{\circ} b_{1}^{\circ} a_{2}^{\circ} a_{1}^{\bullet}
\end{array}\right\}
$$

Theorem (Compositionality)

If \mathcal{S} is a WIS for $\llbracket A \supset B \rrbracket$ and \mathcal{T} is a WIS for $\llbracket B \supset C \rrbracket$,
then there is a WIS $\mathcal{S} \circ \mathcal{T}$ for $\llbracket A \supset C \rrbracket$.

Theorem (Denotational Semantics)

WISs provide a full complete denotational semantics for intuitionistic logic.

- If \mathcal{S} is a WIS, then there is π s.t. $\mathcal{S}=\llbracket \pi \rrbracket$
- $\pi_{1} \leadsto \hat{\pi}$ \& $\pi_{2} \Longleftrightarrow \llbracket \pi_{1} \rrbracket=\llbracket \pi_{2} \rrbracket$

Theorem

One-to-one correspondence between $\beta \eta$-normal λ-terms and WISs.

$$
\begin{gathered}
t:=\star|x| \lambda x . t|(t) u|\left\langle t_{1}, t_{2}\right\rangle\left|\Pi_{1} t\right| \Pi_{2} t \\
(\lambda x . t) u \rightsquigarrow_{\beta} t\{u / x\} \quad \Pi_{1}\left\langle u, v, \rightsquigarrow_{\beta}\right\rangle u \quad \Pi_{2}\left\langle u, v, \rightsquigarrow_{\beta}\right\rangle v \\
\lambda x . t(x) \rightsquigarrow_{\eta} t \quad\left\langle\Pi_{1} u, \Pi_{2} u\right\rangle \rightsquigarrow_{\eta} u
\end{gathered}
$$

Combinatorial Proofs
 for
 Intuitionistic Logic

$$
\operatorname{MAX}(\mathcal{S})=\left\{\begin{array}{c}
b_{0}^{\circ} b_{1}^{\bullet} a_{0}^{\circ} a_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\bullet} a_{2}^{\circ} a_{1}^{\bullet}
\end{array}\right\}
$$

$$
\operatorname{MAX}(\mathcal{S})=\left\{\begin{array}{c}
b_{0}^{\circ} b_{1}^{\bullet} a_{0}^{\circ} a_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\bullet} a_{2}^{\circ} a_{1}^{\bullet}
\end{array}\right\} \leftarrow
$$

$$
\operatorname{MAX}(\mathcal{S})=\left\{\begin{array}{c}
b_{0}^{\circ} b_{1}^{\bullet} a_{0}^{\circ} a_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\bullet} a_{2}^{\circ} a_{1}^{\bullet}
\end{array}\right\} \leftarrow
$$

$$
\operatorname{MAX}(\mathcal{S})=\left\{\begin{array}{c}
b_{0}^{\circ} b_{1}^{\bullet} a_{0}^{\circ} a_{1}^{\bullet} \\
b_{0}^{\circ} b_{1}^{\circ} a_{2}^{\circ} a_{1}^{\bullet}
\end{array}\right\}
$$

This is an intuitionistic combinatorial proof!

Combinatorial Proofs for LI:

- Arenas for formulas

Combinatorial Proofs for LI:

- Arenas for formulas
- Linear proofs = arenas + specific vertices partitions

Combinatorial Proofs for LI:

- Arenas for formulas
- Linear proofs = arenas + specific vertices partitions
- Deep-WC derivations = specific morphisms between areans

Combinatorial Proofs for LI:

- Arenas for formulas
- Linear proofs = arenas + specific vertices partitions
- Deep-WC derivations = specific morphisms between areans
- We can factorize LI proofs

$$
\left.\begin{array}{c}
\| \mathrm{MLLL} \\
\left(\begin{array}{cccc}
& b & \supset & b
\end{array}\right) \supset(a \wedge a)
\end{array}\right) \supset\left(\begin{array}{llll}
a & \wedge & a
\end{array}\right)
$$

Combinatorial Proofs for LI:

- Arenas for formulas
- Linear proofs = arenas + specific vertices partitions
- Deep-WC derivations = specific morphisms between areans
- We can factorize LI proofs
- Et Voilá!

Proof equivalence in LI

Combinatorial Proofs provide a finer notion of proof equivalence w.r.t. WIS.

$$
\begin{aligned}
& b \longrightarrow b \rightleftarrows a \longrightarrow a \longrightarrow a \\
& ((\stackrel{\downarrow}{b} \supset \stackrel{\downarrow}{b}) \supset \stackrel{\downarrow}{a}) \supset\left(\dot{a}_{0} \wedge a_{2}\right) \\
& \neq \\
& \left(\left(\stackrel{\rightharpoonup}{b}^{\prime} \supset \stackrel{\Downarrow}{b}^{\prime}\right) \supset \stackrel{\Downarrow}{a}^{\prime}\right) \supset\left(\begin{array}{l}
a_{0} \wedge a_{2}
\end{array}\right) \\
& \frac{\frac{\overline{b \vdash b}}{\frac{1}{\vdash b \supset b} \supset^{\mathrm{R}} \frac{\overline{a \vdash a_{0}} \mathrm{ax} \overline{a+a_{2}}}{\frac{a, a+a_{0} \wedge a_{2}}{a \vdash a_{0} \wedge a_{2}}} \wedge} \mathrm{C}}{\frac{(b \supset b) \supset a \vdash a_{0} \wedge a_{2}}{\vdash((b \supset b) \supset a) \supset\left(a_{0} \wedge a_{2}\right)} \supset^{\mathrm{R}}}
\end{aligned}
$$

but

$$
\begin{gathered}
\mathcal{S}=\left\{\begin{array}{cc}
& a_{0}, a_{0} a, a_{0} a b, a_{0} a b b \\
\epsilon, & \\
& a_{2}, a_{2} a, a_{2} a b, a_{2} a b b
\end{array}\right\} \\
\simeq \\
\lambda f^{(b \supset b) \supset a} \cdot\left\langle f\left(\lambda x^{a} \cdot x\right), f\left(\lambda y^{a} \cdot y\right)\right\rangle
\end{gathered}
$$

Combinatorial Proofs provide a finer notion of proof equivalence w.r.t. WIS.

Independent rules	
Resource Management	
Excising and Unfolding	

On Constructive Modal Logic

Crash course on Constructive Modal Logic CK

$$
A, B::=1|a| A \supset B \mid A \wedge B
$$

Intuitionistic propositional logic (LI)

$$
\begin{aligned}
& \frac{-}{a \vdash a} \mathrm{AX} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset^{\mathrm{R}} \frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \supset B \vdash C} \supset^{\mathrm{L}} \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge^{\mathrm{R}} \frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} \wedge^{\mathrm{L}} \\
& \quad-1 \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} \mathrm{C} \quad \frac{\Gamma \vdash B}{\Gamma, A \vdash B} \mathrm{~W}
\end{aligned}
$$

Crash course on Constructive Modal Logic CK

$$
A, B::=1|a| A \supset B|A \wedge B| \square A \mid \diamond A
$$

Intuitionistic propositional logic (LI)

$$
+
$$

Nec rule: if F is provable, then $\square F$ is provable

$$
\mathrm{k}_{1}: \square(A \supset B) \supset(\square A \supset \square B) \quad \mathrm{k}_{2}: \square(A \supset B) \supset(\diamond A \supset \diamond B)
$$

$$
\begin{gathered}
\overline{a \vdash a} \mathrm{AX} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \supset^{\mathrm{R}} \frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \supset B \vdash C} \supset^{\mathrm{L}} \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \wedge B} \wedge^{\mathrm{R}}
\end{gathered} \begin{gathered}
\frac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C} \wedge^{\mathrm{L}} \\
\quad-1
\end{gathered} \frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B} \mathrm{C} \begin{gathered}
\frac{\Gamma \vdash B}{\Gamma, A \vdash B} \mathrm{~W}
\end{gathered} \frac{\Gamma \vdash A}{\square \Gamma \vdash \square A} \mathrm{~K}^{\square} \quad \frac{A, \Gamma \vdash B}{\diamond A, \square \Gamma \vdash \diamond B} \mathrm{~K}^{\diamond}
$$

Constructive modal Logic (Combinatorial Proofs and Game Semantics)

$$
\begin{array}{ll}
\llbracket a \rrbracket=c a & \llbracket A \wedge B \rrbracket=\llbracket A \rrbracket+\llbracket B \rrbracket \\
\llbracket \square A \rrbracket=\square \neg \llbracket A \rrbracket & \llbracket A \supset B \rrbracket=\llbracket A \rrbracket \rightarrow \llbracket B \rrbracket \\
\llbracket \diamond A \rrbracket=\diamond \sim \neg \llbracket A \rrbracket &
\end{array}
$$

$$
\begin{array}{lll}
\llbracket a \rrbracket=c a & \llbracket A \wedge B \rrbracket=\llbracket A \rrbracket+\llbracket B \rrbracket & \llbracket A \supset B \rrbracket=\llbracket A \rrbracket \rightarrow \llbracket B \rrbracket \\
\llbracket \square A \rrbracket=\square \sim \triangleright \llbracket A \rrbracket & \llbracket \diamond A \rrbracket=\diamond \sim \triangleright A \rrbracket &
\end{array}
$$

Examples:

Combinatorial Proofs for CK [AiML2023]:

- Arenas for modal formulas

Combinatorial Proofs for CK [AiML2023]:

- Arenas for modal formulas
- Linear proofs $=$ arenas + specific vertices partitions

Combinatorial Proofs for CK [AiML2023]:

- Arenas for modal formulas
- Linear proofs = arenas + specific vertices partitions
- Specific morphisms = deep-WC derivations

Combinatorial Proofs for CK [AiML2023]:

- Arenas for modal formulas
- Linear proofs = arenas + specific vertices partitions
- Specific morphisms = deep-WC derivations
- We can factorize CK and CD proofs

$$
\begin{aligned}
& \text { \#ImLL-X }{ }^{\circ} \\
& \square((b \supset b) \supset \diamond(a \wedge a)) \supset \diamond(a \wedge a) \\
& \| \text { Li } \\
& \square((b \supset b) \supset \diamond a \quad a \quad) \supset \diamond(a \wedge a)
\end{aligned}
$$

Combinatorial Proofs for CK [AiML2023]:

- Arenas for modal formulas
- Linear proofs = arenas + specific vertices partitions
- Specific morphisms = deep-WC derivations
- We can factorize CK and CD proofs
- We have combinatorial proofs for CK and CD!

Back to games...

How to play:

- o starts on a root
- any non initial move is justified by a previous move
- o is shortsighted: his moves points the previous •-move
- each •-move must "reply" the previous o-move

Here I should have no chances to win

Formula	Arena	Derivation (attempt)	WIS
$\square a \supset a$		$\supset^{\mathrm{R}} \frac{\begin{array}{c} \text { FAIL } \\ \square a \vdash \cdot \end{array}}{\vdash \square a \supset a}$	$\mathcal{S}=\left\{\begin{array}{ll} a^{\circ} & a^{\bullet} \end{array}\right\}$

Here I should have no chances to win

$\left.\begin{array}{c|c|c|c}\text { Formula } & \text { Arena } & \text { Derivation (attempt) } & \text { WIS } \\ \hline \square a \supset a & \square & F A I L & \square a \supset a \\ \ldots \ldots \ldots . . & \supset^{\mathrm{R}} \frac{\square a+a}{1-\square a \supset a} & \mathcal{S}=\left\{a^{\circ} \quad a^{\bullet}\right\}\end{array}\right]$

Here I should have no chances to win

Formula	Arena	Derivation (attempt)	WIS
$\square a \supset a$		$\supset^{\mathrm{R}} \frac{\begin{array}{c} F A I L \\ \square a \vdash \cdot a \\ \vdash \square a \supset a \end{array}}{\qquad-a}$	$\begin{gathered} \square a \supset a \\ \epsilon \\ \left.\mathcal{S}=\begin{array}{cc} \square^{\bullet} \\ \left\{a^{\circ}\right. & a^{\bullet} \end{array}\right\} \end{gathered}$

Here I should have no chances to win

Formula	Arena	Derivation (attempt)	WIS
$\square a \supset a$		$\supset^{\mathrm{R}} \frac{\begin{array}{c} \text { FAIL } \\ \square a \vdash \cdot \end{array}}{\vdash \square a \supset a}$	$\begin{gathered} \square a \supset a \\ \epsilon \\ \left.\mathcal{S}=\begin{array}{cc} \square^{\bullet} \\ \left\{a^{\circ}\right. & a^{\bullet} \end{array}\right\} \end{gathered}$
$(\square a \supset \square b) \supset \square(a \supset b)$			$\begin{gathered} (\square a \supset \square b) \supset \square(a \supset b) \\ \mathcal{S}=\left\{\begin{array}{cccc} \square^{\circ} & \square^{\bullet} & \square^{\circ} & \square^{\circ} \\ b^{\circ} & b^{\bullet} & a^{\circ} & a^{\bullet} \end{array}\right\} \end{gathered}$

Here I should have no chances to win

Formula	Arena	Derivation (attempt)	WIS
$\square a \supset a$		$\supset^{\mathrm{R}} \frac{\begin{array}{c} \text { FAIL } \\ \square a \vdash \cdot \end{array}}{\vdash \square a \supset a}$	$\begin{gathered} \square a \supset a \\ \epsilon \\ \left.\mathcal{S}=\begin{array}{cc} \square^{\bullet} \\ \left\{a^{\circ}\right. & a^{\bullet} \end{array}\right\} \end{gathered}$
$(\square a \supset \square b) \supset \square(a \supset b)$			$\begin{gathered} (\square a \supset \square b) \supset \square(a \supset b) \\ \mathcal{S}=\left\{\begin{array}{cccc} \quad b^{\circ} & b^{\bullet} & a^{\circ} & a^{\bullet} \end{array}\right\} \end{gathered}$

Here I should have no chances to win

Formula	Arena	Derivation (attempt)	WIS
$\square a \supset a$	$\begin{aligned} & \square \\ & \vdots \\ & a \longrightarrow a \end{aligned}$	$\supset^{\mathrm{R}} \frac{\begin{array}{c} \text { FAIL } \\ \square a \vdash \cdot \end{array}}{\vdash \square a \supset a}$	$\begin{gathered} \square a \supset a \\ \epsilon \\ \left.\mathcal{S}=\begin{array}{cc} \square^{\bullet} \\ \left\{a^{\circ}\right. & a^{\bullet} \end{array}\right\} \end{gathered}$
$(\square a \supset \square b) \supset \square(a \supset b)$			$\begin{gathered} (\square a \supset \square b) \supset \square(a \supset b) \\ \mathcal{S}=\left\{\begin{array}{cccc} \square^{\circ} & \square^{\bullet} & \square^{\circ}--\square^{\circ} \\ b^{\circ} & b^{\bullet} & a^{\circ} & a^{\bullet} \end{array}\right\} \end{gathered}$

Here I should have no chances to win

Formula	Arena	Derivation (attempt)	WIS
$\square a \supset a$	$\begin{aligned} & \square \\ & \vdots \\ & a \longrightarrow a \end{aligned}$	$\supset^{\mathrm{R}} \frac{\begin{array}{c} \text { FAIL } \\ \square a \vdash \cdot \end{array}}{\vdash \square a \supset a}$	$\begin{gathered} \square a \supset a \\ \epsilon \\ \left.\mathcal{S}=\begin{array}{cc} \square^{\bullet} \\ \left\{a^{\circ}\right. & a^{\bullet} \end{array}\right\} \end{gathered}$
$(\square a \supset \square b) \supset \square(a \supset b)$			$\begin{gathered} (\square a \supset \square b) \supset \square(a \supset b) \\ \mathcal{S}=\left\{\begin{array}{cccc} \square^{\circ}--\square^{\bullet}--\square^{\circ}--\square^{\circ} \\ b^{\circ} & b^{\bullet} & a^{\circ} & a^{\bullet} \end{array}\right\} \end{gathered}$

Theorem (Full Completeness)

Every CK-WIS on $\llbracket F \rrbracket$ is the image of a proof of F.

Additional conditions on views [Tableaux2021]:
(1) no a occurs;
(2) each •-move is at the same "height" of the previous o-move;
(3) each ~-class contains a unique o-vertex;
(4) each \sim-class contains a (unique) \diamond° iff it contains a unique \diamond^{\bullet}.

Relation between CK-WISs and modal λ-terms

In intuitionistic logic we have a 1-to-1 correspondence

$$
\{\eta \beta \text {-normal } \lambda \text {-terms }\} \leftrightarrow\{\text { WISs }\}
$$

which cannot be extended!

Problem: even in a "minimal" λ-calculus

$$
t:=x|\lambda x . t|(t) u \mid \text { Let } \vec{x} \text { be } \vec{u} \text { in } t
$$

Relation between CK-WISs and modal λ-terms

In intuitionistic logic we have a 1-to-1 correspondence

$$
\{\eta \beta \text {-normal } \lambda \text {-terms }\} \leftrightarrow\{\text { WISs }\}
$$

which cannot be extended!

Problem: even in a "minimal" λ-calculus

$$
t:=x|\lambda x \cdot t|(t) u \mid t[\vec{t} / \vec{x}]
$$

Relation between CK-WISs and modal λ-terms

In intuitionistic logic we have a 1-to-1 correspondence

$$
\{\eta \beta \text {-normal } \lambda \text {-terms }\} \leftrightarrow\{\text { WISs }\}
$$

which cannot be extended!

Problem: even in a "minimal" λ-calculus

$$
\begin{gathered}
t:=x|\lambda x \cdot t|(t) u \mid t[\vec{t} / \vec{x}] \\
x[t / y, t / y] \simeq x[t / y]
\end{gathered}
$$

Relation between CK-WISs and modal λ-terms

In intuitionistic logic we have a 1-to-1 correspondence

$$
\{\eta \beta \text {-normal } \lambda \text {-terms }\} \leftrightarrow\{\text { WISs }\}
$$

which cannot be extended!

Problem: even in a "minimal" λ-calculus

$$
\begin{gathered}
t:=x|\lambda x \cdot t|(t) u \mid t[\vec{t} / \vec{x}] \\
x[t / y, t / y] \simeq x[t / y]
\end{gathered}
$$

Solution: additional reductions

$$
\begin{array}{lll}
M[\vec{P}, N, \vec{Q} / \vec{x}, y, \vec{z}]_{\square} & \sim_{K} M[\vec{P}, \vec{Q} / \vec{x}, \vec{z}]_{\mathbf{L}}[\vec{x}, \vec{x}, \vec{x} / \vec{x}, v, \vec{z}]_{1} & \begin{array}{l}
v \text { fresh no } y \text { in } M
\end{array} \\
M\left[\vec{P}, N, N, \vec{Q} / \vec{x}, y_{1}, y_{2}, \vec{z}\right]_{\square} \rightsquigarrow_{K} M\left\{v, v / y_{1}, y_{2}\right\}[\vec{P}, N,
\end{array}
$$

Relation between CK-WISs and modal λ-terms

For constructive modal logic we have a 1-to-1 correspondence [ArXiv23]

$$
\{\eta \beta \kappa \text {-normal } \lambda \text {-terms }\} \leftrightarrow\{\text { WISs }\}
$$

Problem: even in a "minimal" λ-calculus

$$
\begin{gathered}
t:=x|\lambda x \cdot t|(t) u \mid t[\vec{t} / \vec{x}] \\
x[t / y, t / y] \simeq x[t / y]
\end{gathered}
$$

Solution: additional reductions
$M[\vec{P}, N, \vec{Q} / \vec{x}, y, \vec{z}]_{\square} \quad \rightsquigarrow_{K} M[\vec{P}, \vec{Q} / \vec{x}, \vec{z}]_{\mathbf{L}}$
$M\left[\vec{P}, N, N, \vec{Q} / \vec{x}, y_{1}, y_{2}, \vec{z}\right]_{\square} \sim_{\kappa} M\left\{v, v / y_{1}, y_{2}\right\}[\vec{P}, N, \vec{Q} / \vec{x}, v, \vec{z}]_{\square} \quad v$ fresh

Proof equivalence in Constructive Modal Logic

Sum up (Constructive Modal Logic):

- Sequent calculus
- proof systems [Cook-Reckhow]
- no proof equivalence
- Compositionality via cut
- Combinatorial proofs
- proof systems [Cook-Reckhow]
- (resource-sensitive) proof equivalence
- Compositionality under study
- Old λ-calculus / Natural Deduction
- some expected equivalences seems to be missed
- No 1-to-1 correspondence between CK-WISs and $\eta \beta$-normal λ-terms
- Winning Innocent Strategies / New λ-calculus
- Full-complete concrete model for denotational semantics
- Not a proof system
- (not resource sensitive) proof equivalence
- 1-to-1 correspondence between CK-WISs and $\eta \beta \kappa$-normal λ-terms
- Structural Rules and Modalities interact weirdly (P-space complexity)

No possible proof systems capturing the whole proof equivalence

Related works/Works in Progress:

- Combinatorial Proofs and Game Semantics for CS4
- Combinatorial Proofs as proof certificates (with modules)
- Combinatorial Proofs Normalization
- Extend results on λ-calculus for $C K$ (include \diamond and \wedge)
- Re-study categorical semantics (!)

Thanks

Thanks

Questions?

